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Exosomes are extracellular vesicles released by many cells of the body. These small vesi-
cles play an important part in intercellular communication both in the local environment and
systemically, facilitating in the transfer of proteins, cytokines as well as miRNA between
cells. The observation that exosomes isolated from immune cells such as dendritic cells
(DCs) modulate the immune response has paved the way for these structures to be con-
sidered as potential immunotherapeutic reagents. Indeed, clinical trials using DC derived
exosomes to facilitate immune responses to specific cancer antigens are now underway.
Exosomes can also have a negative effect on the immune response and exosomes iso-
lated from regulatory T cells (Tregs) and other subsets of T cells have been shown to
have immune suppressive capacities. Here, we review what is currently known aboutTreg
derived exosomes and their contribution to immune regulation, as well as highlighting their
possible therapeutic potential for preventing graft rejection, and use as diagnostic tools to
assess transplant outcome.

Keywords: regulatoryT cells, exosomes and immune modulation

TREG EXOSOMES – IMMUNE MODULATORS
Exosomes are small, cup-shaped, secreted membrane vesicles
(approximately 50–100 nM in diameter) that are formed by the
inward budding of endosomal membranes (1–6). Exosomes are
released into the extracellular environment following the fusion
of multivesicular endosomes with the plasma membrane (7). Sev-
eral proteins involved in their biogenesis and release have been
described and have recently been reviewed by Colombo et al. (7).
Exosomes released by many immune and non-immune cells have
been shown to have a range of physiological properties within
the immune system. These include antigen presentation, immune
regulation, and programed cell death, each of which is linked to
the cell from which they are released (6, 7). They play an impor-
tant role in intercellular communication and can act as shuttles
for transferring proteins, miRNA, mRNA, and cytokines from one
cell to another (8).

Many cells of the body produce these extracellular vesicles
(EVs) including those of the immune system such as CD4+ and
CD8+ T cells, B cells, and dendritic cells (DCs). Exosomes from
these cells have been shown to mediate either immune stimu-
lation (DCs) or immune modulation (T cells) (9–14). Recently,
the release of exosomes by murine CD4+CD25+Foxp3+ reg-
ulatory T cells (Tregs), following TCR activation, was shown,
initially by Smyth et al. (15) and later by Okoye et al. (16). In
addition to CD4+CD25+Foxp3+ cells, other murine T cells with
regulatory capacities were found to also release exosomes fol-
lowing activation. Bryniarski et al. observed that “exosome like”
particles were present in the supernatants of cultured CD8+ T
cells with suppressive capacity (17), whilst Xie et al. observed
that CD8+CD25+Foxp3+ T cells secreted exosomes capable of
inhibiting DC induced CD8+ CTL responses (18).

Exosome production by murine CD4+CD25+Foxp3+ Tregs
appears to be quantitatively greater than other murine T cells,
including naïve CD4+ and CD8+ T cells, T helper 1 (Th1),
and Th17 cells, and is regulated by changes in intracellular cal-
cium, hypoxia, and sphingolipids ceramide synthesis, as well as
in the presence of IL-2 (16). Exosomes contribute significantly
to the function of murine CD4+CD25+FoxP3+ Tregs, inhibiting
the release of exosomes reversed these cells suppressive capabil-
ities (16). In parallel, murine Tregs exosomes were found to be
immune modulatory. Reduced CD4+ T cell proliferation and
cytokine (IL-2 and IFNγ) release was observed in their pres-
ence in vitro (15). The suppressive nature of Treg exosomes, in
one study, has been attributed to the ectoenzyme CD73 (15).
The loss of CD73 on Treg exosomes reversed their suppres-
sive nature. Expression of both CD39 and CD73 on Tregs con-
tributes to immune suppression through the production of the
anti-inflammatory mediator adenosine (19–21). Binding of this
molecule to adenosine receptors A2aR, expressed by activated T
effector cells (Teffs) triggers intracellular cAMP leading to the inhi-
bition of cytokine production, thereby limiting T cell responses
(22). Given that adenosine was produced following incubation
of CD73 expressing Treg exosomes with exogenous 5′AMP it
is feasible that the release of exosomes expressing CD73 within
the local environment increases the surface area by which this
membrane-associated enzyme, and ultimately Treg suppression,
can function (15).

Several molecules associated with immune modulation includ-
ing CD25 and CTLA-4, were also found on CD4+CD25+Foxp3+

Treg exosomes (15). Nolte-’t Hoen et al. have previously shown
that exosomes, derived from anergic rat T cells, inhibited Teffs
responses following co-culture with B cells and DCs in vitro (23).
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These T cell-derived exosomes expressed high levels of CD25 and
the authors suggested that CD25 expressing exosomes, binding
to the surface of an antigen presenting cells (APC), bestows that
cell with the ability to bind free IL-2 in the local environment
leading to depletion of available cytokines and apoptosis of Teffs
(23). Although CD25 expression was observed on Treg exosomes,
this molecule may not play a role in their suppressive function
given the observation that exosomes isolated from a T cell line,
incapable of suppressing proliferation or cytokine production of
CD4+ T cells, in the presence of B cells, expressed similar lev-
els of CD25 to Treg exosomes with regulatory function (15).
A redundant role for CTLA-4 molecules has also been reported.
Although present on Treg exosomes, blocking CTLA-4 did not
modulate their suppressive function (15). So far,no molecules have
been associated with the regulatory capacity of CD8+25+FoxP3+

exosomes (18).
Recently, the transfer of miRNAs contained in T cell exosomes

has been shown to affect the function of recipient APCs by inhibit-
ing translation of target mRNA molecules (14, 24). Likewise, the
transfer of miRNAs, including Let-7d, miR-155, and Let-7b, to
Teffs through the acquisition of CD4+CD25+Foxp3+ Treg exo-
somes has been shown (16). Inhibiting Let-7d expression in Treg
exosomes reversed the suppressive nature of these vesicles sug-
gesting that miRNAs present in Treg exosomes may also play a role
in their suppressive capacity (16). These findings confirm those
of Bryniarski et al. (17) who observed the targeted delivery of an
inhibitory miRNA, miR-150, to Teffs using exosomes isolated from
CD8+ T cells with suppressive capacity.

Several molecules present on exosomes isolated from Teffs,
DCs, and B cells have been shown to have immune modulatory
properties. Whether they also contribute to the suppressive nature
of Treg exosomes has yet to be validated. For example, expression
of FasL on murine CD8+ T cell exosomes induced death of APCs
(12, 25), in addition, FasL-expressing exosomes isolated from
DCs, genetically modified to express FasL, suppressed antigen-
specific immune responses in vivo (26) and lastly, MHCII+FasL+

exosomes constitutively produced by a human B cell-derived lym-
phoblastoid cell lines induced apoptosis in CD4+ T cells (27).
Murine and human CD4+25+ Tregs express FasL (28). Whether
FasL is expressed on Treg exosomes and contributes to the death of
Teffs is yet to be tested. Other molecules, present on Tregs such as
the inhibitory cell surface ligand programed cell death 1 ligand 1
(PDL-1) and Galectin-1 (29–31) may also be present on Treg exo-
somes. PDL-1 was found on mesenchymal stem cell EVs (32) and
exosomes have been identified as transport vehicles for the secre-
tion of molecules that lack a signal sequence such as Galectin-1
(33). Not only is this molecule highly expressed on Tregs it is
essential for their function (34).

Regulatory T cells produce immune modulating cytokines such
as IL-10, IL-35, and TGFβ (35). Presently, it is unknown whether
these cytokines are contained in Treg exosomes however, expres-
sion of IL-10 and TGFβ in exosomes isolated from DCs, transduced
to express these cytokines, has been shown (36, 37) as has surface
TGFβ on MSC derived EVs (32). Given the aforementioned it is
a theoretical possibility, that Treg exosomes may contain one or
more of these cytokines.

ROLE OF Treg EXOSOMES IN TRANSPLANTATION
POSSIBLE THERAPY?
In 1990, Hall et al. observed that the adoptive transfer of
CD4+CD25+ T cells resulted in long-term cardiac allograft sur-
vival in cyclosporine-treated rats (38). Since then this field of
immunotherapy has been intensely studied in mouse (39–41), and
recently in preclinical humanized mouse models (mice reconsti-
tuted with a human immune system and transplanted with human
skin or human pancreatic islets of Langerhans) (42, 43). In the lat-
ter, human CD4+25+Tregs, expanded with anti-CD3/28 antibody
coated beads, have been found to prolong islet transplant sur-
vival and function (42, 44). These positive outcomes have led to
the application of humans Tregs for the prevention of graft versus
host disease (GvHD) and to promote transplant tolerance (45–48).
Currently, several organizations around the world are investigating
the use of CD4+CD25+ Tregs to promote “tolerance” to trans-
planted organs. At King’s College London, UK, phase I/II clinical
trials are currently under way to test the safety and efficacy of
using these cells in human kidney (One Study) and liver (ThRIL)
transplant patients. Other clinical trials using human Tregs are also
underway and are described elsewhere (49). Presently, we do not
know the efficacy and efficiency of Tregs in these trials. Although
Tregs are now being used in patients how they function in vivo is
still unknown.

Given their immune modulatory capacity, the question arises,
what is the contribution of Treg exosomes to transplant toler-
ance seen in the preclinical mouse models and can Treg exosomes
be used in vivo as an alternative/or complementary therapy? At
present, we are a long way away from using Treg exosomes in man
given that the optimal Treg subset required to induce transplant
tolerance is as yet unknown, as is whether they prolong graft sur-
vival in a patient setting. So why should we consider these EVs
as a therapy? Several studies have suggested that inflammatory
environments can subvert human Foxp3+Treg cell function by
converting them to Teffs in vivo (50, 51). However, unlike Foxp3+

Tregs, adoptive transfer of human Treg exosomes are unlikely to
be modified during inflammatory conditions in vivo (1) making
them an ideal immune modulatory reagent (Figure 1A).

Several lines of evidence exist, some preliminary, some not, sug-
gesting that studying these vesicles for this purpose is worthwhile,
albeit challenging. So far, Yu et al. are the only group that have
investigated the use of Treg exosomes as a therapy in a transplanta-
tion setting (52). These authors observed that the adoptive transfer
of autologous rat Treg exosomes, post transplant, prolonged both
survival and function of kidney allografts (52). Suggesting that
Treg exosomes may represent an exciting new therapy for the
induction of transplant tolerance.

Can this observation be translated into a human setting? Using
preclinical methods to isolate and expand human Tregs, from
peripheral blood of health individuals (53), we have successfully
identified the release of CD63 and CD81 expressing exosomes from
CD4+CD25hiFoxp3+ suppressive human Tregs, following TCR
activation (Agarwal et al., personal communication). Whether
human Treg exosomes display molecules that can modulate the
immune response in vivo is still being assessed. However, given
that Jurkat CD4+ T cells (a human T cell line) as well as human
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FIGURE 1 | A possible role forTreg exosome in transplantation.
(A) Exosomes isolated from ex vivo expanded polyclonal or
antigen-specific Tregs represent a potential adoptive therapy tool to
promote transplant tolerance. Exosomes isolated from activated Tregs
either alone or modified to express specific inhibitory miRNAs, chemicals,
or cell surface molecules could be used in conjunction with Tregs to

promote transplant tolerance. (B) Following transplantation, exosomes
released from Tregs maybe used as a diagnostic tool to monitor activation
and survival of Tregs in vivo. As Tregs release exosomes following
activation, interaction with APCs expressing alloantigen on grafted tissue
will result in exosome release. Identifying specific miRNAs expressed in
Treg exosomes will help in their identification in blood or urine.

CD3+ T cells, isolated from PBMCs, produce exosomes (54–56)
containing molecules with potential immune regulatory effects,
such as TCRs (54) and CTLA-4 (56) the possibility that human
Treg exosomes contain immune regulatory molecules is very high.

Two phase I clinical trials using exosomes isolated from imma-
ture DCs have been conducted in advanced stage melanoma and
MAGE-expressing non-small cell lung cancer patients (57–59).
Despite a lack of antigen-specific T cell responses, stable disease
was observed in some patients with tumor regression reported in
one patient following treatment (60–62). These positive outcomes
have paved the way for Phase II clinical trials using exosomes
isolated from LPS or IFNγ activated DCs in non-small cell lung
cancers. These studies have validated the efficacy and safety of exo-
somes as a therapy in man. In spite of these encouraging findings,
several key limitations pertaining to the use of exosomes cannot
be ignored. Firstly, at present there is no standardized protocol

for isolating and analyzing “pure” exosomes (7). Contamination
from other EVs as well as membrane free aggregates may be an
issue depending on the isolation method used. Therefore, careful
analyses of the purified exosomes will be required before admin-
istration. This will require the use of expensive equipment such
as EM and Nanosight, which are not always readily available (7,
63). Secondly, given that exosome release by Tregs is not consti-
tutive and requires activation using anti-CD3/CD28 antibodies,
the possibility that these antibodies contaminate Treg exosome
preparations is as yet untested. Additionally contaminating mole-
cules, for example, proteins/cytokines present in media, may pose
a potential problem especially as exosomes will be isolated from
culture supernatants. Thirdly, the quantity of exosomes isolated
and the amount required for therapy purposes are at present
unknown, as is whether large-scale production of Treg exosomes
is actually possible. Lamparski et al. published that 1.8–5.8 mg
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of exosomes could be isolated from human monocyte derived
DCs, expanded from peripheral blood leukopacks (originally con-
taining 12–25× 109 cells) higlighting the feasibility of large-scale
production of DC exosomes (64). However, DCs produce these
EVs vesicles constitutively making their production easier than
those from Tregs, which are isolated only after activation (65).
Yu et al. obtained 117 µg of exosomes from 4× 109 freshly iso-
lated rat Tregs, following activation, and the administration of
33 µg of exosomes, given over 3 time points, was sufficient to
prolong the lifespan of a kidney transplant (52). Whether large
quantities of pure exosomes can be isolated from human Tregs
grown under GMP conditions is as yet unknown. Lastly, what
happens to Treg exosomes in vivo, which cells acquire them and
whether is it receptor driven is poorly understood. Recently, Teffs
were shown to acquire Treg exosomes (16) whilst exosomes from
EL4, a T cell lymphoma, have been shown to be preferential
acquired by macrophages (66), perhaps via the CD169 pathway
(67). Therefore, in vivo analysis of Treg exosomes is essential
before they can be used in a clinical setting. Until all of these
factors are addressed, using Treg exosomes in a transplant setting
remains challenging and potential advantages remain at present
theoretical.

DIAGNOSTIC TOOL?
Biomarkers are quantitatively, measurable biological parameters
that help indicate health and disease. The use of exosomes as
biomarkers is a relatively new concept. Although it has not yet
reached clinical practice, it is one area of exosome research that
is rapidly expanding, with many clinical trials focusing on their
use as a diagnostic tool, particularly for cancer (Table 1). Several
factors make exosomes suitable for this purpose, firstly, they travel
through the bloodstream and can be isolated from plasma, serum,
and urine (68, 69). Secondly they receive surface markers from
the cell from which they are derived, such that they can be identi-
fied and isolated. Lastly, they express unique miRNA and mRNA
(Table 1).

Valadi et al. were the first group to publish that exosomes con-
tained RNA (8). Exosome RNA is small, typically of about 200

Table 1 | miRNAs present in exosomes isolated from the sera of

patients with specific cancers or following immunization are being

used as diagnostic biomarkers.

miRNA identified

in exosomes

Cells origin Reference

miR-150 CD4+ T cells (70)

miR-21, miR-141, miR-200a,

miR-200b, miR-200c, miR-203,

miR-205, and miR-214

Ovarian cancer (71)

miR-205, miR-19a, miR-19b, miR-30b,

and miR-20a

Lung squamous cell

carcinoma

(72)

let-7a, miR-1229, miR-1246, miR-150,

miR-21, miR-223, and miR-23a

Colon cancer (73)

hsa-miR-31, miR-185, and miR-34b Melanoma (44)

bases in length and lacks the 18S and 28S RNA found in cells (74).
Different RNA species including small ribosomal RNA, specific
tRNA fragments, long interspersed elements, and long terminal
repeats, have all been found in exosomes (75). Additionally, and
as discussed earlier, there is also a selective enrichment of specific
miRNAs into exosomes (24, 76). The miRNA repertoire of an exo-
some is generally different to that of the parent cell, suggesting that
exosome packaging is an active process (14). In T cells, for exam-
ple, Rossi et al. identified a set of 20 miRNAs of which only 2 were
differentially expressed in TH cell-derived exosomes (77). Upon
activation primary CD4+ T cells down-regulate their miRNA con-
tent. Some of these miRNAs accumulate in exosomes, for example,
miR-150, suggesting that the cell may be shedding miRNA as part
of a regulation step (70). de Candia et al. quantified the amount of
miR-150 present in sera isolated from mice immunized with OVA
plus an adjuvant, and reported an increased level of this miRNA in
immunized mice as compared to non-immunized mice (70, 78).
When they removed CD4+ T cells no elevated miR-150 levels were
observed. They next validated this observation using sera collected
from adults and children vaccinated with the 2009 pandemic flu
(H1N1) vaccine. Similar to the mouse model, they observed that
miR-150 was evident in the sera following vaccination, and that
this miRNA was associated with lymphocyte derived exosomes. In
addition, increased levels of miR-150 correlated with high anti-
body levels post vaccine, suggesting a link between activation of
the adaptive immune responses and expression of a specific miR-
NAs in exosomes (70, 78). From the adoptive cellular therapy point
of view, this data is very exciting as it highlights the possibility of
using exosomes to monitor cellular therapies such as Tregs in vivo.
Given that Tregs produce exosomes only following activation, and
in the case of transplantation this will be following recognition
of alloantigen presented by donor and recipient DCs, it may be
possible to assess Treg viability and function in vivo by monitor-
ing Treg exosomes in the blood of transplant recipients. If this is
possible Treg exosomes may be unique biomarkers for immune
suppression (Figure 1B).

As mentioned earlier in addition to miRNA, mRNA, and pro-
teins associated with exosomes can also act as diagnostic tools.
For example, in patients with kidney disease CD2AP mRNA was
associated with urinary exosomes (79). Several specific proteins
have been identified in exosomes isolated from: (1) the urine of
healthy individuals (CD24 and Aquaporin 2) (80), (2) sera from
cancer patients (MUC1, LRG1, Hsp90a, and RAD21) (81), (3)
the placenta (syncytin-1) (82), and 4) from patients with multi-
ple sclerosis (IB4) (83). Taken together, these studies suggest the
importance of validating the expression of mRNA and proteins, in
addition to miRNAs, in Treg exosomes if unique biomarkers are
to be identified.

In conclusion, at present Treg exosomes are still in their infancy
with regard to transplantation, either as a therapy or a diagnostic
tool. As outlined in this review, several key questions regarding
their composition and function need to be addressed. In addition,
better isolation and analysis protocols, as well as preclinical models
are required before Treg exosomes can make the transition from
the lab to the clinic, even for diagnostic purposes. Although some
of the ideas presented here are speculative, pursuing the use of
Treg exosomes for immune modulation and diagnostic purposes
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within a transplantation setting is timely given that clinical trials
are now underway using Treg cells themselves.
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