
A Provenance-aware policy language (cProvl) and a
data traceability model (cProv) for the Cloud

Mufajjul Ali
Orange Labs

France Telecom R&D UK Ltd
London, UK

Email: mufajjul.ali@orange.com

Luc Moreau
Electronics & Computer Science

University of Southampton
Southampton, United Kingdom

Email: l.moreau@ecs.soton.ac.uk

Abstract—Provenance plays a pivotal in tracing the origin
of something and determining how and why something had
occurred. With the emergence of the cloud and the benefits it
encompasses, there has been a rapid proliferation of services
being adopted by commercial and government sectors. However,
trust and security concerns for such services are on an unprece-
dented scale. Currently, these services expose very little internal
working to their customers; this can cause accountability and
compliance issues especially in the event of a fault or error,
customers and providers are left to point finger at each other.
Provenance-based traceability provides a mean to address part of
this problem by being able to capture and query events occurred
in the past to understand how and why it took place. However,
due to the complexity of the cloud infrastructure, the current
provenance models lack the expressibility required to describe
the inner-working of a cloud service. For a complete solution, a
provenance-aware policy language is also required for operators
and users to define policies for compliance purpose. The current
policy standards do not cater for such requirement.

To address these issues, in this paper we propose a provenance
(traceability) model cProv, and a provenance-aware policy lan-
guage (cProvl) to capture traceability data, and express policies
for validating against the model. For implementation, we have
extended the XACML3.0 architecture to support provenance, and
provided a translator that converts cProvl policy and request into
XACML type.

Index Terms—policy language; provenance; cloud; cProvl,
cProv; Prov; data traceability; XACML;

I. INTRODUCTION

Cloud computing relies on many existing tools and tech-
nologies reducing the cost of service delivery whilst increasing
the speed and agility of service deployment [1]. The core
technology behind cloud computing is virtualization [2], [3]; it
empowers the whole cloud computing paradigm by creating an
abstract layer between the physical hardware and the operating
system. This allows a greater degree of flexibility by being
able to share the same physical resources virtually by more
than one OS. Currently, there are three well defined service
models: Infrastructure as a Service (IaaS [4]), Platform as a
Service (PaaS) [5], and Software as a Service (SaaS)[6].

Today, one important piece of the jigsaw missing from cloud
is accountability, and provenance is the solution. Provenance
is a well understood area in art and digital-libraries, where
lineage, pedigree and source plays a major role in understand-
ing how/where things have derived from, and in determining

its authenticity and value [7]. In the cloud, provenance is
fundamental in answering questions such as: What processes
were involved in transforming the data? Did the processes
conform to all necessary regulations? Where the execution of
data did take place (both from virtual to physical references)?
Who had access to these data? In order to answer such
questions, one needs to look at how provenance in the cloud
can be modelled, captured and queried in the context of cloud
computing.

The capturing of provenance data via the model is vitally
important for accountability and compliance purpose, as well
as in determining the course of action(s) to be taken. The
current approach to addressing these is via access control.
Access control (AC) plays a pivotal role in safeguarding
systems from unauthorized access and providing different
levels of access granularity. There has been several language
specifications developed over the years, ACL (Access Control
List) [8], Role Based Access Control (RBAC)[9], Attribute
based access control (ABAC) [10] [11] and more recently
policy based access control (PBAC) [12].

Amongst these policy mechanisms, there are few distinct
features which are in common; they all rely on current data
to evaluate their policies, and do not leverage on provenance
data. It is very difficult for these languages to achieve a good
level of accountability or compliance, since the data set they
use does not contain information on how a piece of data was
originated, who had access to it, nature of processing took
place on it, etc. This can lead to a premature decision making.
The data defined within a policy generally tend to be fixed. In
other words, changes in the domain are not directly reflected
by the policies (require explicit modifications). However, the
volatility of distributed environments such as the cloud, where
environments are constantly changing, would greatly benefit
from policies that can offer some level of adaptability to its
context changes. These deficiencies can be addressed by a
provenance-aware policy language that uses the historical data
and its relations for assertion, as well as variable like fea-
ture for handling generic/dynamic data. The language should
have some level of interoperability with the existing widely
deployed standard in the industry, such as the XACML [13].

The contributions of this paper are, first an ontology (trace-
ability model) for cloud-based provenance, which allows a

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219373603?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

cloud-based service to describe and represent its provenance
(cProv). Secondly, a provenance-aware policy language that
allows assertions on the provenance data for accountability
and compliance purpose (cProvl). Finally, a mapping of the
policy language to XACML 3.0, that allows running of cProvl
policies in a XACML based engine.

II. SCENARIO

Telco operators hold vast amount of data from its users.
They range from personal data (name, address, tel, Dob, sex,
etc.) to call logs, location information, interests, likes and
others; kept for short (typically months) to longer periods
(years). Some with their knowledge (i.e. Bank details) and
consent (e.g., sharing with 3rd parties), while others without
being aware of (call logs, location information, etc.) and in ex-
ceptional circumstances shared secretly (intelligent services).

With the buzz word ”BIG data” in the industry, there is an
increasing temptation by operators to use and process such
gigantic data for serious analytic in seeking knowledge for
competitive advantage, target marketing and monitory purpose.
This is also attracting big interests from 3rd parties. Regulators
prevent operators from sharing personal data where a user can
be uniquely identified. However, anonymizing or aggregating
(removing fields, obfuscating) data would make it possible.

With the increase of cloud services, data can be more freely
moved around without users their knowledge or consent, and
with the recent revelation of the PRIMS snooping, the trust
remains a gray area for the users.

A. requirements

To increase the trust of the users of the operator, an inter-
active dashboard that lists all the cloud services subscribed by
the users. It provides a trace of how their data were generated,
used, stored, used and shared by subscribed and unsubscribed
services. More importantly, users are able to write policies that
can trace which other services using their data, and reserves
the right to grant and revoke access. This also applied to the
anonymized, aggregated data.

Examples of sample policies are:
policy one - Personal data of a user cannot be taken outside

the resident country of the user by any services. Such breach,
access to the data would be revoked.

• Using my traceability model, it is possible to trace the
history of data to find the physical location from the
virtual location of the user’s personal data, and the service
that copied and stored it to a location. The original and
copy should have the same location footprint, otherwise
a violation has occurred.

policy two - Any non-provisioned Telco services can access
user’s personal data, but cannot allow access or share of these
data to any 3rd party services that the user is not aware of.

• The traceable data are required to check for which Telco
services are using the user’s personal data. Then we can
identify if any of these services are exposing data to
3rd parties. This can be in the form of APIs, or direct

calls (explicit or implicit). The traceable model is able to
differentiate between different types of calls.

policy three - After de-provision of a service, all the
associated data must be deleted completely. In such breach,
any access to personal data will be denied.

• EU legislation ‘right to be forgotten’ [14] require all the
data associated with a user must be deleted permanently.
Using our traceable model, the historical data can be
used to prove the process of deletion and check of any
existence of any data after deletion. Failure to comply
can result in a hefty fine.

III. CPROV - PROVENANCE MODEL

In the cloud, data may be transmitted from various sources
such as a PC, laptop, mobile and other devices. Data residing
outside the cloud is referred to as a physical resource as
opposed to in the cloud. In order to necessitate the transfer of
the data to the cloud, it is essential to virtualize the data with
necessary redundancies for optimal availability, and scalability.
Data within the cloud can be shared, modified or deleted by
one or more participants, services or agents. One or more
operations are grouped and executed as an event.

We propose a provenance model cProv (Fig 1) to facilitate
cloud services by capturing of contextual related data at the
service/platform level.

Fig. 1: cProv Model

The model provides a representation of provenance his-
tory using Prov notation [15], consisting of nodes (ver-
tices) and relationship (edges). Node represents the build-
ing blocks of a service. There are five new derived
nodes (cprov:Transition, cprov:cProcess, cprov:Resource,
cprov:pResource and cprov:cResource). The ellipsis are
subtypes of prov:Entity, and rectangles are subtypes of
prov:Activity.

The node properties include: location details, event (com-
prises of a list of operations that were executed either in a

sequence or parallel as a unit; typically on data) information,
virtual-to-physical mapping, time-to-live and others.

In reference to the scenario, using the ‘entity’ node, we can
represent a user’s data as follows:

1 entity(ex:e001, [prov:type=’cprov:cResource’, cprov:
2 type=’cprovd:call-record’, cprov:trustDegree="1.0"
3 %%xsd:float,cprov:userCloudRef="http://orangecloud
4 /user@mufy/clusterX/imageX" %% xsd:anyURI, cprov:
5 vResourceRef="/platformX/ServX/resX"%%xsd:anyURI,
6 cprov:pResourceRef="//ClusX/ServNameX/6.23.3.5/
7 00:12:00:11:00"%% xsd:anyURI,"true"%% xsd:boolean
8 ,cprov:TTL="2014-11-16T16:05:00" %% xsd:date])

The above entity refers to a user’s (ex:ag001) call record
called ‘ex:e001’, and contains information such as time-to-live,
virtual and physical location of the data. The user associated
with this data is represented as an agent.

1 agent(ex:ag001,[prov:type="person",prov:label="Fu"])

To represent association between the user and data, edges
are required. We refer to them as relationships.

The relationships define the nature of interactions between
the nodes. They play an essential role in defining how each
building block in software interacts with each other, in other
words they define the flow of executions of a service. There
are a total of ten relationships proposed to allow a greater
degree of expressiveness of a cloud-based service (see fig-
ure cProv Model). These are sub-classes of the Prov edges
(wasInformedBy, wasDerivedFrom, wasAssociatedWith, was-
GeneratedBy and wasAttributedTo) [16].

We can define the relationship between the agent (Fu) and
entity (call record) using the ‘wasAttributedTo’edge.

1 wasAttributedTo(ex:e001, ex:ag001, [prov:type=’cprov:
2 hadOwnership’,cprov:ownershipType=’cprovd:originator’])

The ownershipType can be either ‘originator’, ‘contributor’
or ‘possession’. This relation can be read as call record
(ex:e001) was originated (in this case it would be implicit)
by Fu (‘ex:ag001).

Another example, assuming ex:a001 (activity) invoked an-
other process ex:a002 (not shown here). This invocation can
be an implicit explicit or a recurrent call. Knowing this
information, can be used to determine if a service shared users’
information automatically, or a user (agent) was involved, i.e
with or without his/her consent.

1 wasInformedBy(ex:a001, ex:a002,[prov:type=’cprov:
2 wasImplicitCall’,cprov:type =’cprovd:notification’,
3 cprov:callComm=’cprovd:synchronized’,cprov:
4 callMedium="server/S-CSCF",cprov:callNetwork="3G"])

Above example can be read as, process (ex:a002) made an
implicit notification call to process (ex:a001) from the server
over the 3G network.

From a cloud prospective, we can use this model to deter-
mine if any external parties had access to user’s data, physical
storage location of their data, and where it was processed.

Having such knowledge can implicitly increase the trust of
the provider and the end user. However, given the size and
complexity of the provenance data, it is relatively challenging
in interpreting such information manually and to take any
meaningful actions. A more automated process is required
whereby policies can be defined to detect for such violations
and appropriate control can be enforced.

IV. CPROVL-PROVENANCE-AWARE POLICY LANGUAGE

Cloud Provenance-aware policy definition and control lan-
guage (cProvl) requires modelling of complex relationships
defined in the Prov [17] and its extension (cProv) in order to
facilitate policies and rules required by cloud service providers
(auditing, compliance of SLAs/OLAs [18] and access control)
and consumers (violations and access control). The declaration
of policies and rules itself should be provenance-aware to
allow ease of integration between the provenance data and
the policy. This close integration should enable users to define
more complex policies and rules with greater expressibility on
the provenance data.

The Figure 2 below, shows a proposed policy structure with
a policy language called cProvl. It consists of three layers:
application, policy engine and persistence.

Fig. 2: Policy Structure

At the application layer a user composes a service request,
this could be a form of a REST [19] request. This is forwarded
to the REQtoProvMapper, that encodes the request into a
Provenance-aware request. The request is then sent to the
policy engine layer.

In this layer, the request is handled via the relevant policy.
The policy may execute one or more rules to validate the re-
quest using the persistence layer (Prov store). The outcome of
the policy creates a provenance-aware response. This response
is forwarded to the provToRESmapper (provenance to request
format mapping, i.e JSON), which converts it into the format
the client can consume. In this paper our focus is on the policy
language and policy engine.

A. Policy Syntax
The cProvl’s grammar for defining the structure of a policy

and a rule has been defined using key words (POLICY-BEGIN,
RULE, etc.). The syntax/semantics for policy and rules are
declared using the prov notations.

B. Policy Structure
In order to create a policy, a unique identification is re-

quired. It is declared using an entity statement Id (ex:policy1),
followed by a description attribute cprovl:description. This is
preceded by the rule declaration.

1 POLICY-BEGIN ()
2 entity(ex:policyId,[cprovl:description=""])
3 //declaration of a policy
4 RULE
5 entity(ex:ruleId,[cprovl:description=""])
6 //declaration of a rule
7 - - conditions - - -
8 RULE
9 entity(ex:ruleId,[cProvl:description=""])

10 - - conditions - -
11 POLICY-END

A policy can have one or more rules explicitly declared
using an entity, with a unique Id reference (ex:ruleId).

C. Rule Structure
The rules are designed to execute certain business logic for

controlling resources. This can in the form of granting/denying
access to users/processes based on fulfillment of conditions.
A rule has the following structure:

1 RULE
2 entity(ex:ruleId,[cprovl:description=""])

3 INHERIT || BEFORE || AFTER || OVERRIDE
4 //rule constraints
5 DEF
6 entity(ex:scope, [cprovl:range=""])}
7 //scope declaration
8 IF THERE EXIST || FOR ALL] SUCH THAT
9 [CONDITIONS]

10 THEN
11 [EXECUTION]

Each rule is identified by an entity that contains a unique
identifier Id, followed by the optional rule operators.

1) Rule Operator: A policy consists of one or more rules,
which may contain dependencies. Dependencies can be in
various forms. For example, a rule may be required to be
executed before another or output of one rule may be an input
to another. A total of four operators have been defined to
handle such functionalities: INHERIT, BEFORE, AFTER and
OVERRIDE.

INHERIT is required when one rule inherits from another,
when residing in a different policy. It is possible to have mul-
tiple inheritance, however, only one level of inheritance is per-
mitted. An inheritance can be overridden by the ‘cprovl:part’
attribute from the OVERRIDE operator.

The BEFORE and AFTER operators are used to determine
the execution ordering of rules. This is followed by the
declaration of the scope.

2) Scope: The scope allows users to be selective in defining
the range of data (structure) to be used by a policy. It is
declared under the keyword ’DEF’. A scope is set by using
the cprovl:range attribute. An example:

DEF
entity(ex:scope, [cprovl:range=’cprovd:all’])

This attribute can take a range of values based on the selec-
tion of scope (granularity) required: cprovd:all, cprovd:event,
cprovd:node and cprovd:edge. The scope is followed by the
target section.

3) Target: The existential quantifiers have been used in
many systems [20], [21]. A target defines one or more IDs for
a rule, which is matched using the existential quantifications.

• FOR ALL - match all occurrence of the criteria
• THERE EXIST - match at least one occurrence of the

criteria

IF THERE EXIST (IDs) SUCH THAT [CONDITIONS]
IF THERE EXIST (ex:e001) SUCH THAT [CONDITIONS]

The ID can either be denoted as an entity, agent, activity,
or a variable. The above expression can be read as, match
an instance of an ex:e001 in the prov store. Please note, the
ex:001 Id is a static reference, and cannot change. However,
there may be cases where dynamic values are required, for
example any generated files. This can be expressed by using
variables.

4) Variable : Variable allows dynamic and reference values
to be assigned either at the execution time or during the
declaration. In order to distinguish a variable from a content
Id, they are declared using the ‘r’ namespace.

[new | s-ref | d-ref] [r]:[varName]}

Variables are of arbitrary data type and do not require any
explicit typing. The actual data type is determined dynami-
cally. Variables can be of two types: ‘new’ and ‘ref’.

• new - keyword is used to define a dynamic variable. It
acts as a placeholder for an outcome of an expression.
Once declared, it can be used in multiple places within a
rule (the content and type is determined at the runtime).

1 IF THERE EXIST (new r:req) SUCH THAT
2 (wasGeneratedBy (r:req, ex:session))

This expression declares a dynamic variable called r:req,
and the value is obtained from the execution of the
wasGeneratedBy. During the execution, the r:req variable
acts as a placeholder, essentially acting as an anonymous
entity.

• ref - keyword expresses a reference variable. It is used
to obtain a reference from an existing object, typically
from an input request. There can of two types:

– s-ref - Refers to direct one-to-one match with a
request value.

– d-ref - Refers to the variable holding values match-
ing of its category type, typically from a request.

1 IF THERE EXIST (d-ref r:user) SUCH THAT
2 (hadOwnership(ex:e001, r:user))

This expression says, check if the requested user has an
ownership to entity ex:e001. The r:user is generic, and
can handle any users from the request.

5) Conditional Statement & Operator : The Conditional
statements are expressed using the Prov notation. Each state-
ment can either be an entity, activity, agent or a relation. If
no operator between statements an implicit logical ‘and’ is
assumed, and == (equal) operator is applied.

6) Logical Operators & grouping: The logical operators
are also supported. These are: && (and), ||(or), and ! (not).
Grouping are sued if more than one operator is used, denoted
by curly brackets { }. It is possible to have nesting groupings.

1 wasGeneratedBy (ex:meetingRequest, ex:session)
2 {
3 &&
4 {
5 wasAssociatedWith(ex:session, ex:matt)
6 || wasAssociatedWith(ex:session,ex:john)
7 }
8 }

7) Execution: The execution phase of the rule determines
the right course of action to be taken based on the satisfactory
outcome of conditional statements.

The permission (outcome) can be expressed by the creation
of a new entity.

new ex:p0 entity(ex:p0,[prov:type=’cProv:cResource’,
cprovl:actionId="", cprovl:resourceId=""])

The actionId is a mandatory field which defines the nature
of the outcome of the rule. The following values are valid
outcomes:

• new cprovd:permit - grant permission
• new cprovd:deny - deny permission
• new cprovd:indeterminate - cannot determine
• new cprovd:not-applicable - irrelevant request
By default, the request defines the resource to be accessed.

However, the resourceId attribute can be used to restrict to a
specific resource to grant access.

V. CPROVL TO XACML MAPPING

We have chosen to design the provenance traceability model
(cProv) and the policy language (cProvl) using XML schema.
This ensures that both can be easily extended, and are not
implementation dependent. The cProv schema contains ele-
ments and attributes declaration, simple and complex types,
groups and element participles. It is designed for capturing of
provenance trace for cloud services. The cProvl schema uses
the cProv schema for declaring statements, and defines its own
language syntax for creating provenance-aware policies, rules,
request and response.

We have successfully modelled policies for the scenario
(due to the size of the policies, it is not shown here). For
execution of the policy language, we have chosen to leverage
on the existing policy language standard XACML 3.0. The
standard is widely deployed in the industry, and is relatively
mature. XACML however does not have support for handling
the provenance data, hence is not directly compatible with our
policy language syntax and semantic. To address this issue, we
have decided to create cProvl-to-XACML mapping, that would
allow cProv policy and request to be executed in a XACML
engine.

Our approach to creating the mapping between XACML and
cProvl is to build a converter, that can take a cProv policy as
an input and map its entries to XACML equivalent. Since both
languages are based on XML, we have chosen to use XSLT
stylesheet language. The language is simple yet powerful for
manipulation XML/HTML documents.

A. Extending the XACML Architecture to Support Provenance

Figure (3), shows the extended functionalities required for
the XACML engine to execute a cProvl-based policy and re-
quest. The policy engine is also referred to as Policy Decision
point (PDP), which forms the heart of the Access control
mechanism; execute targets and conditions using various func-
tions. While many of these functions are reusable, there is
a necessity to introduce new once to address the following
challenges.

1) Coupling of policy assertions: XACML policies are
by default tightly coupled with requests. The policy uses
request values (current values) to grant or deny access. cProvl,
on the other hand is more loosely coupled, and while it
may take some values from the request, policies are pri-
marily focused on the data from the Prov store (histori-
cal meta-data and relations) for its assertions. This requires
XACML XPath functions to operate on the Prov store. How-
ever, they are restricted to ‘content’ XML from the request.
To overcome this issue, we have introduced a new func-
tion called urn:oasis:names:tc:xacml:3.0:function:ext:xpath-
provenance-s-id-match for target. The target IDs are handled
by this function (it matches against the Prov store (see 1a, 1b
and 1c on the diagram 3).

2) Static & dynamic variable holder: Provl require
static and dynamic variable holders for its statements;
one statement may generate reference IDs stored in a
variable, which is later required/used by another state-
ment. Such concept is not present in XACML. In order
to address this issue, we have introduced another func-
tion called urn:oasis:names:tc:xacml:3.0:function:ext:xpath-
provenance-d-id-match. The ‘d-ref’ and ‘new’ variable de-
clared in the target is handled by this function. The d-ref values
are extracted from the input request type (e.g. subject) and
stored in the attStore. For ‘new’ variable it creates an entry in
the store for the statement assertion (see 2a, 2b, 2c and 2d).
The function urn:oasis:names:tc:xacml:3.0:function:ext:xpath-
provenance-s-id-match, generates the content of a new vari-
able, as it executes the conditional statements.

Fig. 3: XACML Policy Engine Extension

3) Single to multi-value mapping: XACML conditional
statements are single value entry attributes, whereas Provl
statements are multi-valued nodes/edges. In order to
map single-to-multi-values, we have created a new func-
tion called urn:oasis:names:tc:xacml:3.0:function:ext:xpath-
provenance-s-id-match. This function first obtains the attribute
value of an XACML policy conditional statement (this value
needs to be a unique ID). It uses this as a xPath reference to
a node in cProvl Policy. If a match found, the node and its
properties are matched against the ProvStore. If all successful,
it will return true otherwise false.

B. cProvl to XACML policy example

The diagram (Fig 4) shows policy one from the scenario,
modelled using the cProvl language on the left, and mapping
to XACML on the right.

The policy and rule Id from cProvl are directly mapped
to XACML’s policyId and RuleId, denoted by the red color
lines. The target Ids (ex:p-dat and c-data) which represents a
user data, and copy data which are mapped to XACML using
our custom function ”xpath-provenance-s-id-match” (shown in
green lines). This function matches both values against the
provenance store. The conditional statements (can be read
as allow access if the copy resides in the UK, assuming
original is also in the UK) are mapped to XACML using our
defined function ”xpath-provenance-node-match” (shown in
blue lines). This function handles the multi-valued conditional
statements of cProv. The outcome of the policy is mapped to
the ”Effect” attribute filed of the Rule in XACML.

VI. LITERATURE REVIEW

Much of the earlier work that has been done for provenance
is in the area of scientific workflow [22], [23], [24], and
many models defined which can be mapped to the core of
the OPM [25]. OPM can be seen as the common subset of

all these languages. OPM however has been superseded by
the W3C backed model called Prov [15]. A greater number
of relationships are defined to describe interactions between
entities, activities and agents. It has support for extensibility
via custom attributions. The other efforts in this area are from,
P. Macko et al. [26] on an approach for collecting provenance
via the Xen Hypervisor [27], K.K. Muniswamy-Reddy et
al. [28] [29] on the automation of provenance collection
(Provenance aware storage system) [29].

As regards to the policy language, Y. Doganata et al.
[30] proposes a model for authoring and deploying business
policies dynamically for compliance monitoring. Their work is
quite similar to that is being proposed here, but differs in a few
ways. First, the provenance model is proprietary and specifi-
cally designed for business related applications. Whereas our
proposed model open, is an extension to the standardised
provenance model prov, for the dedicated cloud environment.
Secondly, the language does not capture of the provenance
of policy decision making, so there is a loss of provenance
information. Our approach is end-to-end provenance aware.

B. Stepien et al. [11] on the other hand proposes a human
readable form of a policy language. Unlike the previous policy
templates, this is based on a well known standard XACML
[31],[32]. A policy can be defined easily using natural lan-
guage, which is then converted to XACML format. However,
it does not cater for provenance data.

PAPEL [33] is a provenance-aware policy execution lan-
guage. The language tries to integrate the popular XACML
general purpose policy language with the well defined prove-
nance model called OPM, albeit a relatively loose integration.
It uses a step primitive to represent a single processing step
which depicts a process in OPM or cProcess in cProv. Step
only defines primitive primitive parameters. This can restrict
the expressibility and extensibility required for modelling

Fig. 4: cProvl to XACML - Scenario Policy One

complex provenance structure (cProv). Beyond capturing a
step, it does not have a natural way of expressing relationships
that exist between processes, entities and agents. However, it
may be possible to encode such information using attributes,
which can be tedious and cumbersome.

A. Syalim et al. [34], proposes an access control method
for provenance based on a direct cyclic graph. Their approach
is to define policies within a relational database that operates
on nodes and edges of a graph (modelled as DB tables). The
access control is coarse-grained (supports grouping), it lacks
the flexibility to define policies attribute-based access control
(cannot define policies operating at the property level of nodes
and edges).

T. Cadenhead et al. [35] proposes an extension to the ACL
[36] with regular expression grammar, to operate on prove-
nance graphs (OPM). This allows the policies to take OPM’s
node and edge names into account when declaring policies.
This work is very much analogous to our proposed work,
however, our approach is from a holistic view, and improves
in the following areas. Firstly, the policy declaration using
XML is not fully coupled with the OPM model (difficult to
define properties associated with nodes and edges). Secondly,

It does not define rules, therefore a policy is likely to be
relatively large and complex, which can affect the performance
time, and likely to be prone to errors. Thirdly, the provenance
of policy execution is not captured or recorded. Fourthly,
the declaration of the policy values is static, and does not
accommodate dynamic policy values. And finally, it is not
designed to run within an existing XACML policy engine.
However, a graph grammar approach for rewriting redaction
policies over provenance [37] has been proposed.

VII. CONCLUSION

In this paper we have presented a provenance model for
the cloud, and a provenance-aware policy language to operate
on the model. The model defines a number of extensions
of the W3C Prov to cater for cloud-based services. The
policy language is designed to be tightly coupled with the
Prov notations and has a greater degree of expressibility on
the provenance data (relations, meta-data). We were able to
successfully model our policies for the scenario using the
language (cProvl). One potential drawback of our language
is, that policies generally tend to be relatively large; this is
primarily due to both policy and provenance statements being

presented in XACML. In the future we may consider more
compact representations.

We have also defined a translator that converts cProvl
request and policies into XACML policy & request. Also,
additional functions to handle single-to-multi value mapping,
coupling of policy assertions, and static/dynamic variables.

We have implemented the policy language with an open
source XACML engine BALANA [38], and the next phase is
to deploy it in our service.

ACKNOWLEDGMENT

I would like to thank Raffel Uddin, Kashif Chawdhary,
Tansir Ahmed, Saiful Alam, Emanuel Mayer, Patrick Launey
and other members of Orange Labs for the sponsorship and
on going support of the work.

REFERENCES

[1] J. Voas and J. Zhang, “Cloud computing: New wine or just a new
bottle?” IT professional, vol. 11, no. 2, pp. 15–17, 2009.

[2] A. Keith and A. Ole, “A comparison of software and hardware
techniques for x86 virtualization,” in Proceedings of the 12th
international conference on Architectural support for programming
languages and operating systems, ser. ASPLOS XII. New York,
NY, USA: ACM, 2006, pp. 2–13. [Online]. Available: http:
//doi.acm.org/10.1145/1168857.1168860

[3] R. Uhlig, G. Neiger, D. Rodgers, A. Santoni, F. Martins, A. Anderson,
S. Bennett, A. Kagi, F. Leung, and L. Smith, “Intel virtualization
technology,” Computer, vol. 38, no. 5, pp. 48–56, 2005.

[4] J. Rittinghouse and J. Ransome, Cloud computing: implementation,
management, and security. CRC, 2009.

[5] A. Zahariev, “Google app engine,” Helsinki University of Technology,
2009.

[6] A. Khalid, “Cloud computing: Applying issues in small business,” in
2010 International Conference on Signal Acquisition and Processing.
IEEE, 2010, pp. 278–281.

[7] A. Lawabni, C. Hong, D. Du, and A. Tewfik, “A novel update propaga-
tion module for the data provenance problem: A contemplating vision
on realizing data provenance from models to storage,” in Mass Storage
Systems and Technologies, 2005. Proceedings. 22nd IEEE / 13th NASA
Goddard Conference on, april 2005, pp. 61 – 69.

[8] R. Sandhu and P. Samarati, “Access control: principle and practice,”
Communications Magazine, IEEE, vol. 32, no. 9, pp. 40 –48, sept. 1994.

[9] D. Ferraiolo, J. Cugini, and D. Kuhn, “Role-based access control (rbac):
Features and motivations,” in Proceedings of 11th Annual Computer
Security Application Conference. IEEE Computer Society Press, 1995,
pp. 241–48.

[10] E. Yuan and J. Tong, “Attributed based access control (abac) for web
services,” in Web Services, 2005. ICWS 2005. Proceedings. 2005 IEEE
International Conference on, july 2005, pp. 2 vol. (xxxiii+856).

[11] B. Stepien, S. Matwin, and A. Felty, “Advantages of a non-technical
xacml notation in role-based models,” in Privacy, Security and Trust
(PST), 2011 Ninth Annual International Conference on. IEEE, 2011,
pp. 193–200.

[12] L. Zhi, W. Jing, C. Xiao-su, and J. Lian-xing, “Research on policy-based
access control model,” in Networks Security, Wireless Communications
and Trusted Computing, 2009. NSWCTC ’09. International Conference
on, vol. 2, april 2009, pp. 164 –167.

[13] E. Rissanen, “extensible access control markup language
(xacml) version 3.0,” http://docs.oasis-open.org/xacml/3.0/xacml-3.
0-core-spec-cs-01-en.pdf, 2010.

[14] P. Druschel, M. Backes, and R. Tirtea, “The right to be forgotten be-
tween expectations and practice,” http://www.enisa.europa.eu/activities/
identity-and-trust/library/deliverables/the-right-to-be-forgotten, 2012.

[15] L. Moreau, P. Missier et al., “Prov-dm: The prov data model,” W3C,
W3C Candidate Recommendation 11 December 2012, 2012.

[16] L. Moreau, P. Missier, J. Cheney, and S. Soiland-Reyes, “Prov-n:
The provenance notation,” W3C, W3C Candidate Recommendation 11
December 2012, 2012.

[17] J. Cheney, P. Missier, and L. Moreau, “Constraints of the provenance
data model,” 2012.

[18] P. Patel, A. Ranabahu, and A. Sheth, “Service level agreement in cloud
computing,” in Cloud Workshops at OOPSLA, 2009.

[19] J. Christensen, “Using restful web-services and cloud computing to
create next generation mobile applications,” in Proceedings of the 24th
ACM SIGPLAN conference companion on Object oriented programming
systems languages and applications. ACM, 2009, pp. 627–634.

[20] M. Mannion, “Using first-order logic for product line model validation,”
in Software Product Lines. Springer, 2002, pp. 176–187.

[21] K. Mahbub and G. Spanoudakis, “A framework for requirents monitoring
of service based systems,” in Proceedings of the 2nd international
conference on Service oriented computing. ACM, 2004, pp. 84–93.

[22] Z. Bao, S. Cohen-Boulakia, S. Davidson, A. Eyal, and S. Khanna,
“Differencing provenance in scientific workflows,” in IEEE 25th Inter-
national Conference on Data Engineering (ICDE’09). IEEE Computer
Society, 2009, pp. 808–819. [Online]. Available: http://www.cis.upenn.
edu/∼zhuowei/docs/PDiffView/ICDEResearchLong-ZBao-diff.pdf

[23] K. Anand, S. Bowers, T. McPhillips, and B. Ludaescher, “Exploring
scientific workflow provenance using hybrid queries over nested data
and lineage graphs,” in Proceedings of 21st International Conference
on Scientific and Statistical Database Management (SSDBM’09),
New Orleans, LA, USA, 2009, pp. 237–254. [Online]. Available:
http://daks.ucdavis.edu/∼sbowers/ssdbm-09.pdf

[24] O. Biton, S. Cohen-Boulakia, S. Davidson, and C. Hara, “Querying and
managing provenance through user views in scientific workflows,” in
International Conference Data Engineering (ICDE’08). Los Alamitos,
CA, USA: IEEE Computer Society, 2008, pp. 1072–1081. [Online].
Available: http://www.inf.ufpr.br/carmem/pub/icde08.pdf

[25] S. Sahoo, P. Groth, O. Hartig, S. Miles, S. Coppens, J. Myers,
Y. Gil, L. Moreau, J. Zhao, M. Panzer, and D. Garijo, “Prove-
nance vocabulary mappings,” http://www.w3.org/2005/Incubator/prov/
wiki/Provenance Vocabulary Mappings, 2010.

[26] P. Macko, M. Chiarini, M. Seltzer, and S. Harvard, “Collecting prove-
nance via the xen hypervisor,” 2011.

[27] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, E. Kotso-
vinos, A. Madhavapeddy, R. Neugebauer, I. Pratt et al., “Xen 2002,”
University of Cambridge, Computer Laboratory, Tech. Rep. UCAM-CL-
TR-553, Jan, 2003.

[28] K. Muniswamy-Reddy, P. Macko, and M. Seltzer, “Provenance for the
cloud,” in Proceedings of the 8th USENIX conference on File and
storage technologies. USENIX Association, 2010, pp. 15–14.

[29] M. Seltzer, K. Muniswamy-Reddy, D. Holland, U. Braun, and J. Ledlie,
“Provenance-aware storage systems,” in Proceedings of the USENIX
Annual Technical Conference (USENIX06), 2006.

[30] Y. Doganata, K. Grueneberg, J. Karat, and N. Mukhi, “Authoring and
deploying business policies dynamically for compliance monitoring,” in
Policies for Distributed Systems and Networks (POLICY), 2011 IEEE
International Symposium on. IEEE, 2011, pp. 161–164.

[31] D. Abi Haidar, N. Cuppens-Boulahia, F. Cuppens, and H. Debar, “An
extended rbac profile of xacml,” in Proceedings of the 3rd ACM
workshop on Secure web services. ACM, 2006, pp. 13–22.

[32] A. Anderson, “Xacml profile for role based access control (rbac),” OASIS
Access Control TC committee draft, vol. 1, p. 13, 2004.

[33] C. Ringelstein and S. Staab, “Papel: a language and model for
provenance-aware policy definition and execution,” Business Process
Management, pp. 195–210, 2010.

[34] A. Syalim, Y. Hori, and K. Sakurai, “Grouping provenance information
to improve efficiency of access control,” Advances in Information
Security and Assurance, pp. 51–59, 2009.

[35] T. Cadenhead, V. Khadilkar, M. Kantarcioglu, and B. Thuraisingham,
“A language for provenance access control,” in Proceedings of the first
ACM conference on Data and application security and privacy. ACM,
2011, pp. 133–144.

[36] Q. Ni, S. Xu, E. Bertino, R. Sandhu, and W. Han, “An access control
language for a general provenance model,” Secure Data Management,
pp. 68–88, 2009.

[37] T. Cadenhead, V. Khadilkar, M. Kantarcioglu, and B. Thuraisingham,
“Transforming provenance using redaction,” in Proceedings of the 16th
ACM symposium on Access control models and technologies. ACM,
2011, pp. 93–102.

[38] “Getting start with balana,” http://xacmlinfo.com/2012/12/18/
getting-start-with-balana/, 2012.

