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Abstract
In machine lip-reading, which is identification of speech from
visual-only information, there is evidence to show that visual
speech is highly dependent upon the speaker [1]. Here, we use
a phoneme-clustering method to form new phoneme-to-viseme
maps for both individual and multiple speakers. We use these
maps to examine how similarly speakers talk visually. We con-
clude that broadly speaking, speakers have the same repertoire
of mouth gestures, where they differ is in the use of the gestures.
Index Terms: visual-only speech recognition, computer lip-
reading, visemes, classification, pattern recognition, speaker-
independence

1. Introduction
Speaker identity is known to be important in the recognition of
speech from visual-only information (lip-reading) [1], more so
than in audio speech. One of the difficulties in dealing with vi-
sual speech is what the findamental units for recognition should
be. The term viseme is loosely defined [2] to mean a visually
indistinguishable unit of speech, and a set of visemes is usu-
ally defined by grouping together a number of phonemes that
have a (supposedly) indistinguishable visual appearance. Sev-
eral many-to-one mappings from phonemes to visemes have
been proposed and investigated [3], [2] or [4]. In [5], a new idea
of using speaker-dependent visemes is presented. The method
can be summarised as follows:

1. Perform speaker-dependent phoneme recognition with
recognisers that use phoneme units.

2. By aligning the phoneme output of the recogniser with
the transcription of the word uttered, a confusion matrix
for each speaker is produced detailing which phonemes
are confused with which others.

3. Phonemes are clustered into groups (visemes) based on
the confusions identified in step two. The clustering al-
gorithm permits phonemes to be grouped into a single
viseme, V only if each phoneme has been confused with
all the others within V . Consonant and vowel phonemes
are not permitted to be mixed within a viseme class. The
result of this process is a Phoneme-to-Viseme (P2V) map
M for each speaker—for further details, see [5].

4. These new speaker-dependent viseme sets are then used
as units for visual speech recognition for a speaker.

This resulted in a small improvement in speaker-dependent
recognition [5]. The question then arises to what extent such
maps are independent of the speaker, and if so, how speaker in-
dependence might be examined. In particular, we are interested
in the interaction between the data used to train the models and
the viseme classes themselves.

2. Dataset description
We use the AVLetters2 (AVL2) dataset [1], to train and test
recognisers based upon the new P2V mappings. This dataset
consists of four British-English speakers reciting the alphabet
seven times. The full-faces of the speakers are tracked using
Active Appearance Models (AAMs) [6] from which lip-only
combined shape and appearance features are extracted. We se-
lect AAM features because they are known to out-perform other
feature methods in machine visual-only lip-reading [7]. Fig-
ure 1 shows the count of the 29 phonemes that appear in the
phoneme transcription of AVL2, allowing for duplicate pronun-
ciations, (with the silence phoneme omitted). The BEEP pro-
nunciation dictionary used throughout these experiments is in
British English [8].

3. Method overview
We use the clustering approach of [5] to produce a series of P2V
maps. We construct

1. a speaker-dependent map for each speaker;

2. a multi-speaker map using all speakers’ phoneme confu-
sions;

3. a speaker-independent map for each speaker using con-
fusions of all other speakers in the data.

Each P2V map is constructed using separate training and test
data by using seven fold cross-validation [9]. In total each
speaker utters 182 words (seven recitations of 26 words). Each
one of seven recitations of the alphabet are selected as test folds
in turn and are not included in the training folds.

We then use the HTK toolkit [10] to build Hidden Markov
Model (HMM) classifiers whose models are the viseme classes
in each P2V map. We flat-start the HMMs with HCompV, re-
estimate them 11 times over (HERest) with forced alignment
between seventh and eighth re-estimates. Finally we recognise
using HVite and output our results with HResults. The
models are three state HMMs each having an associated Gaus-
sian mixture of five components. Our recognition network con-
strains the output to be one of the 26 letters of the alphabet.

Therefore, our measure of accuracy is
#letterscorrect

#lettersclassified
.

4. Experimental setup
We designate the P2V maps formed in these experiments as

Mn(p, q) (1)

This means that the P2V map is derived from speaker n, but
trained using visual speech data from speaker p and tested us-
ing visual speech data from speaker q. For example, M1(2, 3)
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Figure 1: Phoneme histogram of AVLetters-2 dataset

would designate the result of testing a P2V map constructed
from Speaker 1 using data from Speaker 2 to train the viseme
models and testing on Speaker 3’s data.

4.1. Baseline: Same Speaker Dependent maps (SSD)

We establish a baseline of performance using the speaker-
dependent results: M1(1, 1),M2(2, 2),M3(3, 3) and
M4(4, 4). They are same speaker dependent (SSD) because the
map, the models and the testing data are all derived from the
same speaker. Table 1 depicts how these maps are constructed.
The resulting SSD P2V maps are listed in Table 3. The /garb/

Same speaker-dependent (SD)
Mapping (Mn) Training data (p) Test speaker (q)
Sp1 Sp1 Sp1
Sp2 Sp2 Sp2
Sp3 Sp3 Sp3
Sp4 Sp4 Sp4

Table 1: Same Speaker-Dependent (SSD) experiments used as
a baseline for comparison

viseme is made up of phonemes which did not appear in the
output from the recogniser. Each viseme is listed with its
associated mutually-confused phonemes e.g. for M1, we see
/v01/ is made up of phonemes {/ah/, /iy/, /ow/, /uw/}. These
means in the phoneme recognition, all four phonemes {/ah/,
/iy/, /ow/, /uw/} were confused with the other three in the
viseme.

4.2. Different Speaker Dependent maps & Data (DSD&D)

In these tests, we use the HMM recognisers trained on each
single speaker to recognise data from different speakers. This
is done for all four speakers using the P2V maps of the other
speakers, and the data from the other speakers. Hence for
Speaker 1 we construct M2(2, 1),M3(3, 1) and M4(4, 1) and
so on for the other speakers—this is depicted in Table 2.

4.3. Different Speaker Dependent maps (DSD)

In our next experiment we train our models on speech from a
single speaker but vary the speaker-dependent maps. This iso-
lates the effects of the HMM recognition from the effect of dif-
ferent viseme classes. So for Speaker 1, we test the following

Different Speaker Dependent maps & Data (DSD&D)
Mapping (Mn) Training data (p) Test speaker (q)
Sp2,Sp3,Sp4 Sp2,Sp3,Sp4 Sp1
Sp1,Sp3,Sp4 Sp2,Sp3,Sp4 Sp2
Sp1,Sp2,Sp4 Sp3,Sp2,Sp4 Sp3
Sp1,Sp2,Sp3 Sp4,Sp2,Sp3 Sp4

Table 2: Different Speaker Dependent maps & Data (DSD&D)
experiments

Speaker-Independent Maps: M2(1, 1),M3(1, 1) and M4(1, 1).
These are the same P2V maps in Table 3 but trained and tested
differently. This is depicted in Table 4.

Different Speaker Dependent maps (DSD)
Mapping (Mn) Training data (p) Test speaker (q)
Sp2,Sp3,Sp4 Sp1 Sp1
Sp1,Sp3,Sp4 Sp2 Sp2
Sp1,Sp2,Sp4 Sp3 Sp3
Sp1,Sp2,Sp3 Sp4 Sp4

Table 4: Different Speaker Dependent maps (DSD) experiments

4.4. Multi-speaker maps (MS)

In the third set of experiments, we use the multi-speaker (MS)
P2V map to form the viseme classes. This map is con-
structed using phoneme confusions produced by all our speak-
ers and is shown in Table 6. We test this map as follows:

Multi-Speaker (MS)
Mapping (Mn) Training data (p) Test speaker (q)
Sp1234 Sp1 Sp1
Sp1234 Sp2 Sp2
Sp1234 Sp3 Sp3
Sp1234 Sp4 Sp4

Table 5: Multi-Speaker (MS) experiments used as a baseline for
comparison

M[1234](1, 1),M[1234](2, 2),M[1234](3, 3) and M[1234](4, 4):
this is explained in Table 5.



Speaker 1 M1 Speaker 2 M2 Speaker 3 M3 Speaker 4 M4

Viseme Phonemes Viseme Phonemes Viseme Phonemes Viseme Phonemes
/v01/ /ah/ /iy/ /ow/ /uw/ /v01/ /ay/ /ey/ /iy/ /uw/ /v01/ /ey/ /iy/ /v01/ /ah/ /ay/ /ey/ /iy/
/v02/ /ax/ /eh/ /ey/ /v02/ /ow/ /v02/ /ax/ /eh/ /v02/ /ax/ /eh/
/v03/ /aa/ /ay/ /v03/ /ax/ /v03/ /ay/ /v03/ /aa/
/v04/ /d/ /s/ /t/ /v04/ /eh/ /v04/ /ah/ /v04/ /ow/
/v05/ /ch/ /l/ /v05/ /ah/ /v05/ /aa/ /v05/ /uw/
/v06/ /m/ /n/ /v06/ /aa/ /v06/ /ow/ /v06/ /m/ /n/
/v07/ /jh/ /v/ /v07/ /jh/ /p/ /y/ /v07/ /uw/ /v07/ /k/ /l/
/v08/ /b/ /y/ /v08/ /l/ /m/ /n/ /v08/ /d/ /p/ /t/ /v08/ /jh/ /t/
/v09/ /k/ /v09/ /v/ /w/ /v09/ /l/ /m/ /v09/ /d/ /s/
/v10/ /z/ /v10/ /d/ /b/ /v10/ /k/ /w/ /v10/ /w/
/v11/ /w/ /v11/ /f/ /s/ /v11/ /f/ /n/ /v11/ /f/
/v12/ /f/ /v12/ /t/ /v12/ /b/ /s/ /v12/ /v/

/v13/ /k/ /v13/ /v/ /v13/ /ch/
/v14/ /ch/ /v14/ /jh/ /v14/ /b/

/v15/ /ch/ /v15/ /y/
/v16/ /y/
/v17/ /z/

/sil/ /sil/ /sil/ /sil/ /sil/ /sil/ /sil/ /sil/
/garb/ /ea/ /oh/ /ao/ /r/ /p/ /garb/ /ea/ /oh/ /ao/ /r/ /z/ /garb/ /ea/ /oh/ /ao/ /r/ /garb/ /ea/ /oh/ /ao/ /r/ /p/ /z/

Table 3: Speaker-dependent phoneme-to-viseme mapping derived from phoneme recognition confusions for each speaker in AVL2

Multi-Speaker M1234

Viseme Phonemes
/v01/ /ah/ /ay/ /ey/ /iy/ /ow/ /uw/
/v02/ /ax/ /eh/
/v03/ /aa/
/v04/ /d/ /s/ /t/ /v/
/v05/ /f/ /l/ /n/
/v06/ /b/ /w/ /y/
/v07/ /jh/
/v08/ /z/
/v09/ /p/
/v10/ /m/
/v11/ /k/
/v12/ /ch/
/sil/ /sil/
/garb/ /ea/ /oh/ /ao/ /r/

Table 6: Phoneme-to-viseme mapping derived from phoneme
recognition confusions for all four speakers in AVL2

4.5. Speaker-Independent maps (SI)

Finally, we use our phoneme-clustering method to create a set
of Speaker-Independent (SI) maps for each of the four speakers.
These final P2V maps are shown in Table 8. We test these maps

Speaker-Independent maps (SI)
Mapping (Mn) Training data (p) Test speaker (q)
Sp234 Sp1 Sp1
Sp134 Sp2 Sp2
Sp124 Sp3 Sp3
Sp123 Sp4 Sp4

Table 7: Speaker-Independent (SI) maps experiments

as follows M234(1, 1),M134(2, 2),M124(3, 3) and M123(4, 4)
as shown in Table 7.

4.6. Homophones

Map Unique words T
M1 19
M2 19
M3 24
M4 24
M1234 14
M234 17
M134 18
M124 20
M123 15

Table 9: Homophones created by each P2V mapping, allowing
for variation in pronunciation

Because the P2V maps are a many-to-one mapping, there
is the possibility of creating visual homophones. For example,
the phonetic realisation of the word ‘B’ is b iy and of ‘D’ is
d iy. Using map M2(2, 2) they become B = v08 v01 and D =
v08 v01 which are indistinguishable. The vocabulary of AVL2
is the 26 letters, A–Z. Permitting variations in pronunciation,
we show the total unique words (T ) for each map after each
word (letter) has been translated from words, to phonemes, to
visemes in Table 9. The higher the volume of homophones, the
greater the chance of substitution errors.

5. Results
Figure 2 shows the word recognition of speaker-dependent
viseme classes, measured by correctness. In this fig-
ure, our baseline is n = p = q for all M . We
compare these to: M2(2, 1),M3(3, 1),M4(4, 1) for
Speaker 1, M1(1, 2),M3(3, 2),M4(4, 2) for Speaker
2, M1(1, 3),M2(2, 3),M4(4, 3) for Speaker 3 and
M1(1, 4),M2(2, 4),M3(3, 4) for Speaker 4. DSD HMM
recognisers are significantly worse than SSD HMMs, as all
results where p is not the same speaker as q are around the



Speaker 1 M234 Speaker 2 M134 Speaker 3 M124 Speaker 4 M123

Viseme Phonemes Viseme Phonemes Viseme Phonemes Viseme Phonemes
/v01/ /ah/ /ax/ /ay/ /v01/ /ah/ /ay/ /ey/ /v01/ /ah/ /ay/ /ey/ /v01/ /ah/ /ay/ /ey/

/ey/ /iy/ /iy/ /iy/ /ow/ /uw/ /iy/ /ow/ /uw/
v02 ow uw v02 aa ow uw v02 aa v02 aa
v03 eh v03 ax eh v03 ax eh v03 ax eh
v04 aa v04 d s t v04 d s t v v04 jh s t v
v05 d s t v v05 ch l v05 l m n v05 f l n
v06 l m n v06 b jh v06 b w y v06 b d p
v07 jh p y v07 v y v07 jh v07 w y
v08 k w v08 k w v08 z v08 z
v09 f v09 p v09 p v09 m
v10 ch v10 z v10 k v10 k
v11 b v11 m v11 f v11 ch

v12 ch
sil sil sil sil sil sil sil sil
garb ea oh ao r z garb ea oh ao r f n garb ea oh ao r iy garb ea oh ao r

Table 8: Phoneme-to-viseme mapping derived from phoneme recognition confusions of the three other speakers in AVL2
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Figure 2: Word recognition measured by correctness of the DSD&D trained HMM classifiers used on all three other speakers in AVL2.
Baseline is the SSD maps and error bars show ± one standard error.

equivalent performance of guessing. This correlates with
similar tests of independent HMM’s in [1]. We can attribute
this gap to two possible effects, either - the visual units are
incorrect, or they are trained on the incorrect speaker.

In Figure 3 we have repeated the same benchmark
as in Figure 2(n = p = q), but we have now al-
lowed the HMM to be trained on the relevant speaker,
so the other tests are: M2(1, 1),M3(1, 1),M4(1, 1) for
Speaker 1, M1(2, 2, )M3(2, 2),M4(2, 2) for Speaker 2,
M1(3, 3),M2(3, 3),M4(3, 3) for Speaker 3 and finally
M1(4, 4),M2(4, 4),M3(4, 4) for Speaker 4. Now the word
correctness has improved substantially which implies that the
previous poor performance was not due to the choice of visemes

but rather, the badly trained HMMs.
We rank the performance of each viseme set on each

speaker by weighting the effect of the DSD tests. We score
each map as in Table 10. If a map increases on SSD perfor-
mance within error bar range this scores +1 or outside error bar
range scores +2. Likewise if a map decreases recognition on
SSD performance, these values are negative.

So we see that M − 3 is the best of the four SSD maps,
followed by M4, M2 and finally M1 is the most susceptible to
speaker identity. We note that this order matches a decreasing
order of quantity of visemes in the speaker-dependent viseme
sets i.e. the more similar to phoneme classes visemes are, then
the better the recognition performance. This ties in with Table 9,
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Figure 3: Word recognition measured by correctness of the DSD classifiers constructed with single-speaker independent P2V maps for
all four speakers in AVL2. Baseline is the SSD maps and error bars show ± one standard error.

M1 M2 M3 M4

Sp01 0 +1 +2 +2
Sp02 −1 0 +2 +1
Sp03 −2 −2 0 −1
Sp04 −1 +1 −1 0
Total −4 0 3 2

Table 10: Weighted scores from comparing the use of speaker-
dependent maps for other speaker-dependent lip-reading

where the better P2V maps have less homorphous words.
In Table 3, phoneme pairs {/ax/, /eh/}, {/m/, /n/} and {/ey/,

/iy/} are present for three speakers and {/ah/, /iy/} and {/l/, /m/}
are pairs for two speakers. Of the single-phoneme visemes, /ch/
is present three times, /f/, /k/, /w/ & /z/ twice.

The important lesson from Figure 3, is that the selection
of incorrect units, whilst detrimental, is not as devastating as
training recognition classes on alternative speakers.

Figure 4 shows the correctness of both the MS viseme
class set and the SI sets. For the multi-speaker classifiers,
these are all built on the same map M1234, and tested on
the same speaker so, p = q. Therefore our tests are:
M1234(1, 1),M1234(2, 2),M1234(3, 3),M1234(4, 4). To test
our SI maps, we plot M234(1, 1),M134(2, 2),M124(3, 3) and
M123(4, 4). Again we repeat the same baseline where n = p =
q for reference.

There is no significant difference on Speaker 2, and while
Speaker 3 word recognition is reduced, it is not eradicated.
It is interesting that for Speaker 3, for whom their speaker-

dependent recognition was the best of all speakers, the SIM map
(M124) out performs the multi-speaker viseme classes (M1234)
significantly. This maybe due to Speaker 3 having a unique vi-
sual talking style which reduces similarities with Speakers 1, 2
& 4.

If we compare all the P2V maps in Tables 6 & 8, there are
similarities. Mostly because we know there is only one speaker
at a time removed from within SIM P2V maps. However, if we
compare these to the speaker-dependent maps in Table 3, we
see a different picture. Speaker 4 is significantly affected by the
introduction of /ow/ and /uw/ into viseme /v01/. Where Speaker
1 has these in M1(1, 1), we see that his SD word recognition of
15.9% is less than half of Speaker 4’s 38.4% (Figure 3).

6. Conclusions
Our principal conclusion can be seen by comparing Figures 3
& 4 with Figure 2. Figure 2 shows a very substantial reduc-
tion in performance when the system is truing on a speaker who
is not the test speaker. The question arises as to whether this
degradation is due to the wrong choice of map or the wrong
training data for the recognisers. We conclude that is it not the
choice of map that causes degradation since we can retrain the
HMMs and regain much of the performance. We regain perfor-
mance irrespective of whether the map is chosen for a different
speaker, multi-speaker or independently of the speaker.

This is an important conclusion since it tells us that the
repertoire of lip appearances does not vary significantly across
speakers. This is comforting since the prospect of recognition
using a symbol alphabet which varies by speaker is daunting.
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Figure 4: Word recognition measured by correctness of the classifiers using MS and SI phoneme-to-viseme maps. Baseline is the SSD
maps and error bars show ± one standard error.

This is further reinforced by Tables 3, 6 & 8. There are differ-
ences between speakers, but not significant ones.

An analogy with acoustic speech would be the question of
whether an accented Norfolk speaker requires a different set
of phonemes to a standard British talker. No: they can be
represented by the same set of phonemes; they just use these
phonemes in a different way.
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