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Abstract 
 

Ticks as vectors of several notorious zoonotic pathogens, represent an important and 

increasing threat for human, animal health in Europe. Recent application of new 

technology revealed the complexity of the tick microbiome that might impact upon its 

vectorial capacity. Appreciation of these complex systems is expanding our vision of 

tick-borne pathogens leading us to evolve a more integrated view that embraces the 

“pathobiome” representing the pathogenic agent integrated within its abiotic and 

biotic environments.  

In this review, we will explore how this new vision will revolutionize our understanding 

of tick-borne diseases. We will discuss the implications in terms of research 

approach for the future in order to efficiently prevent and control the threat posed by 

ticks.  

  



Recent application of next generation sequencing technology revealed the 

complexity of the tick microbiome that might impact upon its vectorial capacity and 

consequently affecting the vector-reservoir host interactions. Appreciation of these 

complex systems is expanding our vision of tick-borne pathogens leading us to 

evolve a more integrated view that embraces the “pathobiome” representing the 

pathogenic agent integrated within its abiotic and biotic environments including other 

pathogens, commensals, or mutualists. In this review, we will explore how this 

emerging vision of tick-borne pathogens will revolutionize our understanding of tick-

borne diseases which are a growing concern given their exponential increase since 

the discovery of the Lyme disease agent. We will discuss the implications in terms of 

research approach for the future in order to efficiently prevent and control the threat 

posed by ticks.   
 
CURRENT STATE OF THE ART KNOWLEDGE OF TICK-BORNE PATHOGENS 
USING “CONVENTIONAL VISION” 
  
Expanding horizons of Tick borne pathogens. In Europe, the most prevalent tick-

borne disease in humans is Lyme borreliosis (LB), caused by a group of bacteria 

belonging to the Borrelia burgdorferi sensu Iato group with at least 5 different species 

infecting humans in Europe [1]. Recently, B. miyamotoi, belonging to the more 

distantly related relapsing fever group, has been detected in patients in USA, Japan, 

Russia and The Netherlands [2-5] and is transmitted by the tick species involved in 

LB. Ticks can also be infected with other pathogens that might be transmitted to 

humans [6] (see Table 1). Amongst them, Anaplasma phagocytophilum is 

responsible for granulocytic anaplasmosis, Candidatus Neoerhlichia mikurensis has 

emerged as a cause of severe febrile illness in immunocompromised patients [7, 8], 

whilst rickettsiae of the spotted fever group are known (R. monacenis, R. conorii) or 

suspected (R. helvetica) to cause rickettsioses [9, 10]. Other bacterial pathogens 

such as Francisella tularensis, causing tularemia, and the Q fever agent Coxiella 

burnetii have also been detected in I. ricinus, but the direct role of this tick species in 

the epidemiology of these diseases is probably not significant [11, 12]. Humans may 

develop babesiosis following tick borne transmission of protozoans belonging to the 

genus Babesia, mainly B. divergens, however the virulence of additional members of 

this genus such as B. venatorum has recently been confirmed [13]. B. microti, an 



emerging human tick borne pathogen in USA, has also been identified in ticks in 

Europe, with one single human case to date [14]. Tick species also transmit 

arboviruses, the tick-borne encephalitis virus being the most notorious in terms of 

public health in Europe [15, 16]. Beside TBEV, many tick-borne viruses are known to 

be transmitted by other ticks. Among them, Crimean-Congo haemorrhagic fever virus 

(CCHFV) is considered to be one of the major emerging disease threats spreading 

within the European Union following an expanding distribution of its main tick vector, 

the genus Hyalomma [17]. More anecdotally, Omsk virus, an endemic virus from 

rural regions in Siberia and transmitted by Dermancentor species, is expanding its 

range. This virus caused capillary damage responsible for the haemorrhagic 

manifestations [15]. Other European tick-borne viruses are less well established as 

causes of disease but case reports are emerging. Among them, Powassan virus, a 

member of the genus Flavivirus, has been recovered from the brains of patients 

following fatal infection [15]. Louping ill virus, also member of the genus Flavivirus 

causes encephalitis in sheep, while exposed humans developed asymptomatic 

infection [15]. 

An increasing number of new species, strains or genetic variants of other 

microorganisms are being detected in ticks, resulting in an ever-increasing list of 

(potential) pathogens capable of infecting livestock, companion animals and humans. 

However, it needs to be taken into account that a significant portion of these "new" 

species/genotypes are not truly emerging, but only newly detected. This increasing 

recognition of pathogen biodiversity is not generating answers, but instead raising 

rather complex questions regarding ecological cycles of pathogens, their 

polymicrobial cross-talk, and their influence upon infection mechanisms, clinical 

differential diagnosis and intervention opportunities. 

Identification of microorganisms in ticks has been largely dominated by the use of 

conventional molecular approaches mostly using specific primers combined with 

(real-time) PCR, and less frequently by culture-dependent methods. However, 

pathogen detection in an arthropod is not sufficient to validate its vector competence. 

This entails use of vector competence studies to establish both the interaction of new 

or unexpected pathogen with ticks, and to evaluate the risk of exposure for both 

humans and animals. These types of studies require living ticks raised under 

controlled conditions. Because of their complex biological cycle and their feeding 



biology, maintenance of tick colonies and their infection with micro-organisms is not 

easy. However, several methods have been successfully developed and used to 

infect hard ticks with pathogens, e.g. feeding ticks on infected animals, injecting 

pathogens through the cuticule, by using thin capillary tubes, and feeding ticks on 

infected blood through artificial or animal-derived membranes [18]. These methods 

have been successfully employed to validate vector competence for a number of tick-

borne pathogens, including Lyme spirochaetes [19], A. phagocytophilum [20],  

Babesia sp. EU1 (or B. venatorum) [21] Bartonella sp. [22, 23] and Tick-borne 

encephalitis virus [24, 25]. However, for some established tick-borne pathogens such 

as Ca. N. mikurensis or R. helvetica (both of which currently lack any cultivable 

strain), the tick vector competence remains to be proven.  These are consequently 

considered “de facto” tick-borne pathogens under more or less strong 

“epidemiological evidence”.  

 

Diagnostic challenges posed by Tick borne Pathogens/Diseases. Given a clinical 

history of tick bites, Lyme borreliosis is the primary consideration, but in some this 

diagnosis remains elusive being unconfirmed by conventional serological tests [26]. 

People bitten by ticks can also be infected by tick-borne encephalitis virus (TBEV) 

causing severe encephalitis, which is readily diagnosed by serological tests [15]. TBE 

can be successfully prevented by active immunization, but no specific treatment is 

available [27]. As already mentioned, ticks are capable of transmitting the largest 

variety of pathogens amongst arthropod vectors, and pathogens other than the Lyme 

or tick-borne encephalitis agents might be involved in Tick Borne Diseases (TBD). 

Interestingly, the majority of those pathogens have been discovered during the last 

20 years. The symptoms induced by those pathogens are often mild and non-specific 

(high fever, fatigue, body aches, chills…) and can be confused with symptoms 

caused by infection with other agents. This is probably the underpinning reason why 

these infections are poorly recognised in humans by medical practitioners despite 

their abundance in ticks and/or reservoir animals. A striking example is that of B. 

miyamotoi. This Borrelia species was first isolated from Japanese Ixodes ticks in 

1995 whereby it was considered a non-pathogenic endogenous tick bacterium until 

the first human cases of B. miyamotoi infection were reported in Russia some sixteen 

years later [2]. Subsequently human infections have been described in the USA and 



most recently in the Netherlands [3-5, 28]. Circulation of B. miyamotoi between I. 

ricinus and wild animals has been confirmed in other European countries such as 

France, Estonia, Poland and Switzerland [29], which has confirmed that the French 

genotype is identical to an isolate from a Dutch patient [30]. Despite this apparent 

absence of human cases of B. miyamotoi infections among these countries, this is 

likely to reflect the absence of serological or molecular tests for B. miyamotoi 

combined with the lack of knowledge of these bacteria among medical practitioners. 

Thus, it is likely that the absence of human infections is rather due to missed 

diagnoses than to an actual absence of infection. 

Those patients bitten by ticks are additionally at risk for co-infection by several 

pathogens. For instance, Horowitz et al [31] described co-infection rates ranging from 

2 to 5% for Borrelia species and A. phagocytophilum among patients with erythema 

migrans, the diagnostic hallmark for Lyme borreliosis. Co-infections between B. 

afzelii and R. monacensis were also identified in skin biopsy of erythema migrans 

patients in The Netherlands [32]. However, co-infections are rarely diagnosed in 

routine practice, alerting us to the problem that co-infection in humans a relevant, 

albeit understudied issue, with important implications for public health. 

In consequence, people infected by pathogens other than Lyme borreliosis 

spirochaetes or TBEV, are rarely identified. In recent years, unexplained syndromes 

occurring after tick bites have became an increasingly important issue leading to 

considerable discord between scientists, patients and institutions of infectious 

disease.  



THE TECHNOLOGY-DRIVEN REVOLUTION OF TICK BORNE PATHOGEN’S 
VISION:  
From pathogen to pathobiome. Until now, most studies detecting pathogens in ticks 

have used assays able to assess only limited number of agents simultaneously [33, 

34]. This is partly due to technological limitations making complete screens of 

microorganisms in their natural vector/reservoir populations out of reach using 

standard laboratory procedures. Within the last few years, the rapid development of 

NGS methods has revolutionized the research field of epidemiology and diagnosis of 

infectious diseases facilitating complete screening of pathogens within their hosts, 

discovery of new pathogens, or the detection of unexpected ones. NGS has recently 

been successfully used to identify the bacterial communities associated with I. ricinus 

[35-38] based on the amplification and sequencing of hyper-variable regions of the 

16S rRNA encoding genes (metagenomic profile), revealing a highly diverse 

microbial community (108 genera representing all bacterial phyla). As expected, 

those approaches have allowed detection without a priori established tick-borne 

pathogens such as the Borrelia, Anaplasma, Coxiella, Francisella or Rickettsia genus. 

Among those genera, mostly known as pathogenic for vertebrates, whilst other 

species are considered as endosymbionts (e.g. the Rickettsia-endosymbiont of I. 

scapularis) [39] underscoring the challenge of differentiating between pathogens and 

endosymbionts. Adding further complexity, some authors consider Rickettsia species 

as endosymbionts that are transmitted vertically in arthropods, and only secondarily 

serve as pathogens of vertebrates [40]. For the Coxiella genus, the species C. 

burnetii is mostly considered as a vertebrate pathogen while numerous other Coxiella 

species have been found associated to ticks [41]. Phylogenetic analyses combined 

with experimental approaches suggested that these might also be considered as 

endosymbionts of ticks [11, 42]. Thus the pathogenic nature of C. burnetii could be 

rather an exception within the genus [43]. Beside the well-known vertebrate 

pathogenic species F. tularensis (occasionally found in ticks), Francisella-like-

endosymbionts associated with Dermacentor spp. have been described but their 

potential pathogenic nature remains to be investigated [44]. The Wolbachia and 

Arsenophonus genera are also bacteria associated to arthropods (mostly insects) 

and influence reproduction and/or immunity of their hosts [45, 46]. They have also 

been found associated within ticks [47]. However, a recent study revealed that in I. 

ricinus, the finding of Wolbachia is a consequence of parasitism by a parasitoid wasp 



(Ixodiphagus hookeri) [48]. The role of Arsenophonus as tick endosymbionts has still 

to be demonstrated. Finally, the endosymbiont Midichloria mitochondrii was initially 

observed within tick cells (especially in ovarian cells of I. ricinus; [49]. Use of 

molecular probes specific for this alphaproteobacteria have demonstrated their 

presence in almost 100% of I. ricinus females derived from natural populations [50], 

but also in other tick species [51]. Furthermore, M. mitochondri has recently been 

implicated as potential vertebrate pathogen [52].  

Use of NGS technology will undoubtedly shed new lights on the intriguing bacterial 

communities associated with ticks [37]. The clear-cut boundries between the so-

called “vertebrate-pathogens”, “arthropod-pathogens” or “arthropod-symbionts” may 

thus fade into a more dynamic and complex vision of bacterial-vector-vertebrate 

communities. Better knowledge of the role of these bacteria could even constitute 

useful resources for developing anti-vectorial control measures. 

Besides the known micro-organisms (either belonging to pathogens, endosymbionts 

or both), NGS also revealed that the majority of RNA/DNA sequences carried by ticks 

belonged to unknown micro-organisms. For instance, 80% of the viral nucleic 

sequences detected from tick extracts represented as-yet unidentified 

microorganisms (Vayssier-Taussat et al., unpublished data). Among these new viral 

sequences, we identified genera transmissible to humans and/or animals via 

arthropods, including Bunyaviridae (Nairovirus and Phlebovirus), Rhabdoviridae 

(Vesiculovirus) and Reoviridae (Coltivirus) (Vayssier-Taussat et al., unpublished 

data). A similar study undertaken by Lipkin et al. in the USA characterized the virome 

of different tick species. Powassan virus, a well-known human pathogenic tick-borne 

virus, and eight novel viruses belonging to nairovirus, phlebovirus and 

mononegavirus genera were identified among the three ticks assessed [53]. New 

viruses recently identified in ticks by NGS are listed in Table 2. 

By having sight of the entire tick microbial community, we can identify that pathogens 

are intimately associated to the vast community of micro-organisms (including other 

pathogens) and that by elucidating their influence tick biology, pathogen persistence, 

transmission, and virulence justifies the need to shift from the study of isolated 

pathogens to the more integrated approach. Within this context, we define the 

“pathobiome” as representing the pathogen within its abiotic and biotic environment 



[54] (See figure 1). Taking into account the multifactorial pathobiome requires 

comprehensive knowledge of the microbial community comprising the pathobiome, 

the network of interactions between microbes and the biological relevance of these 

interactions.  

Deciphering microbial interactions within the tick ecosystem   

Microbial interactions have largely been considered on a one-to-one interaction level, 

where the infection by one pathogen influences the acquisition of and/or dynamics of 

infection by a second pathogen. However, interactions between sets of pathogens 

are conceivable whereby different pathogens interact within a network or through 

“cascade consequence” [55, 56]. In experimental studies, one can investigate how 

the presence of one pathogen may interfere with infection by another, however, this 

is not possible using pathobiome perspective where many pathogens and other 

micro-organisms are present, including those member that remain poorly understood. 

In such a scenario, use of population studies assessing dynamics of change through 

the probability of finding those pathogens together beyond that which could occur by 

chance. Seeking microbial congruence initially assesses this, even though this can 

also result from confounding factors that create statistical associations between 

pathogens, without true biological interactions. In population studies, longitudinal or 

time series data are useful for identifying pathogen associations, identifying whether 

the presence of one pathogen modify subsequent infection by another [57]. However, 

such studies are resource-intensive. An alternative is to run one-off cross-sectional 

studies, which are cheaper and less time consuming than longitudinal studies. Cross-

sectional studies can easily be used to detect several pathogens and are especially 

appropriate in the case of emerging or poorly known pathogens or host species. In 

such cases, numerous approaches are available to detect pathogen associations. 

Multivariate analyses (e.g., PCA, FCA, DA, CoA) [58] will evaluate which pathogens 

tend to group together. However, statistical test associated with these analyses are 

usually not available [but see for example permutation methods, 59, 60]. A new 

modeling approach was develop, “the association screening approach” to detect the 

overall and more detailed multi-pathogen associations [61]. This method is quite 

powerful but would require over 1000 samples if we were to study over 10 micro-

organisms. Strong methodological developments on robust network analytical 

methods have been made [62] and continue to evolve (e.g. in medicine: metabolic 



pathways [63, 64], in computer science: peer to peer networks [65] or in social 

science: scientific collaboration [66]). They also offer an attractive representation of 

assessing dynamics of multiple pathogen relationships. They provide indices of 

association such as connectance [67], nestedness [68] or betweeness [69]. However, 

up to date, statistical tests regarding the networks parameters have rarely been used, 

but developments in this field are promising. 

Importance of the pathobiome concept to elucidate competence mechanisms: 

Microbes present along with pathogens in the ticks may interfere with pathogen 

transmission. For instance, Rickettsial endosymbionts are thought to alter 

transmission of other rickettsial pathogens, as seen by the inverse relationship 

between the infection prevalence of R. rickettsii (pathogen) and R. peacockii 

(symbiont) in Dermancentor andersoni [47, 70]. Furthermore, the presence of 

Coxiella-related symbionts in the salivary glands of Amblyomma ticks impairs 

transmission of Ehrlichia chaffeensis [71]. In addition to symbionts, ticks are also 

colonized by a natural bacterial microbiota mainly belonging to the Proteobacteria, 

Firmicutes, and Bacteroides phyla [72]. It has also been demonstrated that these tick 

microbiomes can interfere with pathogens. For example, when ticks were bred in a 

sterile environment, the absence of microbiota altered gut integrity and the ability of B. 

burgdorferi to colonize [72]. Microbiome alterations might also result in a modulated 

immune response which might then interfere with pathogen survival and infection, as 

shown for other arthropod vectors [73]. Thus taking into account the pathobiome 

rather than the isolated pathogens is crucial to understand how pathogens are 

transmitted and how they survive within ticks. 

 

  



PATHOBIOME APPROACH FOR SURVEILLANCE, DIAGNOSIS AND 
PREVENTION OF TICK BORNE DISEASES  

Surveillance and Diagnosis. Considering the vast number of potential tick borne 

pathogens that can result in disease, either alone or in association, there is an urgent 

need to develop methods that are capable to accommodate this diversity, but also 

provide insights into the biology of tick-borne pathogens. For instance, many tick-

borne pathogens colonize blood (residing within either intra- or extracellular niches) 

of vertebrate hosts. Thus it makes sense to detect the presence of their DNA in the 

blood of infected human patients of animals. However, blood infection does not occur 

for all tick-borne pathogens. A notable exception is the Lyme spirochaete that does 

not stably infect blood of human hosts, therefore detection of DNA in the blood of 

patient bitten by ticks is unhelpful necessitating use of more specific samples (such 

as skin biopsies) or use of serological tests even though their specificity and 

sensitivity are not always optimal. Molecular identification of tick-borne pathogens 

has been mostly based on the use of specific primers combined with real-time PCR, 

which can only detect a selected and limited number of species simultaneously. To 

overcome these limitations, new tools enabling high-throughput monitoring of tick-

borne pathogens were an urgent priority. Based upon NGS data on presence of tick-

borne pathogens in ticks in different European geographical regions, we developed a 

microfluidigm system allowing multiple parallel real-time PCRs for TBD surveillance 

that might be adapted to diagnostic settings [74]. This has the unique ability to 

simultaneously analyze multiple pathogens (up to 48 different species) in the same 

sample. This new tool presents the major advantage and can be easily adapted to 

new or emerging situations as it is entirely possible to remove primers/probes sets in 

order to modify the panel of targeted pathogens. If developed by private companies, 

this approach will represent an important improvement for the diagnosis of TBD. 

Vaccination. Given the vast number of pathogens/potential pathogens that could be 

transmitted by the same tick species, deployment of tick vaccines would be both 

smart and environmentally friendly alternative to protect human and animal 

population against tick-borne diseases. This novel approach for control of vector 

infestations and thus reducing subsequent pathogen transmission necessitates a 

deep understanding of microbial interactions within the tick. For that purpose, 

research on molecular interactions between ticks and pathogens as well as the 



identification of suitable targets for vaccine development are major challenges for the 

implementation of new TBD control strategies [75]. Among these, target molecules 

playing key roles in vector capacity are particularly promising [76]. To date, the only 

commercially available anti-tick vaccine is based on the R. microplus midgut protein 

BM86, interfering with tick feeding and subsequent egg production [77]. However, 

thanks to technological advances for tick infection combined with improved resolution 

of molecular investigative methods, further promising candidates have recently been 

identified. These include tick proteins derived from I. ricinus [78, 79], I. scapularis [80], 

Rhipicephalus microplus [81, 82], as well as candidates common to several hard tick 

species [83]. Improving our understanding of molecular interactions between ticks 

and tick-borne pathogens is an essential prerequisite for conception of future 

generations of vaccines and for vectors and diseases control. 

  



Conclusion 

The tick pathobiome vision, thanks to powerful molecular and technological 

advancements offers now a new vantage point to understand tick-borne pathogens in 

a more holistic point of view. 

  



Future perspective 

Shifting the paradigm from pathogens to pathobiome will have many research 

consequences; the most important being 1) how to determine the significance of 

microorganisms revealed by next generation sequencing technology in human and/or 

animal idiopathic disease following tick bites; 2) to decipher the impact of complex 

microbial interactions between pathogens and/or other tick endogenous micro-

organisms that might influence pathogen transmission, persistence, virulence and 

evolution. Based upon this new knowledge, new research avenues will have to be 

followed to develop adequate strategies to better diagnose and combat tick-borne 

diseases 

  



EXECUTIVE SUMMARY 

Current Knowledge on Tick-borne pathogens: 

 An increasing number of “new” species, strains or genetic variants of 

microorganisms are being detected in ticks, resulting in an ever-increasing list 

of potential pathogens.  

 This increasing recognition of pathogen diversity is raising complex questions 

regarding ecological cycles of pathogen, polymicrobial cross-talk, diagnosis 

and intervention opportunities. 

The new vision: 

 Next generation technology shed new lights on bacterial communities 

associated with ticks. 

 The majority of DNA/RNA sequences carried by ticks belong to unknown 

microorganisms.  

 Pathogens are intimately associated with the tick microbial community. 

 This justifies the need to shift from the study of isolated pathogens to a more 

integrated pathobiome approach. 

Future research directions in term of surveillance, diagnosis and prevention of 
tick borne diseases: 

 New tools enabling high-throughput monitoring of tick-borne pathogens are an 

urgent priority 

 Given the vast number of pathogens that could be transmitted by the same 

tick species, deployment of tick vaccines would be a smart and 

environmentally friendly alternative to protect human and animal population 

against tick borne diseases. 
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Table 1: The predominant tick species present in North hemisphere, the pathogens 

they transmit, associated diseases, animal hosts as well as animal reservoirs of the 

corresponding pathogens.  

Ticks species   Pathogens  Diseases (hosts)  Reservoirs 

Ixodes species Borrelia burgdorferi sensu lato Lyme Disease (human, cattle, dog, horse) Rodent, bird, 
reptile 

Borrelia miyamotoi Recurrent fever Rodent, bird 
Anaplasma phagocytophilum Granulocytic Anaplasmosis (Flu-like 

symptoms in human, cattle, goat, sheep, 
horse, dog, cat) 

Wild  ruminants,  
Rodent, 

Babesia divergens Babesiosis (Human, cattle) Deer, cattle 
Babesia microti Babesiosis (Human) rodent 
Babesia venatorum   
Babesia capreoli   
Coxiella burnetii  Q fever (human, goat, sheep…) Rodent 
Francisella tularensis Tularemia (human, rodents sheep, goat, …) Hare 
Bartonella henselae Bartonellosis (human) Cat 
Bartonella berkhoffii Bartonellosis (Dog, human) Dog 
Tick-borne encephalitis Virus TBE (human, dog) Rodent 
Candidatus Neoehrlichia 
mikurensis 

Fever (human, dogs) Rodent 

Rickettsia helvetica (suspected) Fever (human)?* Unknown 
Rickettsia monacensis Fever (Human) Unknown 
Powassan virus Fever, neurological signs (Human) Rodent 
Louping hill virus Encephalitis (Human, sheep) Mountain hare, 

sheep 
Dermacentor spp.  Anaplasma ovis Anaplasmosis (goat, sheep) Unknown 

Babesia caballi Babesiosis (horse) Horse 
Theileria/Babesia equi Theileriosis (horse) Horse 
Babesia canis Canine Babesiois Dogs 
Rickettsia slovaca TIBOLA/SENLAT (human) Unknown 
Rickettsia raoultii TIBOLA/SENLAT (human) Unknown 
Anaplasma marginale Bovine anaplasmosis (Cattle) Cattle 
Francisella tularensis Tularemia (human, rodents sheep, goat, …) Hare 
Coxiella burnetii  Q fever (human, goat, sheep…) Rodent 
Omsk haemorrhagic virus Haemorrhagic manifestations (Human) Muskrat 
Powassan virus Fever, neurological signs (Human) Rodent 

Haemaphysalis spp.  Babesia spp. Babesiosis (human, possibly cattle and dog) Unknown 
Theileria spp. Theileriosis (cattle) Unknown 

Hyalomma spp.  Theileria annulata Theileriosis (Cattle) Unknown 
Theileria equi   
Crimean-Congo hemorrhagic Fever 
Virus* 

Hemorrhagic fever (human)* Rodent, bird? 

Rhipicephalus sanguineus  Rickettsia conorii Mediterranean spotted fever (human) Dog? 
Ehrlichia canis Ehrlichiosis (dog) Dog 
Anaplasma platys Cyclic thrombocytopenia Dog 
Babesia vogeli/canis Canine Babesiosis Dog 
Hepatozoon canis Hepatozoonosis Dog 
Babesia gibsoni Canine Babesiosis Dog 

  



 
Table 2: New viruses recently identified in ticks by NGS.  
 
Viruses Diseases Tick species  references 
Nairovirus (South Bay virus) Unknown I. scapularis [53] 
Blacklegged tick Phlebovirus 
(BTPV) 

Unknown I. scapularis [53] 

American dog tick Phlebovirus 
(ADTPV) 

Unknown I. scapularis/D. variabilis [53] 

Monongavirales-like virus Unknown I. scapularis [53] 
Phlebovirus (Hearltand virus) Severe febrile illness A. americanum [84] 
Shibuinji virus (New tick borne 
virus phlebovirus) 

unknwon Rhipicephalus spp. [85] 
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Figure Legend: 

Figure 1. The tick pathobiome concept. 


