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No consensus has been reached on the mode of action of electroconvulsive treatment
(ECT). We suggest that two features may aid in the delineation of the involved mecha-
nisms. First, when effective, ECT would be likely to affect brain functions that are typically
altered in its primary recipient group, people with severe depression. Central among these
are the frontal and temporal lobes, the hypothalamus-pituitary-adrenal (HPA) stress axis,
and the mesocorticolimbic dopamine system. Second, the involved mechanisms should
be affected for a time period that matches the average endurance of clinical effects, which
is indicated to be several days to a few weeks.To identify effects upon frontal and temporal
lobe functioning we reviewed human studies using EEG, PET, SPECT, and fMRI. Effects
upon the HPA axis and the dopamine system were assessed by reviewing both human and
animal studies.The EEG studies indicate that ECT decelerates neural activity in the frontal
and temporal lobes (increased delta and theta wave activity) for weeks to months. Compa-
rable findings are reported from PET and SPECT studies, with reduced cerebral blood flow
(functional deactivation) for weeks to months after treatment. The EEG deceleration and
functional deactivation following ECT are statistically associated with reduced depression
scores. FMRI studies indicate that ECT flattens the pattern of activation and deactivation
that is associated with cognitive task performance and alters cortical functional connectiv-
ity in the ultra slow frequency range. A common finding from human and animal studies
is that ECT acutely activates both the HPA axis and the dopamine system. In considering
this evidence, we hypothesize that ECT affects the brain in a similar manner as severe
stress or brain trauma which activates the HPA axis and the dopamine system and may
compromise frontotemporal functions.

Keywords: electroconvulsive treatment, ECT, EEG, brain imaging, frontal lobes, temporal lobes, HPA axis, dopamine

INTRODUCTION
More than 70 years after its inception, no consensus has been
reached on the mode of action of electroconvulsive treatment
(ECT). We suggest that two features may guide the delineation of
the involved mechanisms. First, the changes induced by ECT upon
the brain systems that typically are altered in its primary recipient
group, people with severe depression, and, second, the duration
of clinical effects as measured by lowered scores on depression
instruments.

Severe depression is characterized by pathophysiological het-
erogeneity; however, changes in four brain regions or systems
are typical. First, the frontal lobes, with compromised activity
in dorsal regions that include the anterior cingulate and lat-
eral prefrontal cortical (PFC) areas, as well as altered processing
of emotional stimuli in ventral and orbital frontal cortex (1,
2). Volumetric reductions have been described in dorsolateral,
orbitofrontal, and ventral frontal cortex, including the subgen-
ual anterior cingulate (3). Second, temporal lobe changes are
seen in depression, including volume reductions, and functional
alterations in the hippocampus and parahippocampal gyrus and
hyperactivity of the amygdala (4, 5). Recent studies indicate that

the structural changes in frontotemporal regions are associated
with altered functional connectivity (FC), often increases, in ultra-
slow frequency bands (<0.025 Hz) (6). Third, altered structure
and functioning is seen in the hypothalamic-pituitary-adrenal
(HPA) stress axis, including hypersensitivity to stressors, chron-
ically elevated levels of stress hormones and impaired feedback
regulation by frontotemporal structures (7). Fourth, etiologically,
the HPA axis alterations are consistent with stress-exposure as
a significant factor in severe depression (7). Stress activates the
mesocorticolimbic dopamine system as well as the HPA axis.
Since dopamine is central to several functions that are impaired
in depression, including pleasure, motivation, and concentration,
dopamine function is also thought to be impaired in this disor-
der (8). The last decade, increased focus has been on the role of
glutamate-GABA processes in the neurobiological changes seen in
depression (9). We hypothesize that antidepressive effects of ECT
reflect the impact of the intervention upon these systems that are
altered in depression.

A temporal framework in the search for mechanisms of ECT is
provided by the immediate remission rates and degree of enduring
clinical effects and relapse rates in patients with severe depression.
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Remission rates for severely depressed patients with and with-
out previous pharmacotherapy failure were reported at 48.0 and
64.9% respectively in a recent meta-analysis of seven studies (10).
Another recent meta-analysis of six studies reported an overall
remission rate of 50.9% in patients with severe depression (11)
and a review of seven studies that compared ECT with transcra-
nial magnetic stimulation in these patients reported a remission
rate of 52% for ECT (12). Overall relapse rates in ECT respon-
ders tend to be high, reported as 15–20% 1 week after treatment
and 50–80% after 6 months, commonly leading to continuation
ECT and post-treatment pharmacotherapy (13, 14). Based on the
remission and relapse rates, after 6 months, between 10 and 35%
of patients can be expected to exhibit enduring beneficial effects
from an ECT series. This estimate, however, is based on stud-
ies where ECT was not compared to simulated ECT (SECT). A
consequence is the possible overestimation of effects that are actu-
ally due to the induced seizures rather than to non-specific or
placebo-effects. Reviews of studies that compared ECT with SECT
indicate only small immediate benefits for ECT and no differ-
ence from 1 month and onward post-treatment (15–17). In the
SECT-controlled studies, the score reduction on rating scales in
the SECT groups was typically between 25 and 50%, indicating
the influence of placebo-effects, the procedures provided during
an ECT course and spontaneous recovery from depression (16).
Based on the remission and relapse rates and the placebo find-
ings, effects induced by the seizures would be expected to typically
endure for weeks to a few months, suggesting a similar temporal
framework for the underlying mechanisms.

Our aim is to describe and integrate, in terms of a hypoth-
esis, the available evidence on the effects of ECT upon frontal
and temporal lobe activity, the HPA stress axis, the dopamine
system, and glutamate/GABA functioning, and the association
between these effects and changes in depression. Using keywords
and combined-word strategies, multiple computer searchers were
conducted in PubMed, Google Scholar, and Medline for relevant
articles published in English from 1939 to June 2013.

FRONTOTEMPORAL EFFECTS
The impact of ECT upon frontotemporal activity has been inves-
tigated by both electroencephalography (EEG) and brain imaging
techniques, in recent decades mainly by positron emission tomog-
raphy (PET) and single photon emission computed tomography
(SPECT), but also by functional magnetic resonance imaging
(fMRI). We focus on studies that reported changes in brain activity
level from before to after ECT as evidenced by increases (which
we term activation) and decreases (deactivation) in the EEG power
spectrum and cerebral blood flow. We also briefly summarize find-
ings from recent fMRI studies that assessed functional network
connectivity following ECT.

ELECTROENCEPHALOGRAPHIC STUDIES
Electroencephalography has been used to study the effects of ECT
since the late 1930’s. The first four decades of ECT-EEG research
consistently observed that the immediate effect of the interven-
tion is a strong rise in brain activation level and the induction
of a generalized epileptiform tonic-clonic seizure, followed by a
brief post-ictal silent period with a flat or greatly diminished EEG.

Subsequent to the post-ictal silence is the rise over the cerebral cor-
tex during the next hours of slow-wave activity in the 4–8 Hz theta
range and particularly in the 1–4 Hz delta range, developing pro-
gressively over the ECT course, indicating the slowing of neural
network activity (18, 19). The progressive inter-ictal slowing is
most prominent in the frontal cortex, with more recent studies
showing a slowing also in the temporal lobes (20). Pacella et al.
(21) noted already in 1942 (p. 382),“It is a fact that the patient usu-
ally shows clinical improvement while the electroencephalogram
becomes progressively ‘pathologic’.”

Regarding the duration and clinical relevance of the EEG slow-
ing, the majority of studies, particularly before 1970, used impre-
cise methods to score, analyze, and report the changes following
ECT, including visual ratings of the EEG, with a lack of statisti-
cal data presentation. Some studies used alternative procedures to
obtain the EEG, such as hyperventilation, with questionable rele-
vance (22, 23). In a 1980 review, Weiner considered the duration
of EEG slowing based on analysis of 21 studies and summarized
(p. 224), “This slowing typically disappears by a few weeks to a
few months following completion of the ECT course but in rare
cases may persist for longer periods.” Weiner (24) noted that in 11
of the 21 studies, EEG slowing was observed for “a few” or “most”
patients at “several weeks,” with only two studies not finding this.
Seven studies had found the slowing to persist for at least 3 months
for a subset of the participants. Weiner added that the slowing
of the EEG after ECT is similar to that seen in a range of CNS
impairments, including toxic and metabolic encephalopathies and
delirium following epileptic attacks.

Among the most methodologically sound studies published
after Weiner’s (24) review, Kolbeinsson and Petursson (25) sub-
mitted 17 depressed patients to a mean of 6.8 unilateral ECT
treatments. At baseline a subgroup of nine patients who had pre-
viously received ECT (a mean of 26 months ago) was observed
to have an elevated slow-wave activity as compared to the ECT
naive. In the participant group as a whole, 1 week after treatment
end, an increase was observed in theta wave activity, with a cor-
responding decrease in the faster alpha spectrum (8–13 Hz). In a
more recent study, Sackeim et al. (26, 27) administered one of four
types of ECT (right unilateral or bilateral and low and high dosage
for each of these) to 52 in-patients with major depression, with
the EEG acquired at baseline and within 1 week (mean 4.7 days)
following treatment end. At the follow up point, an increase was
observed in the delta and theta spectra in all but the patients who
received low dose right unilateral ECT. The slowing was reported
to follow an anteroposterior gradient, with the most pronounced
increases in theta and delta observed in the frontal cortex. Sackeim
et al. (26) also found increased theta in the right anterotemporal
and left posterotemporal regions.

In the past 20 years, only one methodologically sophisticated
study appears to have analyzed the association between clinical
response and changes in the EEG during follow up. This was Sack-
eim et al. (26) where slowing was observed in the frontal and
temporal lobes within 1 week after treatment. At this time, slowing
in the delta spectrum in prefrontal regions was significantly associ-
ated with clinical response, independent of ECT type. This echoed
an early finding (28) of an association between the build-up of
delta activity 25–31 h following individual treatments during the
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ECT course (inter-ictally) and clinical response as measured the
week after treatment end. Max Fink (29) (p. 1439) summarized
the significance of the EEG slowing: “Failure to elicit interseizure
EEG slowing during an ECT course is associated with poor clinical
outcome. The development of EEG slow-wave activity is a neces-
sary part of the ECT process, and when these changes are absent,
so too are the clinical benefits.”

Studies that attained EEGs during the seizures (ictally) have
consistently observed that the slow-wave activity has already devel-
oped by this time. A recent review (30) identified 18 studies from
1992 onward of the relation between ictal EEG characteristics and
subsequent clinical response. Every study reported some predic-
tive value of the slowing. For example, Folkerts (31) reported that
the speed of clinical response during a series was associated with
both the speed of onset of slowing and the degree of slowing.
The strongest association has been reported for ictal slowing in
the frontal cortex, especially with respect to delta activity (32,
33). Perera et al. (33) observed a strong association between both
the power and the coherence of frontal delta activity and clini-
cal response during the treatment series as well as at follow up.
The delta wave characteristics could adequately classify 80.6% of
remitters during the treatment course and 78.3% of remitters at
follow up.

BRAIN IMAGING STUDIES
In a PET study (34), activity levels during seizures were observed
to increase in the brain stem reticular formation, the basal ganglia,
midbrain, amygdala, thalamus, hypothalamus, and the inferior
frontal, parietal and temporal cortices. After seizure termination,
decreases were observed in the anterior cingulate and dorsolat-
eral and medial frontal cortices, consistent with the EEG studies.
An exception to the post-ECT decrease was the thalamus that
remained more activated than before ECT, in line with contribu-
tions from this structure in slow rhythmic activities in the cerebral
cortex.

Among the published brain imaging studies of ECT, only a sub-
set has compared absolute changes in the brain before and after
treatment. Several other studies have focused, instead, on relative
changes in regions of interest as compared to more global changes
in the brain (35–41). In these latter studies, regional metabolic
changes were assessed using normalization techniques with the
same cerebral hemisphere, the cerebellum, or the entire brain as
reference point. The results from these studies relate to the devia-
tion in certain regions from the general deactivation that has been
reported in the literature. This type of finding is omitted here since
it is not informative of our main research question, the absolute
changes in regional brain activation levels due to ECT.

Three potentially relevant studies were excluded on method-
ological grounds. These were two studies that assessed baseline
metabolic rates after the participants had been administered ECT
(42, 43) and one study that measured baseline and follow up EEG
in too few subjects (three) to have at least a minimal protection
against random error and type 2 statistical error (44).

Findings that are generally consistent with the EEG literature
have been reported from the remaining eight PET and SPECT
studies of absolute changes in brain activation level by ECT. Two
studies had a particularly strong power to detect changes, Nobler

et al. (45) who included 50 depressed patients and Silfverskiold et
al. (46) who studied 32 patients with depression, dysthymia, and
bipolar disorders. Both studies reported significant decreases in
the frontal lobes after ECT, Nobler et al. (45) a mean of 4.6 days
following treatment and Silfverskiold et al. (46) 3 months after
treatment. Nobler et al. (45) also observed significant decreases
bilaterally in the anterior temporal lobes. Reduced activity levels
at follow up also were reported in another study by Nobler et al.
(47) with decreases in several frontal cortical regions 5 days after
ECT in 10 subjects as well as decreases in the left medial temporal
lobe, which correlated with the number of ECTs given (r = 0.73).
Rosenberg et al. (48) observed frontal cortical deactivation 1 day
post-ECT in 10 subjects. Three smaller studies included four to six
participants. Henry et al. (49) reported deactivation in 14 anterior
and posterior frontal regions 2–7 days after treatment. Volkow et
al. (50) reported a trend for frontal decrease. Yatham et al. (51)
found no significant change in any brain region 1 week after ECT
in six patients.

Three of the studies that analyzed changes in absolute meta-
bolic rates also investigated the association with clinical response
following ECT. Henry et al. (49) observed that 2–7 days after treat-
ment end reduced depression scores correlated with deactivation
in the right PFC (r = 0.82), left posterior frontal region (r = 0.84),
and right parietal lobes (r = 0.83) in six patients. Nobler et al.
(45) reported an association between reduced depression scores
and decreased activation level, both globally and in the bilat-
eral frontal and anterior temporal cortices in their 50 patients
1 week after treatment. Likewise, Segawa et al. (52) who studied
10 patients, reported correlations ranging from r = 0.84 to 0.92
between improved depression scores and deactivation in the fron-
topolar gyrus, superior temporal gyrus and amygdala at a mean
follow up time of 11 days after ECT.

Comparable effects of ECT were reported from an fMRI study
by Beall et al. (53). These researchers assessed regional brain acti-
vation changes from 1 week before to 1–3 weeks after treatment
for six patients with major depression, who performed a working
memory task and a passive task of viewing emotional pictures.
Before ECT, each of the two tasks led to a combined pattern of
increased and decreased activation across regions of the brain.
After ECT the changes in activation and deactivation patterns
elicited by the tasks were generally reduced. Regions that were
activated by the tasks showed less activation and regions that
were deactivated became less deactivated following as compared to
before ECT. Regarding whole-brain changes, the authors reported
a slight decrease in activation for the working memory task and a
dramatic decrease in activation for the emotional picture viewing
task following ECT.

FUNCTIONAL CONNECTIVITY
The effects of ECT upon FC in the delta through gamma spectra,
the frequency domains most typically held to underlie neuropsy-
chological functioning, appear not to have been studied. However,
recent studies have reported changes following ECT in resting
state FC in the ultra slow frequency range (cycles that last more
than 8 s) (53–55). One of these, Perrin et al., observed a reduced
FC in the ultra slow activity range within the left dorsolateral
PFC and that correlated with therapeutic response. The authors
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assumed the reduced FC to correct an augmented FC associated
with depression (56) but also to contribute to cognitive deficits
following treatment. The two other studies found increased FC
following ECT; Beall et al. (53) between the right dorsolateral PFC
and the anterior cingulate and Abbott et al. (55) between the poste-
rior default mode network and the left dorsolateral PFC as well as
the dorsomedial PFC. This disparity of findings, combined with
the lack of studies of FC in faster frequency ranges, the lack of
considering changes in FC in the context of the frontal cortical
deactivation and deceleration by ECT, and the controversy regard-
ing the functional role of ultra slow FC (57), makes it premature
to conclude about the meaning of the observed signal changes.

HPA STRESS AXIS
An ECT series strongly and repetitively activates the HPA stress
axis. Measures of hormone activity in human recipients con-
sistently show the significant increase after ECT in adrenocorti-
cotrophin (ACTH), cortisol, and arginin vasopressin in the blood
and saliva (58–61). The increases are abrupt and appear to nor-
malize to baseline levels within 1 h post-treatment in the human
studies (61, 62). More invasive rodent studies indicate a longer
lasting increase in ACTH, with sustained elevated levels at least
24 h post-treatment (63). The increased ACTH and cortisol lev-
els are more pronounced with high as compared to low inten-
sity stimulation, particularly with the degree to which stimulus
intensity exceeds the individual seizure threshold (61). In con-
trast, the level of hypothalamic corticotrophin releasing hormone
(CRH) appears to be less affected by ECT, although rodent stud-
ies indicate an increase in CHR mRNA levels in the parvocellular
area of the paraventricular nucleus at the heart of the HPA axis
(60, 64, 65).

Takano et al. (34), using PET, observed a significant activa-
tion effect in the hypothalamus during ECT induced seizures as
compared to baseline. Studies in rodents have demonstrated that
the hypothalamic activation includes the paraventricular nucleus
(66). The paraventricular nucleus activation is sufficiently strong
to be accompanied by angiogenetic growth processes, includ-
ing endothelial cell proliferation in the vasculature (66). The
endothelian cell proliferation is particularly strong in a subset of
hypothalamic nuclei that includes the parvocellular part of the
paraventricular nucleus which produces CRH. The parvocellular
angiogenesis correlates with the neural activation level caused by
ECT and is a likely response to increased metabolic demand (66).

The dexamethasone challenge test has been used in an array
of studies to investigate changes in HPA repression status after
ECT (67, 68). The majority of studies have found a reduced cor-
tisol response to dexamethasone in a proportion of patients after
as compared to before treatment, by most authors interpreted as
the regain of HPA suppression capabilities by the forebrain and
normalization of functioning (67, 68).

DOPAMINE SYSTEM
Human studies indicate that ECT leads to dopamine system
activation. Rudorfer et al. (69) reported an increased level of
homovanillic acid (HVA), a measure of dopamine turn-over, in
the cerebrospinal fluid (CRF) following ECT. Nikisch and Mathe
(70) similarly reported a 60–70% increase of HVA in the CRF after

a completed ECT series. That ECT triggers the dopamine system
also is indicated by a human PET study (49). Although finding
reduced activation in all assessed brain regions after as compared
to before ECT, these researchers observed a relatively less decrease
(that is, a relative increase) in regions with known dopaminer-
gic innervation – the caudate nucleus and substantia nigra of the
upper brain stem. This is consistent with a study of rhesus mon-
keys in which dopamine activity in the striatum was found to be
increased by ECT and to last for 10 days following treatment end
(71).

In rodents, repeated electroconvulsive stimulation (ECS) has
consistently been found to enhance brain dopamine function (72).
Stenfors et al. (73) found 30% increased dopamine concentrations
in the frontal cortex and occipital cortex following six ECS treat-
ments over 2 weeks. West and Weiss (74) reported that ECS in
rats increased both spontaneous and bursting dopamine neuron
activity in the ventral tegmentum. Moreover, a higher dose of ECS
in rats (e.g., bilateral rather than unilateral) has been observed to
lead to an increased dopamine release (75).

The impact upon the dopamine system is corroborated by find-
ings of dopamine receptor changes. This includes upregulation of
D1 and D3 receptors in the striatum as evidenced in preclinical
studies (76, 77) and the possible decrease in D2 receptor binding
in the rostral anterior cingulate in humans (78).

GLUTAMATE-GABA FUNCTIONING
Several studies, primarily those using magnetic resonance spec-
troscopy, have indicated reduced levels of glutamate and glutamine
(the glial cell version of glutamate) in the anterior cingulate, dor-
solateral PFC, and dorsal and ventral medial PFC in depression
(79–84). Changes in glutamate/glutamine appear to vary with
severity and course of illness progression, with a negative cor-
relation indicated between frontal cortical glutamate levels and
depression severity level (80) and with decreased levels in later
phases as compared to early phases in regions such as the ven-
tromedial PFC (including the ACC) and the hippocampus (85,
86). Moreover, GABA levels may be reduced in frontal regions
such as the dorsomedial/dorsal anterolateral PFC in depression,
although the findings are not consistent (82, 87, 88). Investiga-
tions of plasma and CRF levels have found reduced GABA levels
in acutely depressed patients (89).

Two human studies reported increased glutamate levels in dor-
solateral PFC and anterior cingulate shortly after an ECT series
(80, 90), while a third found no changes in the frontal cortex
and anterior cingulate following a mean of 20 ECTs (81). Con-
flicting results also arise from preclinical studies, with increased
and decreased glutamate levels in the hippocampus shortly after
ECS (91, 92). Regarding GABA, Esel et al. (93) reported increased
serum levels in a human study acutely following an ECT series.
In rodents, ECS has been reported to increase GABA levels in a
range of brain regions, with the nucleus accumbens as one pos-
sible exception (94). Increased GABA following ECT would be in
line with increased glutamate levels since glutamate is the precur-
sor of the formation of GABA (92). Since glutamate and GABA
exerts their functional effects in conjunction, a more informative
picture may result from studies that have assessed effects of ECS
upon the glutamate to GABA ratio. Two studies using rat models

Frontiers in Psychiatry | Neuropsychiatric Imaging and Stimulation August 2013 | Volume 4 | Article 94 | 4

http://www.frontiersin.org/Neuropsychiatric_Imaging_and_Stimulation
http://www.frontiersin.org/Neuropsychiatric_Imaging_and_Stimulation/archive


 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fosse and Read ECT mechanisms

of depression found that ECS down-regulated the glutamate to
GABA ratio in the hippocampus (95, 96). A decreased glutamate to
GABA ratio by ECT would be in line with the anticonvulsant the-
ory of Sackeim et al. (97) where a relatively increased GABAergic
tone is postulated.

DISCUSSION
The literature we have reviewed indicates, first, that ECT reduces
activity in the frontal cortex and temporal lobes for weeks to
months, indicated by EEG-deceleration with increased theta and
delta wave activity and findings from brain imaging studies of
functional deactivation. Second, ECT acutely activates the HPA
stress axis, an activation that is sufficiently strong to be accom-
panied by structural changes in the command center of the par-
aventricular hypothalamic nucleus. Third, the mesocorticolimbic
dopamine system is activated, which may last at least for sev-
eral days. Fourth, ECT impacts upon glutamate-GABA processes
in frontotemporal networks, including acute activations and a
reduced glutamate to GABA ratio. That ECT has these effects is in
line with previously suggested models focusing on frontotempo-
ral deficits (26, 45), anticonvulsive effects (98), and diencephalon
processes (99, 100).

Based on its pattern of brain effects, we suggest that ECT can be
conceptualized and understood as severe stress or brain trauma.
The most direct support for this conceptualization is the strong
activation of the HPA stress axis. Also consistent with this notion
is the activation of the dopamine system by ECT since dopamine
system engagement is a typical correlate to HPA activation during
stress (101). Moreover, the impaired frontotemporal functioning
after ECT can be understood as a stress effect. ECT induced fron-
totemporal impairment may result both from direct cortical effects
of the current and from activation of the HPA axis. As for the
latter, highly elevated, enduring, or repetitive HPA axis activation
and stress hormone secretion generally are associated with the dis-
mantling of frontotemporal activity, including the deactivation of
frontal cortical and hippocampal regions and disruption of mem-
ory and its underlying component processes such as long term
potentiation (LTP) (7, 102–104). The association between HPA
axis activation, cognitive deficits, and frontotemporal changes is
seen also within groups of patients with depression (7). This is
consistent with reports of a correlation between learning impair-
ment and maximum post-ECT cortisol and ACTH levels, and with
findings that ECT disrupts hippocampal LTP (58, 105–108).

Changes in glutamate and GABA levels following ECT may
be in line with those seen after stress and trauma. Severe psy-
chosocial stress and glucocorticoid administration acutely increase
glutamate and GABA levels in frontotemporal regions, which is
consistent with similar increases reported from several but not all
ECT studies (109, 110). Chronic stress, in contrast, is indicated
to reduce glutamate and GABA levels over time, in line with the
reductions seen in depression (86). Informed by the stress litera-
ture, a differentiation between acute and enduring effects may help
explain the conflicting reports of ECT effects upon these amino
acids. At the same time, a central component of the changes that
ECT induce may be down-regulating of the glutamate to GABA
ratio, leading to increased inhibitory tone, cortical silencing, and
reduced cortical excitability (92, 111). This type of change may give
rise to the increased threshold for convulsions that Sackeim (98)

has hypothesized to result from ECT. Notably, rodent studies indi-
cate that also repeated stress increases the convulsion threshold
(112). Finally, glutamate – GABA functioning is central to FC, and
changes in FC by ECT may be consistent with a stress or trauma
impact. For example, mild brain injury is typically associated with
reduced FC (113, 114).

The notion that effects of ECT can be equaled to severe stress or
trauma may seem to contrast with the oft suggested view that the
intervention reestablishes both normal HPA axis suppression and
hippocampal structure and functionality, the latter through den-
date gyrus neurogenesis and cell proliferation (115, 116). However,
also these types of changes may be consistent with the impact of
trauma. First, a reduced cortisol response to dexamethasone fol-
lowing ECT may not reflect the regain of suppressor status but
instead a progression of HPA axis dysfunction. Interpretation of
results from the dexamethasone challenge test is problematic since
the test here is given within the context of a treatment that sig-
nificantly activates the HPA axis. A part of this is the profound
changes induced by ECT in the paraventricular hypothalamus.
Both this and the general administration of dexamethasone in
the HPA activating context of ECT may contribute to lowered
post dexamethasone cortisol levels, providing alternative expla-
nations than restored suppressor status (117). It is of particular
concern that chronic stressors may move the HPA axis from an
over-responsive system to one that becomes under-responsive
or non-responsive, in line with exhaustion (118, 119). Second,
psychosocial stress is generally found to inhibit hippocampal neu-
rogenesis, and enriched environments increase it. Neurogenesis,
however, also is a typical consequence of brain trauma such as
ischemia, hemorrhage, and, of particular relevance, status epilep-
ticus (120–122). Indeed, the cascade of vascular growth, neuroge-
nesis, and cell proliferation that is seen in the hippocampus after
ECT also are commonly observed after brain insults. These may be
restorative processes that protect against neuronal loss following
trauma (120, 122).

To sum up, ECT seems to share several features with those
of severe psychosocial stress, including acute effects such as HPA
axis and dopamine system activation and subsequent effects
that include reduced frontotemporal activation, blocked LTP, and
impaired memory, in addition to possibly exhausted HPA axis reg-
ulation. Moreover, ECT may share several effects with brain insult
as well, and we have noted vascular growth, neurogenesis, and cell
proliferation. Hence, we suggest that ECT represents a particular,
perhaps unique type of severe stressor or trauma (Table 1).

DYNAMICS OF ANTIDEPRESSIVE EFFECTS
To delineate the specific dynamics behind experience-changing,
antidepressive effects of ECT naturally is complicated by the
only rudimentary, contemporary understanding of the neural
basis of consciousness. However, changed activity in frontotem-
poral networks is likely to be central since their deactivation and
deceleration are associated with therapeutic response and since
dose response associations have been documented between the
magnitude of the electric stimulus above seizure threshold and
each of frontotemporal impairment, cognitive disturbances, and
therapeutic response (26, 123–128). Other observations that are
consistent with this view is the match between the several weeks
duration of post-ECT frontotemporal changes and the duration of
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Table 1 | Suggested similarities between effects of ECT and severe stress or brain trauma.

Process ECT Severe stress/brain trauma

Frontal cortical activation Acute activation followed by deactivation Acute activation followed by deactivation

Frontal cortical EEG Acute acceleration followed by deceleration Acute acceleration followed by deceleration

Hippocampus Acute activation followed by deactivation Acute activation followed by deactivation

HPA axis Acute activation, possibly followed by exhaustion Acute activation, possible exhaustion with chronic stress

Dopamine system Activation Activation

Long term potentiation Saturated/blocked Inhibited

Neurogenesis Enhanced Decreased by psychosocial stress but enhanced by status

epilepticus and trauma such as ischemia and hemorrhage

Glutamate and GABA Acute increases, possible decreases with time and

decreased glutamate to GABA ratio

Acute increases, decreases with time and decreased

glutamate to GABA ratio

Threshold for convulsions Increased Increased

therapeutic effects, and that the decline in cognitive impairment
seen with modern ultra brief stimulation, a less intense stimula-
tion paradigm, is accompanied by increased relapse rates (129).
Hence, the frontotemporal impairment and its associated cogni-
tive changes may not be irrelevant side effects of ECT but instead
parts of the therapeutic effect dynamics, as suggested previously by
others (26, 45, 54). A therapeutic role for frontotemporal impair-
ment is not inconsistent with the view that cognitive function is
involved in depression and mood in general (130).

The regional deactivation and deceleration observed in brain
imaging and EEG studies may reflect a reduced glutamate to GABA
ratio (98) and thus altered activity in local neural ensembles of
“projection cells” (often pyramidal cells) and interneurons that
primarily use these neurotransmitters (131). In functional states,
glutamate – GABA neural ensembles are characterized by a bal-
anced activity in the gamma spectrum and above (30–150 Hz),
providing a “ready state” which is fine-tuned into pathway spe-
cific patterned firing during information processing (132). Global
and regional alterations in glutamate – GABA functioning result-
ing from the impact of ECT are likely to be accompanied by
both emotional and cognitive changes. Among the involved fea-
tures could be impaired autobiographical memory, the most noted
cognitive deficit following ECT, that for example may give a dis-
tance to, or relief from, memories of distressing events and dis-
rupt the recall bias for negative events that is seen in depression
(130). Other changes in cognitive functions that may contribute
to altered subjectivity and mood within the noted framework
include diminished monitoring capabilities of performance and
the sensory environment,diminished spatial memory, and changes
in a number of aspects that are associated with depression, for
example ruminative thoughts, negative interpretation bias and
misrepresentations of self-worth. The changes that are relevant
to mood are likely to include those of altered FC, although the
nature of the latter following ECT currently is unclear and also
probably complex.

Hypothalamus-pituitary-adrenal activation and stress hor-
mone secretion following ECT may affect mood in various
ways, such as by modifying frontotemporal functions and
by interacting with the mesocorticolombic dopamine system.
Dopamine signaling is thought to affect consciousness by mod-
ulating cortico-basal ganglia-thalamic loops, with a central end

mechanism being the impact upon glutamate-GABA processes in
frontal cortical and temporal lobe regions (131). Several authors
have suggested that dopamine system activation by ECT con-
tributes to reduced depressive and anxious mood and increased
positive mood, motivation, concentration, and attention, in line
with the general effects of dopamine (133, 134). Within this sce-
nario, frontotemporal effects of HPA axis activation may be closely
associated with the dopamine system effects, as indicated for exam-
ple by the role of glucocorticoid receptors in increasing PFC
dopamine efflux following acute stress (135). In addition, based on
rodent studies it can be suggested that stress-induced dopamine
release is a part of the mechanism behind increased threshold for
convulsions and associated frontotemporal impairment following
repeated ECTs (112). Further effects upon mood may result from
functional correlates of elevated dopamine activity that are typi-
cally seen in stressful situations, such as mental avoidance (escape
from threat, motivation toward safety) and reduced pain sensitiv-
ity (136). Either of these possibilities is supported by the ability
to relieve symptoms of anhedonia in severely depressed patients
by direct stimulation of the nucleus accumbens, a key structure in
the mesocorticolimbic dopamine system (137).

CONCLUSION AND FURTHER STUDIES
We suggest that the temporarily improved scores on depression
instruments following ECT reflect the combination of frontal and
temporal lobe functional impairments and activation of the HPA
axis and the mesocorticolimbic dopamine system. These effects
as well as other detailed changes observed in structures such as
the hippocampus appear consistent with those typically seen after
severe stress-exposure and/or brain trauma. Hence, we conjecture
that central to the effect mechanisms of ECT is the impact upon
the brain in a manner that is consistent with a unique type of
severe stress-exposure or trauma.

To test our hypothesis of mechanisms of action, future ani-
mal and human studies may focus on the association between
improved scores on depression instruments and changes in
the component processes that we have delineated. Since each
of the component processes may show considerable individual
variability, and since the effect of changes in one process may
depend on changes in the other processes, measuring changes in
several components within the same study may be particularly
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fruitful. The notion of trauma and stress oriented effects by ECT
also may be tested by investigating whether other types of acute
and enduring changes than those we have addressed here and
that typically are associated with stress and trauma are seen fol-
lowing ECT. A reverse strategy naturally is to attempt to block
the various component processes that we have outlined and to
investigate the consequence for therapeutic response, a strat-
egy that already is implied in the use of alternative physical

treatments such as transcranial magnetic stimulation. In addi-
tion, since studies that have compared ECT to SECT indi-
cate the involvement of substantial placebo-effects, future stud-
ies should attempt to control for and partition out placebo-
effects in order to reduce noise in the data. Psychological fac-
tors such as patient beliefs that ECT will help may interact with
neurobiological changes instigated by the treatment to determine
mood effects.
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