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Abstract:  

Purpose: The smaller muscle mass of the upper body compared to the lower body may elicit a  

smaller thermoregulatory stimulus during exercise and thus produce novel training induced 

thermoregulatory adaptations.  Therefore, the principal aim of the study was to examine the effect  

of arm training on thermoregulatory responses during submaximal exercise. Methods: Thirteen  

healthy male participants (Mean ±SD age 27.8 ±5.0yrs, body mass 74.8 ±9.5kg) took part in 8 

weeks of arm crank ergometry training.  Thermoregulatory and calf blood flow responses were  

measured during 30 minutes of arm cranking at 60% peak power (Wpeak) pre, and post training and  

post training at the same absolute intensity as pre training.  Core temperature and skin 

temperatures were measured, along with heat flow at the calf, thigh, upper arm and chest.  Calf  

blood flow using venous occlusion plethysmography was performed pre and post exercise and calf  

volume was determined during exercise.  Results: The upper body training reduced aural 

temperature (0.1 ±0.3ºC) and heat storage (0.3 ±0.2 J.g-1) at a given power output as a result of 

increased whole body sweating and heat flow.  Arm crank training produced a smaller change in  

calf volume post training at the same absolute exercise intensity (-1.2 ±0.8% compared to -2.2  

±0.9% pre training; P<.05) suggesting reduced leg vasoconstriction. Conclusion: Training improved 

the main markers of aerobic fitness.  However, the results of this study suggest arm crank training 

additionally elicits physiological responses specific to the lower body which may aid  

thermoregulation.    

Keywords: Thermoregulation, upper body exercise, training, calf volume  

  

 

Abbreviations:  

Analysis of Variance         ANOVA  

Blood lactate         Bla  

Degrees Centigrade         °C 

Haemoglobin         Hb  
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Haematocrit         Hct  

Heart Rate         HR  

Kilogram          Kg  

Microlitres          µl  

Mid training trial         MID  

Minute ventilation        VE  

Peak Oxygen Consumption        V O2peak  

Post training absolute intensity        POST-ABS  

Post training relative intensity        POST-REL  

Peak Power          Wpeak   

Pre training trial         PRE  

Ratings of perceived exertion       RPE 

Revolutions per minute         rev.min-1 

Standard Deviation         SD 

Years           yrs
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Introduction 

Previous research examining responses to upper body exercise training have mainly investigated 

whether adaptations are muscle specific (Volianitis et al., 2004; Bhambhani et al., 1991; Stamford 

et al., 1978), whether training benefits can be transferred to lower body exercise performance 

(Loftin et al., 1988) and the use of upper body exercise for rehabilitation (Mostardi et al., 1981; Tew 

et al., 2009).  The literature though appears to be in conflict with regards to the specific causes of 

the improvement in aerobic capacity with upper body exercise training.  Some studies suggest that 

aerobic improvements are dependent on central adaptations such as cardiac output and stroke 

volume (Loftin et al., 1988) whereas other studies suggest peripheral circulatory changes such as 

arterial – venous oxygen difference are predominant (Volianitis et al., 2004).  However, training is 

limb specific (Loftin et al., 1988) which implies that a s ubstantial proportion of the conditioning 

response to training is attributed to extracardiac or peripheral factors such as alterations in blood 

flow and cellular and enzymatic adaptations in the trained limb alone (Volianitis et al., 2004).     

 

In addition to cardiorespiratory adaptations lower body exercise training also causes adaptations to 

thermoregulatory responses such as initiating sweating and cutaneous vasodilation at lower core 

and skin temperatures (Armstrong and Mar esh, 1998). However, there are no reported studies 

regarding the effects of upper body exercise training on thermoregulatory responses to exercise. 

Differences between modes may exist due to that fact that upper body exercise involves a smaller 

muscle mass with potentially smaller increases in core temperature when compared to lower body 

exercise at the same relative exercise intensity (Sawka et al., 1984).  Regular, smaller increases in 

core temperature and thus lower thermal strain during each training session could result in different 

training induced thermoregulatory responses when compared to lower body exercise.  

 

Previous research examining thermoregulatory responses during upper body exercise has 

produced interesting results with regards to responses within the lower body. For example, a 
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decrease in calf skin temperature during arm crank exercise in cool (21°C) conditions and an 

increase in skin temperature during exercise in the heat (31°C) have been observed (Price and 

Campbell, 2002; Price and Mather, 2004; Dawson et al., 1994).  I n addition, calf volume 

(representing whole limb blood flow from strain gauge plethysmography measurements) has been 

observed to decrease during arm crank exercise in cool ambient conditions suggesting a 

sympathetically mediated redistribution of blood away from the lower body (Hopman et al., 1993). 

Such a r esponse potentially explains the observed decrease in calf skin temperature due to a 

reduction in limb blood flow and thus delivery of blood.  These acute adaptations in calf volume and 

skin temperature suggests the lower body plays an important thermoregulatory role during upper 

body exercise by redistributing blood to the more active upper body with further adaptations 

potentially occurring as a r esult of upper body exercise training.  Mor e importantly, during upper 

body exercise such adaptations may be local to those areas not specifically involved in force 

production during exercise per se, i.e. the lower body.  Lower body exercise training has been 

demonstrated to lessen the decrease in blood flow to splanchnic, renal and cutaneous areas at a 

given power output (Ho et al., 1997; Rowell et al., 1964; 1965) whereas blood flow to muscle 

remains unaffected (Stolwijik ,1997).  Since upper body exercise affects splanchnic, renal and 

cutaneous blood flow (Ahlborg et al., 1975) it is possible that upper body training may also influence 

vasomotor responses in other areas such as calf volume changes during exercise. As vasomotor 

adaptations are linked to thermoregulatory responses (Wakabayashi et al., 2012) specific 

vasomotor adaptations may occur with training. Therefore, the principal aim of the study was to 

examine the effect of arm training on t hermoregulatory responses, including calf volume, during 

submaximal exercise. 

 

 

Methods 

Participants 
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Thirteen healthy male participants (Mean ±SD age 27.8 ±5.0yrs, body mass 74.8 ±9.5kg, body fat 

percentage of 17.8± 5.2%) not specifically upper body trained, volunteered to participate in this 

study.  University Ethics Committee approval for the study’s experimental procedures was obtained 

and followed the principles outlined in the Declaration of Helsinki.  Participants undertook 

approximately 2 ±1 hr a week of training in a range of sports such as football, running and general 

gym work.  All participants were given written information concerning the nature and purpose of the 

study, completed a pre-participation medical screening questionnaire and gave written consent prior 

to participation.  

 

Preliminary Tests 

Participants performed a c ontinuous incremental exercise test ( V O2peak) to volitional exhaustion 

using the protocol of Smith et al. (2004).  In brief this protocol involved a starting power output of 

50W with increases of 20W every two minutes to volitional exhaustion. Cadence was set at 70 

rev.min-1.  Peak oxygen uptake ( V O2peak), peak power (Wpeak) and subsequent exercise intensities 

for the training programme were determined before, during and after 8 weeks of training.  

Participants sat at the arm crank ergometer (Lode, Angio, Groningen, the Netherlands) with the 

crank shaft in line with the shoulder joint (Bar-Or and Swirren, 1975).  Expired gas was continuously 

measured throughout the test using an online breath by breath analyser (Metamax 3B, Leipzig, 

Germany) calibrated against room air and a calibrating gas. Oxygen consumption (VO2) and minute 

ventilation (VE) were subsequently determined.  Heart rate (HR) was continuously monitored (Polar 

Accurex Plus, Kempele, Finland).  C entral and l ocal ratings of perceived exertion (RPEcentral and 

RPElocal respectively; Borg Scale) were recorded at volitional exhaustion. Following a ten minute 

cool down participants were familiarised with the intensity of exercise, which was to be undertaken 

in the subsequent experimental trials and training sessions for 5 minutes.   
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Prior to each V O2peak test skin fold measurements were taken using skin fold callipers (Baty 

International, West Sussex, UK).  M easurements were taken at the bicep, tricep, subscapular, 

abdominal, iliac crest, supraspinale, thigh and calf sites.  The sum of eight sites were determined as 

well as body fat percentage using four  sites determined from the equation of Durnin and 

Womersley (1974).  The circumference of the bicep muscle on the right arm was also measured 

whilst relaxed and tensed in accordance with the ISAK protocol (Nevil, 2006). 

 

Training Study: 

All participants completed an eight week upper body exercise training programme which involved 

three sessions each week.   More specifically, two training sessions involved exercising for 30 min 

at 60%Wpeak with the third session comprising of 50 minute of interval training (Figure 1).  T he 

interval session involved 10 min at 60%Wpeak followed by alternating bouts of 2 min unloaded  arm 

cranking (0 W setting) followed by 2 min at 75%Wpeak  repeated 10 times.   All exercise was 

performed at 70 rev.min-1 with HR recorded throughout all sessions.  The VO2peak test was 

undertaken initially (PRE) to determine the training intensities undertaken and was repeated at the 

start of week 5 (MID) to adjust the training intensity. Each participants VO2peak was measured again 

at the end of the eight week training period (POST) to determine overall effects of the training on 

aerobic fitness.     

 

Submaximal Exercise Trials 

To determine baseline thermoregulatory responses in cool conditions (22.0 ±0.5°C and 64.4% rh) at 

the beginning of training (week 1, session 1) participants performed a s ubmaximal exercise trial 

(PRE) at 60%Wpeak for 30 min followed by 30 min of passive recovery.  Two submaximal exercise 

trials were undertaken at the end of training, one at the original absolute work load (POST-ABS) 

and one at the new relative work load (POST-REL). These trials enabled the comparison of:   

1) Absolute workloads before and after training (PRE vs POST-ABS) 

2) Relative workloads before and after training (PRE vs POST-REL) 
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3) Absolute vs relative workloads post training (POST-ABS vs POST-REL). 

 

All submaximal exercise trials during the training period were performed at an ambient temperature 

of 22.3 ±2.1°C and 64.2 ±7.5% relative humidity.  No fluid was consumed during exercise.  On 

arrival at the laboratory body mass was recorded using electronic scales (Seca, Hamburg, 

Germany).  Participants wore shorts, socks, and training shoes and rested for 20 min while 

temperature thermistors (Grant, Cambridge, UK) and heat flow sensors (Data Harvest Easy sense 

Advanced, Bedfordshire, UK) were attached.  Aural, rectal and skin temperatures (calf, thigh, chest, 

upper arm and bac k) were measured using a data logger (Squirrel 2020 series, Cambridge, UK) 

and provided values for calculation of heat storage (Havenith et al., 1995).   Heat flow at the calf, 

thigh, chest and upper arm (same landmarks as skin thermistors) and gas analysis were measured 

throughout, rest, exercise and recovery. 

 

Baseline data for all measures were obtained during the final five min of seated rest prior to 

exercise.  R esting blood pressure was measured at the left arm using a s phygmomanometer 

(Accoson Ltd, London, UK).  A  resting capillary blood sample was taken from the left earlobe for 

measurement of blood lactate (Bla) (Analox GM7, London, UK).  T hree 80 µ l capillary blood 

samples were also taken for measurement of haematocrit (Hct) using a micro haematorcrit reader 

(Hawksley, Surrey, UK) along with three cuvettes for analysis of haemoglobin concentration (Hb; 

Hemocue, Clandon, Sheffield ). Plasma volume was subsequently calculated using the equation of 

Dill and C ostill (1974).  Calf blood flow and volume were measured at rest and t hroughout both 

exercise and recovery using standard procedures for venous occlusion plethysmography (Fehling 

et al., 1999; Hopman et al., 1993). A contoured cuff was placed on the left thigh and connected to a 

rapid cuff inflator (Hokanson E20, Bellevue, USA) set to inflate to 50mmHg and held for five 

seconds and rapidly deflated over eight seconds.  A 1% calibration was performed on the 

plethysmograph after 5 min resting followed by a resting blood flow measurement in triplicate.  Calf 

volume change was measured from pre to post exercise by measuring the resistance change in the 
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strain gauge throughout exercise.  The change in resistance was then converted to a percentage 

change in calf volume by comparing the value with the 1% calibration.       

 

Prior to the start of exercise resting values for HR, heat flow, calf volume, blood flow, aural, rectal 

and skin temperatures were recorded.  Participants then performed arm crank exercise at 60% 

Wpeak for 30 min at 70 rev.min-1.  Participants remained seated post exercise for a further 30 min.  

Heat flow, and core and skin temperatures were recorded every 5 min during exercise and passive 

recovery.  Changes in calf volume were recorded continuously throughout exercise.  Ratings of 

perceived exertion using the Borg Scale were determined for overall fatigue (RPEcentral) as well as 

local arm fatigue (RPElocal). RPE was recorded at 5, 15, and 30 min during exercise.  VO2, and VE 

were determined at five minute intervals during exercise, and passive recovery.  Calf blood flow was 

recorded at rest, on the cessation of exercise and e very 5 min during passive recovery.  Blood 

samples were taken from the earlobe for Bla concentration at 5, 15, and 30 min, as well as for Hb 

and Hct at the end of exercise.  Body mass was recorded after passive recovery to calculate whole 

body sweat losses (l) and extrapolated to sweat rate (l.hr-1).       

 

 

Statistical Analysis 

The Shapiro-Wilk statistic confirmed that the normal distribution assumption was met for all 

variables.  Paired T-tests were performed on the pre and post anthropometric data. All other 

independent variables were analysed using a repeated measures two-way (Trial X Time) analysis of 

variance (ANOVA; SPSS v20). Post hoc analyses (Bonferroni pairwise comparisons) were 

performed on significant ANOVA results to control for type I error. Data are presented as mean ± 

standard deviation in tables and figures. Significance was set at p<0.05.  Where appropriate, 

Pearsons correlations were undertaken to determine relationships between variables.     A post hoc 

statistical power analysis was conducted using the Hopkins method, and it was found that the 

sample size was sufficient to provide more than 80% statistical power. 
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Results  

  
Peak physiological responses  

The peak physiological responses obtained during PRE, MID and POST incremental tests for V 

O2peak  as well as anthropometric changes determined PRE and POST training are shown in Table I.   

Both V O2peak and Wpeak increased with training (P<0.05) being greatest POST compared to both PRE  

and MID (P<0.05), although HRpeak remained the same (P>0.05). Both RPEoverall and RPElocal at  

volitional exhaustion increased POST (P<0.05).  Whole body  fat percentage, sum of 8 skin fold sites  

and body mass PRE and POST training remained the same (P>0.05).  B icep circumference when  

relaxed remained the same following training (P>0.05), however, when tensed values increased by  

3.7 (±2.8)% (P<0.05).  T here was a pos itive correlation between the percentage increase in bicep  

circumference tensed and increase in Wpeak (r=0.78; P<0.05).   

  

Physiological and Thermoregulatory Responses during Submaximal Exercise Trials: = 

 

 

The physiological responses at the cessation of each trial are shown in Table II. Significant trial × time  

interactions were noted for HR and VO2 with values being lowest during POST-ABS (P<0.05). No  

differences in HR were observed between PRE and POST-REL whereas VO2 was greatest during  

POST-REL when compared to PRE.   There was a significant time × trial interaction for blood lactate  

concentration (P<0.05).  Blood lactate concentration increased from rest and reached a plateau by 15 

min during exercise in all trials. Values were lowest during POST-ABS and greatest during POST- 

REL (P<0.05; Table II).        

  

Participants perceived RPElocal to be gr eater than RPEcentral during PRE and POST-REL (P<0.05)  

however, there were no d ifferences between RPElocal and RPEcentral during POST-ABS (P>0.05).     

Both RPEcentral and RPElocal increased at 5, 15 and 30 min of exercise (P<0.05) with POST-ABS being 

lower compared to PRE and POST-REL (Table II).  Sweat rate was significantly greater POST-REL  
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compared to PRE (P<0.05; main effect for trial).    Sweat rates for PRE, POST-ABS and POST-REL  

were 0.6 ±0.6, 0.8 ±0.6 and 1.0 ±0.6 l.hr-1.    

  

Core Temperature during Exercise and Passive Recovery  

There were no differences in resting aural or rectal temperature between trials (P>0.05). Aural  

temperature increased by 0.3 ±0.2, 0.4 ±0.3 and 0.5 ±0.4°C, for PRE, POST-ABS and POST-REL, 

respectively (P<0.05; main effect for time; Figure Ia) from rest to the end of exercise.  Rectal  

temperature increased from rest during exercise in all trials by 0.4 ±0.2, 0.4 ±0.2 and 0.5 ±0.3°C for  

PRE, POST-ABS and POST-REL, respectively; P<0.05; main effect for time; Figure Ib). These  

increases for both aural and rectal did not correlate with the percentage V O2max at 30 min of exercise  

(r=0.03 and r=0.06 respectively).  Absolute aural temperature was significantly lower during POST- 

ABS compared to both PRE and POST-REL with no differences between PRE and POST-REL during  

exercise (P<0.05; main effect for trial). Aural and rectal temperature both decreased towards resting 

values by 30 min of passive recovery in all trials (P>0.05).    

 16 

 

Skin temperature Responses during Exercise and Passive Recovery   

There were no effects of training on resting skin temperature for any site (P>0.05). Upper arm, back  

and thigh skin temperatures were coolest during POST-ABS with no differences beween PRE and 

POST-REL (P<0.05, main effect for trial).  Conversely, when compared to the other skin temperature  

sites calf skin temperature decreased during exercise in all trials (P<0.05; Figure IIa). The greatest  

decrease occurred post training in POST-ABS.  C alf skin temperature had a t endency to be lower  

(P=0.08) at rest during PRE and was significantly cooler throughout exercise when compared to both  

post training trials (P<0.05).  During passive recovery calf skin temperature decreased further by -1.7  

±0.8, -1.2 ±0.5, and -1.4 ±0.7°C in PRE, POST-ABS and POST-REL respectively with no differences  

between trials (P>0.05).  

  

 

 

Heat Storage   
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Heat storage increased from rest in all trials until the end of exercise (P<0.05; main effect for time).  

Heat storage increased by 0.95 ±0.55, 0.75 ±0.62 and 1.03 ±0.39 J.g-1 for PRE, POST-ABS and 

POST-REL respectively.  Heat storage was lower during POST-ABS when compared to PRE and 

POST-REL (P<0.05; main effect for trial).  H eat storage decreased during recovery in all trials 

(P<0.05).  

  

Heat Flow during Exercise and Passive Recovery  

Heat flow significantly increased during exercise in all trials at the upper arm, chest and thigh sites  

whereas it remained unchanged at the calf (Figure III).  During passive recovery heat flow decreased  

at all sites (P<0.05; main effect for time).  Heat flow was greater during POST-REL than for POST- 

ABS at the upper arm, chest and thigh (P<0.05; main effect for trial) and greater during POST-REL  

than PRE for the upper arm, chest and calf (P<0.05).  Heat flow was greater during POST-ABS  

compared to PRE for the calf and chest (P<0.05). Calf heat flow produced a weak correlation with calf  

skin temperature during exercise (r=0.46; P<0.05).    

  

  

Calf Volume and Blood Flow during Exercise and Passive Recovery  

Calf volume decreased during exercise when compared to rest for each trial (-2.2 ±0.9, -1.2 ±0.8, -1.8  

±1.0% for PRE, POST-ABS and POST-REL respectively; P<0.05; Figure IVa).  Training resulted in a  

smaller decrease in calf volume during POST-ABS compared to PRE (P<0.05; main effect for trial).  

There were no differences between PRE and POST-REL (P>0.05).  There was no correlation  

between change in calf volume and calf skin temperature (r=0.08; P>0.05).  There were no  

differences in calf blood flow at rest or at the end of exercise between trials (P>0.05; Figure IVb).   

However, blood flow for the remainder of recovery was lowest post training in POST-REL (P<0.05;  

main effect for trial).     
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Discussion  

The principal aim of the study was to examine the effect of arm training on thermoregulatory  

responses during submaximal exercise.  T he main findings were; reduced aural temperature, skin  

temperature and heat storage during exercise at the same absolute intensity post training when  

compared to PRE training.  Sweat rate increased post training at the same relative exercise intensity  

when compared to PRE.  There was also a blunted calf volume response suggesting less blood flow 

is redistributed during exercise at the same absolute intensity post training compared to pre training.     

  

Training improved V O2peak by 18.9% which is similar to that of Magel et al. (1978; 16.5%) after 10  

weeks of arm interval training.  Furthermore, when performing exercise at the same absolute exercise  

intensity as pre-training V O2, HR and blood lactate concentration were lower and indicative of 

improved exercise economy.  Increasing leg strength in untrained participants has been demonstrated  

to improve leg cycling economy (Loveless et al., 2005) therefore suggesting that in the present study 

the lower V O2 obtained during POST-ABS could have been a result of improved arm strength and  

increased stroke volume most likely due to increased left ventricle chamber dimensions (Gates et al., 

2003).      

  

Although there is evidence in the current data for improved central factors on performance (i.e. an 

increase in SV as noted above) there also appears to be some involvement of peripheral factors at  

the muscle level. For example, support for peripheral limitations in the present study includes the  

increase in Wpeak of ~30%, which was much greater than for V O2 peak.  Peripheral adaptations are  

evident by the fact that the increase in Wpeak was significantly correlated with the increased bicep  

circumference when flexed (r=0.78; P<0.05), therefore hypertrophy of the biceps in part is likely to 

have produced the increase in peak power.  

  

The present study demonstrated a lower aural temperature during POST-ABS when compared to  

PRE but there were no d ifferences in rectal temperature.  The difference between sites is possibly  

due to differences in local heat dissipation between sites and, with regards to rectal temperature,  

some heat gain from nearby intrapelvic muscles (Aulick et al,, 1981). Both Saltin and Hermansen  



14 
 

(1966) and Gant et al. (2004) noted a c orrelation between exercise intensity (%VO2max) and rectal  

temperature during lower body exercise suggesting that rectal temperature was dependent on  

exercise intensity.  However, the present study showed no correlation between the percentage of V 

O2peak with core temperature responses pre and post training suggesting that there may be differences 

in heat dissipation between upper and lower body exercise and core temperature estimates. 

  

Heat storage during exercise at the same absolute power output was significantly reduced with 

training.  T his is likely due to heat storage being a combination of the reduced core temperature  

responses noted earlier and decreased individual and mean skin temperatures during POST-ABS.   

The reduced heat storage during POST-ABS was most likely due to more efficient heat dissipation as  

a result of a more rapid cutaneous vasodilation (Boegli et al. 2003) and an earlier onset of sweating  

(Yamazaki et al. 1994; Pilardeau et al. 1988).  Although cutaneous blood flow was not measured in  

the present study, heat flow, which has been considered indicative of cutaneous blood flow (Sawka et  

al., 1984), was generally greater for the upper arm chest and calf during POST-ABS compared to  

PRE suggesting increased dry heat exchange with training.  In addition, whole body sweat rate  

increased following training (POST-REL) suggesting an accompanying increase in evaporative heat  

loss.  Increased sweating together with increased dry heat exchange would have resulted in more  

efficient heat dissipation and subsequently reduced heat storage post training.   

  

Calf skin temperature at rest and during exercise was warmer post training and accompanied by a  

greater heat flow when compared to pre training.   The warmer calf skin temperature post training at  

the same absolute intensity may be a result of repeated redistribution of blood flow in the legs during  

training with more blood directed to the skin and less blood flow directed to the relatively inactive  

muscles.  It has been shown that training increases cutaneous blood flow at a lower core temperature  

during exercise (Johnson, 1998).  It is therefore possible that the warmer calf skin temperature during 

the POST-ABS trial is a result of increased skin blood flow transferring warm blood to the skin for heat  

dissipation.  This corresponds with the increase in heat flow occurring at the calf during the POST-

ABS trial compared to PRE.  When examining the decreases in calf skin temperature from rest in all  

trials during exercise (0.4 ±0.8ºC, 0.8 ±0.6ºC and 0.5 ±0.9ºC for PRE, POST-ABS and POST-REL  
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respectively), there was a greater decrease in calf skin temperature from rest at the same absolute  

intensity post training indicating improved heat loss.    

  

The decrease in calf volume during exercise observed during each trial is most likely a result of  

increased vasoconstriction in the calf vasculature (Hopman et al., 1993) which increases venous  

return to the central circulation.  This reasoning is based on the assumption that the decrease in calf  

volume is due to an increase in muscle sympathetic nerve activity (MSNA) causing vasoconstriction in  

the non active muscle.  Saito et al. (1990) demonstrated a delay in the decrease in blood flow to the  

calf region during static handgrip exercise which coincided with a delay in the increase in sympathetic  

nerve activity.  T his is further supported by the findings of Seals (1989) which demonstrated that  

MSNA and vascular resistance were tightly coupled during exercise.  The findings of Hopman et al.  

(1993) are also of interest as they found that in spinal cord injured participants, with no sympathetic  

activity in their lower limbs, had no c hange in calf volume during arm cranking. The current study  

demonstrated that the reduced calf volume decrease during POST-ABS when compared to PRE and  

POST-REL is likely due to reduced sympathetic activity acting directly on the blood vessels as a result  

of the POST-ABS exercise intensity representing a lower proportion of the post training Wpeak.    

  

Although there was a d ecrease in calf volume during exercise in all trials there was a c oncomitant  

increase in whole limb calf blood flow on the cessation of exercise compared to rest. This increase  

was most likely due to increased skin blood flow during exercise, which supports the work of Theisen  

et al. (2000, 2001a, 2001b).  Since the calf is relatively metabolically inactive during arm exercise any  

changes in blood flow using venous occlusion plethysmography is likely a result of skin blood flow  

(Johnson and Rowell, 1975).  Therefore, the greater blood flow at the cessation of exercise could be  

indicative of an increase in skin blood flow during exercise, a response which has been demonstrated  

by Theisen et al. (2001a, 2001b) using Laser Doppler Flowmetry.  In addition increases in calf heat  

flow which were noted during exercise could reflect increases in calf skin blood flow allowing greater  

dry heat exchange as suggested by Sawka et al. (1984).  The increase in core temperature observed  

during exercise in the present study could have stimulated an increase in skin blood flow at the calf  

suggesting that the vasoconstriction in the calf, as demonstrated by the decrease in calf volume, may  

be related to increasing venous return to support increases in skin blood flow.      
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In conclusion, upper body training increased the traditional whole body markers of aerobic fitness.   

Upper body exercise training reduced aural temperature and heat storage at an absolute exercise  

intensity as a result of increased whole body sweating and increased heat flow.  However, the results  

of this study suggest upper body exercise training elicits different localised physiological responses to  

that of lower body training studies, specifically in the lower leg.   Training elicited a warmer calf skin  

temperature at rest and during exercise possibly due to changes in calf skin blood flow and heat flow.   

Upper body aerobic exercise training produced an attenuated  reduction in calf volume change during  

POST-ABS demonstrating less blood flow being redirected away from the lower body, which was  

most likely a result of a reduced response to sympathetic nervous activity and reduced 

vasoconstriction at a lowered relative exercise intensity.  
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Table I: The mean (±SD) physiological responses obtained during the last 30 seconds of the preliminary incremental V O2peak tests (n=13). 
*significant difference between PRE and POST, † between PRE and MID and ‡ between MID and POST (P<0.05) 

 PRE MID POST % change (POST-PRE) 

V O2peak (l.min-1) 2.03 (±0.41) 2.23 (±0.48) † 2.43 (±0.50)* ‡ 18.9 (±14.6) 

V O2peak (ml.kg.min-1) 27.4 (±5.6) 27.9 (±10.0) † 32.1 (±5.6)* ‡ 18.9 (±14.6) 

HRpeak (beats.min-1) 178 (±12) 180 (±14) 183 (±11) 2.7 (±5.7) 

Wpeak (W) 

60%WPeak 

75%Wpeak 

120 (±26) 

72 (±16) 

90 (±20) 

141 (±28) † 

85 (±17) † 

106 (±21) † 

158 (±30)* ‡ 

93 (±17)* ‡ 

116 (±21)* ‡ 

29.9 (±12.8) 

29.9 (±12.8) 

29.9 (±12.8) 

RPEcentral (Borg Scale) 16 (±2) 17 (±2) † 18 (±2)* 13.5 (±15.8) 

RPElocal (Borg Scale) 18 (±2) 19 (±1) 20 (±1)* 9.7 (±15.6) 

Systolic BP (mmHg) 116 (±7) 112 (±8) 113 (±10) -2.5 (±7.3) 

Diastolic BP (mmHg) 76 (±6) 77 (±5) 74 (±6) -2.0 (±11.3) 

Body Fat (%) 17.8 (±5.2)  17.4 (±4.7) -1.0 (±9.3) 

Sum of 8 sites (mm) 95.0 (±41.9)  92.9 (±39.9) -1.5 (±6.5) 

Biceps Relaxed (cm) 30.9 (±3.0)  31.6 (±2.9) 2.3 (±2.9) 

Biceps Tensed (cm) 32.6 (±2.7)  33.8 (±2.7)* 3.7 (±2.8) 

Body Mass (kg) 75.9 (±9.8)  74.6 (±9.3) -0.1 (±2.0) 
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Table II: Mean (±SD) physiological responses at the cessation of arm exercise during each 
submaximal trial (n=13). * significant difference from PRE.  † denotes significant difference 
between POST-ABS and POST-REL.   

 PRE POST-ABS POST-REL 

V O2 (l.min-1) 1.67 (±0.26) 1.40 (±0.27)* 1.80 (±0.37)* † 

HR (beats.min-1) 155 (±12) 127 (±13)* 156 (±12) † 

Bla (mmol.l-1) 4.5 (±1.1) 2.9 (±1.5)* 5.2 (±1.4) † 

RPEcentral 

(Borg Scale) 

15 (±2) 12 (±1)* 15 (±2) † 

RPElocal 

(Borg Scale) 

17 (±2) 12 (±2)* 16 (±2)* † 

Sweat rate (l.hr-1) 0.6 (±0.6) 0.8 (±0.6) 1.0 (±0.6)* 
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List of Figures: 

 

Figure I: Mean (±SEM) a) aural and b) rectal temperature during exercise and passive recovery for 

each submaximal trial (n=13). *significant difference from POST-ABS. 

 

Figure II: Mean (±SEM) a) calf, b) thigh, c) Upper arm and d) back skin temperatures during exercise 

and passive recovery.  ∆significant difference from PRE. *significant difference from POST -ABS. 

†significant difference POST-REL.  

 

Figure III: Mean (±SEM) heat flow measurements for a) calf, b) thigh, c) upper arm and d) chest for all  

three trials (n=13). ∆significant difference from PRE. *significant difference from POST-ABS. 

†significant difference POST-REL. 

 

Figure IV: a) Percentage change in calf volume during exercise for each trial (mean ±SEM; n=13). * 

denotes significant difference from PRE, b) Mean (±SEM) calf blood flow measurements at rest and 

during passive recovery for all trials (n=13). 
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