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The recovery of functional movements following injury to the central nervous system (CNS)
is multifaceted and is accompanied by processes occurring in the injured and non-injured
hemispheres of the brain or above/below a spinal cord lesion. The changes in the CNS are
the consequence of functional and structural processes collectively termed neuroplasticity
and these may occur spontaneously and/or be induced by movement practice. The neu-
rophysiological mechanisms underlying such brain plasticity may take different forms in
different types of injury, for example stroke vs. spinal cord injury (SCI). Recovery of move-
ment can be enhanced by intensive, repetitive, variable, and rewarding motor practice.
To this end, robots that enable or facilitate repetitive movements have been developed to
assist recovery and rehabilitation. Here, we suggest that some elements of robot-mediated
training such as assistance and perturbation may have the potential to enhance neuro-
plasticity. Together the elemental components for developing integrated robot-mediated
training protocols may form part of a neurorehabilitation framework alongside those meth-
ods already employed by therapists. Robots could thus open up a wider choice of options for
delivering movement rehabilitation grounded on the principles underpinning neuroplasticity
in the human CNS.

Keywords: motor cortex, spinal cord, rehabilitation, motor learning, motor adaptation

INTRODUCTION
Stroke or spinal cord injury (SCI) often leaves an individual with
persistent functional movement deficits that impact on indepen-
dent living and quality of life, whilst putting an enormous health-
care and macro-economic burden on societies (1). Such sudden
onset injury to the central nervous system (CNS) was long con-
sidered immune to treatment. However, in the last three decades
a paradigm shift has occurred whereby a better understanding
of recovery has highlighted the potential for re-organization of
neural circuits that remain intact after stroke or SCI (2–4). Recov-
ery involves several regions of the CNS and can spontaneously
occur after stroke or incomplete SCI, that is, in the absence of
specific training.

Several potential therapies may assist or guide this sponta-
neous recovery and include constrained induced movement ther-
apy (CIMT), robot-mediated therapy, pharmacological treatments
(e.g., selective serotonin re-uptake inhibitors), brain-machine
interfaces (BMIs), goal oriented physiotherapy, epidural spinal
stimulation, non-invasive cortical stimulation, electromechanical-
mediated therapy, and combinations thereof (5–13). Taking
two examples, both CIMT (the EXCITE trial) and robot-
mediated therapy (the VA robot trial) have been demonstrated
to induce better clinical outcomes than usual care following stroke
(9, 13).

NEUROPLASTICITY IN THE HUMAN BRAIN
Underlying many existing motor therapies is the central tenet that
repetitive, progressive, and engaging practice using the affected
limb induces plastic changes in neural networks subserving motor
control and learning. The changes could be both functional and
structural-anatomical and the neurophysiological processes by
which these changes might occur, have been collectively termed
as neuroplasticity (2, 3, 14, 15).

Neuroplasticity occurs at synapses and involves molecular
changes in cell signaling pathways and neurotransmission; both
dendritic and axonal plasticity can occur in healthy conditions
and also after damage to the CNS (16–18). There are spike time-
dependent changes in neuronal synaptic strength that can be
demonstrated in response to high-frequency stimulation in in vitro
and in vivo animal studies and which contribute to changes in
neurophysiology such as increased or decreased evoked post-
synaptic potentials (EPSPs) that can persist for long periods [i.e.,
long-term potentiation or depression; LTP and LTD (18)]. Since
the pioneering studies of the 1960s and 1970s and subsequent
rapid consolidation of understanding of mechanisms underpin-
ning LTP/LTD, induced changes in synaptic strength have also been
directly demonstrated in vitro in human tissue surgically excised
from either the hippocampus or neocortical temporal lobe (19,
20). More recent studies in humans, have demonstrated analogous
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changes in cortical excitability following high-frequency sensory
stimulation (19). Paired associative conditioning stimulation par-
adigms (PAS) such as non-invasive peripheral nerve stimulation
paired with non-invasive transcranial magnetic stimulation (PNS
and TMS respectively) as well as non-invasive weak transcranial
direct current stimulation (tDCS) can also induce LTP/LTD-like
changes in motor cortical excitability and are mediated by complex
neurotransmitter and neuromodulatory systems in a similar man-
ner to the original in vitro animal studies (21). Thus the human
brain has the capacity for neuroplastic adaptation to changing
environmental conditions.

The next translational step to make in favor of human neu-
roplasticity is to demonstrate that changes in synaptic strength
resulting from these basic molecular, cellular, and neurophysiolog-
ical phenomena can lead to re-organization of neural connectivity
at the local small world network level, across the cerebral hemi-
spheres, along the spinal cord segments and ultimately could
occur across the whole CNS system. An approach to this is to
combine neuroimaging of the whole brain (e.g., functional mag-
netic resonance imaging; fMRI) and site-specific non-invasive
brain stimulation (e.g., tDCS on motor cortex). For example,
applying unilateral anodal tDCS to motor cortex reduces resting
interhemispheric cortical and contralateral intra-cortical func-
tional connectivity (22), but increases ipsilateral motor-premotor,
motor-parietal cortical functional connectivity as well as cortico-
striato-thalamic functional connectivity (23, 24). Thus, the adult
human CNS appears to have the capacity to adapt to artificial (e.g.,
tDCS) and more natural stimulation (e.g., visual or auditory stim-
uli), both in terms of cell-based neurophysiology and at neural
network-based levels, thereby demonstrating an innate capacity
to undergo neuroplasticity.

NEUROPLASTICITY IN THE CLINIC
Several recent reviews cover general aspects of rehabilitation fol-
lowing stroke and SCI and the potential role of neuroplasticity
in recovery processes (25–33). Here we specifically focus on the
potential of robot-mediated therapy to induce neuroplasticity as
evidenced by some or all of the basic phenomena highlighted.
There is a growing evidence-base for neuroplasticity to occur in
healthy subjects when they engage with robot devices in studies of
motor learning (Figure 1).

Whether these learning mechanisms demonstrated in health
also occur during rehabilitation employing robot devices for neu-
rological recovery is not fully established in the literature, we
therefore highlight some recommendations for future research
rather than a meta-analysis of available evidence. We will high-
light points of caution where we translate evidence for examples
of robot-mediated neuroplasticity in learning in healthy adults to
those individuals with CNS injury (34).

NEUROPLASTICITY AND ROBOT-MEDIATED LEARNING
This perspective focuses on four elements of robot-mediated
learning with respect to their potential to induce neuroplasticity in
clinical populations. Evidence from studies on healthy subjects and
then on neurological populations will be described and a summary
on potential future research areas put forward for each element.

ELEMENT 1: ROBOTIC ASSISTANCE
Assistance by a robot involves the device providing a haptic
interaction1 and there is a growing range of control strategies
associated with it [(35) for a comprehensive review]. For exam-
ple, this could incorporate a “haptic tunnel” for the movement
path (36) in the form of forces provided by actuators to reach
a movement target when the patient is not able to perform the
desired range of motion (37, 38) or in the form of correct move-
ments performed by a robot not in contact with the patient [i.e.,
the robot has a coaching role; (35, 39)]. Strategies correlating
contingent proprioceptive and/or other sensory inputs to motor
outputs also might be important for inducing neurophysiological
changes (18, 40).

EVIDENCE FOR NEUROPLASTICITY: UPPER LIMB
Recent work has demonstrated that robot-assisted wrist move-
ments or hand grip in healthy subjects are accompanied by
different frequency-dependent power changes in the electroen-
cephalogram (EEG) in neural cortical circuits compared to vol-
untary wrist movement or hand grip (41, 42). Furthermore, assis-
tive haptic feedback during a visuomotor tracking task induces
region-specific changes in frequency-dependent power compared
to tracking with no haptic feedback. Interestingly, there are also
increases in functional connectivity (coherence) between corti-
cal regions involved in the motor task only when assistive haptic
feedback is present (43). Robot-assisted unilateral wrist move-
ment modulates contralateral alpha and beta frequency power
(desynchronization) in cortical areas that are also involved during
voluntary wrist movements (41). Further, the movement-evoked
potentials of voluntary and assisted (non-robotic in this case) fin-
ger movements are at similar times (35 vs. 36 ms respectively)
after movement onset and are in the same current source loca-
tions (44). Substantial overlap of neural activity representation
is also demonstrated for elbow flexion/extension in voluntary and
torque-motor (i.e., similar to robotic) driven conditions (45). Thus
(active) voluntary and (quasi-passive) robot-assisted motor tasks
activate similar brain regions.

However, neuroplasticity per se is considered to be under-
pinned by progressive, challenging motor skill learning rather
than merely repetitive motor tasks. Active voluntary motor skill
learning with the wrist leads to more prominent increases in
(i) activity in contralateral primary motor cortex, (ii) motor
excitability recruitment curves, and (iii) intracortical facilitation
compared to passive (torque-motor assisted) motor skill learning
(46). The greater changes in motor excitability in active vol-
untary vs. passive motor skill learning have also been repeated
for ankle flexion/extension in visuomotor tracking (47). These
findings suggest that robot-assisted motor skill learning may
not necessarily be as influential as voluntary motor skill learn-
ing in inducing neuroplasticity. Encouragingly however, there
is evidence to suggest that re-organization of brain networks
can occur after robot-assisted therapy in stroke patients both

1Relating to the sense of touch, in particular relating to the perception and manipu-
lation of objects using the senses of touch and proprioception: haptic feedback devices
create the illusion of substance and force within the virtual world. Oxford Dictionaries,
Oxford University Press, Oxford, England 2012.
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FIGURE 1 | An upper limb end-effector robotic device can be used to
monitor cortical and neuromuscular responses withTMS, EEG, and
EMG (electrodes placed on multiple shoulder, arm, forearm muscles)
during performance of reaching movements in different directions in
the x -y axis (A,B). The motors can be switched off to measure “free”
movements or switched on to induce force fields (perturbation or
resistance). Other adjunct methods of brain stimulation can be used
during robot-mediated reaching movements such as tDCS (C); different

types of tDCS include: unilateral anodal motor cortex – black arrow,
unilateral anodal premotor or visual cortex – red arrows, unilateral cathodal
stimulation – blue arrows or directional stimulation – yellow arrow; Ref,
reference electrode, Active, active electrode). The robotic device can be
used to assist acute stroke patients in reaching motor practice in therapy
or be programed to perturb motor performance to measure patient
kinematic performance and muscle responses in different tasks such as
position holding [(D); see also Figure 4].

in terms of regional activation (48) and interhemispheric and
intrahemispheric functional connectivity (49).

EVIDENCE FOR NEUROPLASTICITY: LOWER LIMB
Stroke and SCI can impede the ability to walk significantly and
reduce independence in living. Surprisingly therefore, there is lit-
tle knowledge of the neural mechanisms underlying lower limb
functional recovery; even less is known about the impact of walk-
ing rehabilitation on the neural aspects of recovery and virtually
nothing is known about the impact of robot-assisted therapy of
the lower limb on neuroplasticity.

Cortical control of locomotion involves a complex interplay
of supraspinal circuits, spinal interneurons, and spinal reflexes.
Either spinal or supraspinal (stroke) injury could bring about
re-organization of all levels of the neuroaxis. A full review of
the neural correlates of locomotor control in clinical populations
is beyond this perspective [see Ref. (25, 50, 51)]. Nevertheless
some common aspects can be demonstrated whereby unilateral
hemispheric stroke effects functional (measured with TMS) and
structural (measured with diffusion tensor MRI) corticospinal
tract integrity and this is proportional to walking impairment
(52). On the other hand, corticospinal tract integrity above an
incomplete cervical spinal lesion is also reduced in terms of

spinal cord area, smaller white matter volumes in pyramids and
left cerebellar peduncle and smaller gray matter volume in the
leg area of the motor cortex – importantly, clinical impairment
was correlated with some of these functional-structural mea-
sures (53). Whilst the specific changes may be different between
stroke and SCI, both types of injuries can be associated with brain
re-organization.

Can these re-organizations of brain function and structure be
“tuned” or enhanced by motor training? There is strikingly little
information available to answer this especially in the early stages of
recovery (54). Longitudinal imaging studies have documented an
increase in neural activation in midbrain and cerebellum follow-
ing extended aerobic walking training in chronic stroke patients
[i.e., along with the post-stroke re-organization detailed earlier;
(55)]. Walking velocity was correlated with midbrain and cerebel-
lar activation, suggestive of neuroplasticity underpinning clinical
improvement. Both cortical and subcortical regions appear to be
involved in walking training rehabilitation intervention in chronic
stroke (56, 57). The balance between cortical and subcortical neu-
roplasticity in these two similar study paradigms may have been
due to whether proximal (55) or distal leg muscle function was
tested during fMRI (56). Robot-assisted, body-weight supported
walking training on a treadmill resulted in greater sensorimotor
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and cerebellar activation following a prolonged intervention after
incomplete SCI, (58) and greater corticomotor responses to tran-
scranial magnetic stimulation of the leg cortical representation
during stroke rehabilitation (59). Finally, robot-assisted tread-
mill walking training (with concomitant cognitive and imagery
training) increased sensorimotor neural activation and functional
connectivity in a case study of adult traumatic brain injury (60).

The overall evidence that healthy motor learning and neu-
roplasticity is induced or facilitated by robot assistance is rather
scarce. However, it has been suggested that robot assistance may
promote motivation, because motor performance during training
can be better than without assistance (34, 61). Clinically, robot-
assisted therapy is effective after acute and chronic stroke (38),
although not more so than intensity-matched physical therapy
when a human therapist in part assists, in part motivates the
patient’s own movements (9). Analysis of biomechanical aspects
of motor recovery, suggest that motor learning (i.e., neuroplas-
ticity) and not motor adaptation characterizes motor recovery
after robot-assisted therapy, although this is not direct evidence
gathered using neuroimaging (62). Robot-assisted therapy gen-
erally includes many thousands of repetitive movements over 1–
6 months and this total intensity is required for neuroplasticity in
animal models (63). Unfortunately, this intensity is rarely or never
matched in other well studied therapies such as CIMT or func-
tional electrical stimulation (FES) or indeed in usual care – the evi-
dence for neuroplasticity following CIMT and FES is preliminary
and out of the scope of this perspective [see review by (33)].

In summary, performing motor tasks with robot-mediated
assistance can modulate neural activity compared to un-assisted
or active voluntary movements in healthy subjects and stroke
patients, although whether the patterns of modulation are sim-
ilar in health and disease remains to be compared. Strong direct
evidence for neuroplasticity following robot-assisted therapy is
currently lacking and future work is required to identify which
type of assistance is optimal for inducing neuroplasticity and thus
reducing motor impairment.

ELEMENT 2: ROBOTIC PERTURBATION
Perturbing a movement, for example by applying an external force,
renders it more difficult to perform. Increased difficulty adds to the
intensity of training and could serve as a stronger learning stimu-
lus; on the other hand perturbations that are too large may hinder
the learning process. Several paradigms using robotic devices have
been used to investigate the neuroplasticity that occurs when
healthy subjects have learned to “adapt” to a perturbation dur-
ing reaching or tracking movements of the hand (upper limb) or
ankle (lower limb).

EVIDENCE FOR NEUROPLASTICITY: UPPER LIMB
One common paradigm incorporates adaptation to robot-induced
force fields which physically perturb ongoing arm movement (64).
Changes in cortico-striatal neural activation, cortical excitability
along with short interval intracortical inhibition and facilitation
have been demonstrated during such adaptation processes [e.g.,
(65, 66); Figure 2].

Perturbation stimulates the healthy motor system to adapt, that
is, to counteract the external force and can involve adaptation of

predictive “feedforward anticipatory” movement or force produc-
tion (an “internal model”) and adaptation of reactive “feedback”
adjustments of limb movement in response to the perturbation.
Adaptation is a fast process that can be distinguished from learn-
ing by repeating the same unperturbed movement over and over
again (67). Whereas the latter depends on activity (use)-dependent
neuroplasticity, cerebellar error-based learning mechanisms may
account for adaptation of reaching during force-field perturba-
tions (68). A shift of activation from cortico-striatal to cortico-
cerebellar networks occurs while adapting to an external force
field and this is associated with changes in effective connectiv-
ity amongst cortical regions in healthy humans (66, 69). Shifts
in neural network activation during motor tasks persist following
rest periods after force-field motor adaptation possibly indicat-
ing a “motor memory” consolidation process [i.e., neuroplasticity;
(70)]. Persistent memory of motor responses is best achieved by
combining error-based adaptation and use-dependent plasticity
(67). Whether, this combination of healthy motor learning mech-
anisms is active during recovery from brain injury remains to be
demonstrated. Preliminary studies however, suggest that incorpo-
rating error augmentation may be a beneficial strategy for upper
limb therapy in chronic stroke patients (71, 72).

In healthy subjects, cortical excitability of a brain region can
be modulated by applying unilateral anodal tDCS during motor
adaptation (Figure 3A). Cerebellar anodal tDCS during arm-
reaching adaptation to visuomotor rotation results in a faster rate
of adaptation (73), whereas retention of the “offline motor mem-
ory” of adapted behavior is enhanced by anodal stimulation of the
primary motor cortex [visuomotor rotation – (73); robot-induced
force field – (74); Figures 3B–D].

Recent work using in vitro motor cortex brain slices has sug-
gested that tDCS interacts with coincident low frequency stim-
ulation (in possible analogy to afferent activity accompanying
movement during human motor adaptation) to increase BDNF
secretion and TrkB activation (75). Both of these induced molecu-
lar changes are stimulation(activity)-dependent and characteristic
of synaptic neuroplasticity (18). In order to augment neuroplas-
ticity during robot perturbation training in clinical populations in
this way, future effort is required to determine the optimal selec-
tion of the stimulated brain region (cerebellar vs. cerebral), site of
tDCS related to location of injury (ipsilesional vs. contralesional),
type of tDCS (anodal vs. cathodal), and the type of robot-mediated
therapy (unilateral vs. bilateral). Indeed, studies using single hemi-
sphere tDCS and robot-mediated bilateral assistive therapy in
stroke patients did not demonstrate clinically significant effects
on motor recovery (76). Repetitive TMS is a similar technique
to tDCS in the sense of modulating cortical excitability, however
currently it has not been used either with robot-mediated motor
adaptation in healthy subjects or with robot-assisted therapy in
clinical populations.

EVIDENCE FOR NEUROPLASTICITY: LOWER LIMB
The concept of perturbation has also been applied to the lower
limb in gait training. Short-term motor adaptation can occur
in healthy subjects during walking when one limb operates in a
force-field environment and the behavioral adaptation is associ-
ated with changes in cortical excitability (77). Indeed, when tDCS

Frontiers in Neurology | Neuroprosthetics November 2013 | Volume 4 | Article 184 | 4

http://www.frontiersin.org/Neuroprosthetics
http://www.frontiersin.org/Neuroprosthetics/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Turner et al. Robot therapy and neuroplasticity

FIGURE 2 | Cortical excitability of contralateral motor cortex is
significantly increased (*, vs. BASELINE condition) during
robot-mediated clockwise force field perturbation adaptation in
healthy subjects (ADAPTATION condition cf. BASELINE and
DEADAPTATION conditions). TMS was used to measure cortical
excitability during the movement preparation period before reaching
(TMS time interval is time after visual signal to start reach and is set
at x = 0 on x -axis) to two different directions [(A,B) = 135°, away from

the body; (C,D) = 270°, toward the chest] and for two different upper
limb muscles [(A,C) = biceps; (B,D) = triceps]. Note that cortical
excitability is only increased for one muscle (biceps) in one direction
of perturbed reaching (135°), so cortical neuroplasticity is thus
muscle- and direction-specific. The increase in cortical excitability
precedes reaching movement and suggests that there is a change in
the “internal model” of the biceps muscle within the cortex [from
Ref. (65) with permission].

is applied to cerebellum in healthy subjects, the rate of motor
adaptation to split-belt treadmill walking can be increased or
decreased depending on the modality of tDCS [i.e., anodal vs.
cathodal respectively; (78)].

In clinical studies involving patients with cerebellar degener-
ation, predictive feedforward components of motor adaptation
were impaired, whereas reactive feedback components were not
impaired, when the patients were walking on a split-belt tread-
mill with the two belts – one for each leg – running at different
velocities (79). On the other hand, stroke patients with cerebral
damage could adapt in a similar fashion to healthy control sub-
jects, when performing the same split-belt walking paradigm (80).
These differential findings in clinical populations suggest that the
cerebellum may be more important than the cerebral cortex in
perturbation adaptation in the lower limb. Lasting improvement
remains to be demonstrated in large clinical studies but the first
trials suggest that gait asymmetry in chronic stroke can be amelio-
rated by split-belt walking training (81). However the long-term
neuroplastic changes underlying the adapted behavior in both
healthy subjects and clinical groups are unknown, but deserve
future investigation.

In summary, perturbation-based robot-mediated therapy fol-
lowing neurological injury has not received the attention that
assistive robot-mediated therapy has and there is a lack of direct
comparative evidence to suggest one is better than the other

currently. Further, while there is some evidence to suggest that
modulation of motor and sensory neural circuits occurs (82) dur-
ing motor adaptation in health and disease, caution should be kept
in mind when translating evidence from learning/adaptation in
healthy subjects to stroke compared to cerebellar degeneration, for
example. Nevertheless, future studies using combinations of assis-
tive and perturbation-based motor adaptation (71) with or with-
out adjunct non-invasive brain stimulation may be worthwhile
clinically and elucidate the impact of robot-mediated perturbation
on neuroplasticity per se.

ELEMENT 3: ADDING VIRTUAL REALITY TO
ROBOT-MEDIATED THERAPY
Virtual reality (VR) has been combined with a robotic training
device in gait training after stroke and can significantly aug-
ment gait improvements more than robot therapy alone (83). The
impact of VR on robot-induced gait improvements after stroke
is manifest as increases in force and power via improvement of
ankle motor control (84). If used appropriately, VR can represent
to the stroke patient certain bio-signals related to gait performance
such as heart rate or force/torques at lower limb joints and thus
stimulate conscious control of precision movement (85).

Unfortunately a significant number of stroke survivors often
see little progress in their training because improvement is slow
and post-stroke depression may devalue reward. Several rewarding
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FIGURE 3 | Unilateral anodal tDCS (black arrow with the
cathodal electrode applied supraorbitally; (A) was applied to
contralateral motor cortex during force-field adaptation in order
to augment ongoing neuroplastic changes in cortical
neurophysiology (see Figure 2). Interestingly, online tDCS
stimulation did not change the reduction of movement error or

recovery of velocity during motor adaptation [red lines in (B,C)], but
did result in a significant increase (*) in offline movement error once
tDCS and the robot-induced force field were both switched off (blue
lines in (C,D); black bars in (D). Reaching blocks N1–N4 and N5–N6
are without force field and reaching blocks F1–F4 are with force field
perturbation. From (74) with permission).

features can be built into training robots, such as those pro-
viding immediate feedback about movement errors as well as
delayed rewards, for example by collecting points or virtual money.
VR can provide an excellent framework for reward presentation.
Reward regions in the brain have been proposed to contribute
to motor skill learning in an animal model via dopaminergic
pathways (86). Recent studies in healthy humans have suggested
that primary motor cortex, which participates in motor learn-
ing, also responds to rewarding of successful behavior – increased
reward was correlated with greater paired-pulse inhibition using
TMS (87). Furthermore, motor skill learning when performed in
positive-reward conditions led to a prolonged long-term retention
of a motor memory, whereas neutral or punishment-related skill
learning did not (88). Hence, any strategy that enhances reward
signals for correct movement sequences via VR or other addi-
tional technologies during robot-mediated therapy may have a
clinical benefit. In summary, adding VR to robot-mediated ther-
apy remains to be explored both in terms of neuroplasticity and
clinical application. Additionally, the type of visual stimuli used in
VR-robot environments requires further investigation.

ELEMENT 4: INTERFACING THE BRAIN WITH A ROBOTIC
DEVICE
The idea of using a combination of a BMI and robots for rehabili-
tation has been explored in several recent studies and is justified by
the absence of rehabilitation therapies for paralyzed and severely
impaired stroke patients. These patients cannot benefit from exist-
ing therapy since residual movement ability is generally necessary.

Rehabilitation robotic devices hold the potential to bridge the gap
between the intention to move (i.e., in the CNS) and actual move-
ment of an orthosis or robot device without the need of a limb
(89–91). In this section, we deal with neurological patients only,
as the fundamental development of BMI systems is outside the
perspective scope. However, feasibility studies on healthy subjects
are often required initially to investigate synthetic and neurophys-
iological artifacts when linking the brain of the BMI-user and
movements of a limb or robot (40).

Stroke patients can acquire control over a hand orthosis (open-
ing/closing of the hand) by volitionally modulating sensorimotor
frequency-dependent rhythms in the lesioned hemisphere. While
most of the patients were able to learn controlling the orthosis via
the BMI, clinical scales used to measure hand function showed no
improvement after training (92). In another study, two groups of
sub-acute stroke patients who received either standardized robotic
training or BMI-driven robot training demonstrated the ability
to improve performance by using motor imagery in the ipsile-
sional motor cortex (93). A single case study reported recovery
of a severely affected chronic stroke patient using a combina-
tion of BMI-robot therapy and physiotherapy (94). Functional
and anatomical neural correlates of functional clinical outcome
measures of recovery were evaluated in a multimodal imag-
ing approach, whereby increased lateralization of neural activity
occurred in the ipsilesional hemisphere and white matter re-
organization occurred in the ipsilesional corticospinal tract (94).
The effectiveness of brain-robot interfaces in stroke rehabilita-
tion may be improved by “closing the feedback loop,” whereby
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haptic feedback enables ipsilesional sensorimotor loops to be re-
activated (95). Interestingly, the contralesional hemisphere can
also be activated during attempted reaching tasks in severely
affected chronic stroke patients (96). This suggests that several
brain regions have the capability to interact with a robot-effector
and the injured brain region can be “bypassed” (97). This would
be a good example of how robot based therapeutic design can
be built on an understanding of principles of neuroplasticity and
the functional connectivity between several brain regions during
recovery from stroke. For example, a recent study demonstrated
that the motor imagery component of brain-robot interface train-
ing can augment changes in functional connectivity in chronic
stroke patients beyond that induced solely by robot-assisted ther-
apy (98). Lastly, a very recent controlled study proved the efficacy
of a rehabilitation paradigm using BMI and behavioral physio-
therapy in chronic stroke patients, closing the loop between brain
signals related to movement intention and that same movement
via a BMI controlled robotic orthosis (99). In this double-blind
feasibility study, 32 chronic stroke severely paralyzed patients
(without residual finger extension) received 18 training sessions.
One group received contingent BMI-training: ipsilesional cortical-
desynchronization was linked to movements of a robotic orthosis
fixed to the paralyzed limb. The control group (sham) received
the same training, but the movements of the orthotic device
were randomized and independent of cortical desynchronization.
Both groups received identical behavioral physiotherapy after

every BMI-session. The experimental group showed a signifi-
cant improvement in Fugl-Meyer upper limb motor scores, BMI
control, increased muscle activity, and control in the paralyzed
hand and arm and lateralization of brain activation toward the
ipsilesional hemisphere when compared to the control group.

In summary, this rapidly expanding field is yielding signifi-
cant methodological steps forward in the design of upper and
lower limb rehabilitation using BMI with robots or other hybrid
approaches such as acquired self-control of brain activity (12,
50, 100, 101). The neurophysiological mechanisms, measured for
example with TMS, underpinning motor improvement; the role of
neuroplasticity, and the clinical value of these combined therapy
approaches remain to be fully explored.

CRITICAL SUMMARY OF THE POTENTIAL FOR
ROBOT-INDUCED NEUROPLASTICITY IN NEUROLOGICAL
RECOVERY FROM INJURY
The use of robot-mediated therapy for augmenting recovery from
neurological injury is now becoming more attractive as evidence
for cost effectiveness of robot-mediated therapy is becoming
stronger (9, 102). As robot device use increases, it is likely that
an increasing range of therapy strategies will be designed [see Ref.
(35) for examples]. The incorporation of neuroimaging and mon-
itoring of neurophysiology alongside robot-mediated therapy is in
its infancy in comparison (one example of kinematic analysis is
shown in Figure 4). Nevertheless, there is some suggestion that

FIGURE 4 | Robot-mediated perturbations can be used to evaluate acute
stroke patient motor performance in a “holding” task. The patient is
instructed to hold the joystick in the middle of a computer screen and the
robot exerts “pulling” forces to the joystick (see also Figure 1D). This acute
stroke patient undertook 20, 1 h therapy sessions, each including ∼1000
robot-assisted reaches to peripheral targets on a computer screen in different
directions. The ability to hold the joystick in a central position whilst the robot
applied “pulling” forces in different directions, was measured before (red

traces; RRA3 first) and after (green traces; RRA3 fifth) the robot-assisted
therapy program. The overall x -y position error (top panel) was significantly
reduced after robot-assisted therapy toward that measured in healthy subjects
(gray traces; HS2 first and second). Note that position holding performance
was direction-specific in this patient. The kinematic improvement in position
holding was the result of increases in kinetic force production (bottom panel)
and also the rate of force production (UP) and relaxation (DOWN; middle
panel) toward that of healthy subjects. From Ref. (117) with permission.
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changes in neural activation and functional connectivity can be
associated with robot-mediated movement and therapy.

PARADOXES TO RESOLVE IN ROBOT-INDUCED
NEUROPLASTICITY
However, critically assessing the evidence for neuroplasticity
induced by robot use has highlighted several large gaps in
our knowledge and some paradoxes that should be addressed
(Table 1).

The first paradox is that whilst robot-assisted therapy is the
most frequently robot-based intervention for neurological injury,
we know little about the neural correlates of this type of move-
ment (41, 42) and even less on whether an assistance control
strategy induces neuroplasticity per se (42, 43, 48, 49). It could
be argued that assisting movements (i.e., similar to passively mov-
ing the limb) might require less neural activation than actively
engaging with a voluntary effort to move a limb, even when it
is not possible to move it. Certainly, passive movement elicits a
lower neural activation “intensity” and altered regional pattern
compared to active movement or motor imagery of the same type
of task in stroke patients; note this was not the case in healthy
subjects performing the same task and thus translating healthy to
neurological concepts warrants caution (103).

The second paradox is that whilst we know a significant amount
about the neural correlates of motor learning and neuroplasticity
induced by robot-mediated perturbations in healthy subjects, this
type of robot usage is rarely used in neurological therapy (71). The
neuroplasticity in response to adaptation to robot perturbations
of movement can be substantial and widespread. Importantly,
recently this type of neuroplasticity induced by motor adapta-
tion was demonstrated to be long lasting even at the single neuron
level (104). Future work is required to assess whether robot pertur-
bation type therapy induces neuroplastic changes which correlate
with clinical outcome.

The third paradox is that whilst cortico-striatal neural activa-
tion is modulated during and after robot perturbing motor adap-
tation in healthy subjects (66) and reward circuits may be involved
in motor skill learning (86, 88), the impact of motivation/reward
on neuroplasticity during robot-based motor adaptation is not
known in either healthy subjects or in neurological patients.
This might be important to consider, because there is a grow-
ing development of autonomous control of robot-related therapy
characteristics (e.g., level of force used; type of assistance and
so on) as home-based robot therapy becomes more probable
(105–109). Increasingly, the human-robot interaction will require
bi-directional input in terms of the patient being able to achieve
goals/rewards to maintain high adherence to therapy whilst using
the robot on the one hand and the robot being driven optimally
by patient performance on the other.

The fourth paradox involves the interaction of brain and robot
without the need for an actuating human limb. Using brain signals
to drive a robot device directly to undertake everyday tasks and to
induce motor rehabilitation is feasible following severe stroke (99,
110, 111). The changes that occur in neuronal cell tuning prop-
erties and firing co-variance, spike timing across neural networks,
and spectral changes during the period of learning how to drive
the robot by thought or movement intention alone, suggest that

Table 1 | Levels of evidence for neuroplasticity in robot-assisted

therapy and robot motor learning employing various elements.

Robot-assisted therapy Robot motor learning

Assistance Low Low

Perturbation Low High

Reward Low Low

Brain-machine interface Low Low

neuroplasticity occurs (112). However, it could be that there is a
substantial change in neural output over a prolonged time “prac-
ticing” the specific task such that the same neuron groups become
resistant to learning other new tasks (or their tuned responses that
drive the robot task in the first instance suffer from interference).
Learning different types of robot-mediated motor perturbations
certainly demonstrate patterns of interference which degrade per-
formance and rather rapidly so (113, 114); thus BMI induced
re-organization might inhibit/interfere with learning future new
tasks if the re-organization becomes too “entrenched” in neural
circuits involved in movement. Long-term studies of BMI use to
study possible neuroplastic changes are required to answer these
questions.

CONCLUSION
There are several large gaps in our knowledge on the neural cor-
relates of effective robot-mediated therapy (Table 1). The rapid
advances in robot design, but more importantly neuroimaging
techniques compatible with robotics (e.g., Figure 1) will cat-
alyze the next steps in understanding the role of robot-mediated
neuroplasticity in successful recovery from brain injury.

Robots are more than aids for or simply replacements of ther-
apists to deliver movement therapy. From a technical perspective,
robots can be excellent research tools, because they provide ways
to standardize rehabilitative training, to precisely monitor recov-
ery of motor function in patients [Figure 4; (62, 115–117)] and to
control protocols for subjective human influence. The concepts
described in this perspective suggest future work for develop-
ing training methods grounded in neurophysiological principles
that can be delivered by robotic devices to optimally stimulate
neuroplastic processes and learning in the CNS. Most likely no
single concept will be the single solution for all patients. Rather
combinations will provide a highly individualized training that
is delivered in a repetitive and standardized fashion, for example
tDCS and robot-mediated therapy (63). This will produce robot-
based assessment measures that are comparable across patients
with different motor disorders or at different time points of their
lifespan (e.g., childhood vs. adult; (118)) in the clinic and at
home (119).
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