

Applicability of Neural
Networks to Software

Security

A thesis submitted in partial fulfilment
of the requirements for the degree of:

 Master of Philosophy

By

Adebiyi A B

0415051

Supervisors
Dr Sin Wee Lee

Dr Haris Mouratidis
Dr Chris Imafidon

UNIVERSITY OF EAST LONDON

SCHOOL OF Architecture, COMPUTING
AND ENGINEERING

1

Acknowledgement
First and foremost, I would like to express my profound gratitude to God Almighty for making it possible

for me get this far. To Him alone be all the glory and honour forever. I also appreciate all the efforts of

Director of studies Dr Sin Wee Lee and co-supervisors, Dr Harris Mouratidis and Dr Chris Imafidon. I am

indeed very grateful for all your contributions to this research work. I also thank Juliette Lewars and

Johnnes Arreymbi for all their support rendered during this research work.

My appreciation goes to Prof Leslie Smith of the University of Stirling for the constructive critique given

on this work and his valuable advice during the course of this research work. I also thank Bryan Parno of

Microsoft for reviewing this work and also suggesting what to do to further progress this research. My

gratitude also goes to Prof David Al-dabass of the University of Cambridge for accepting this research

work to be presented in the 14th International Conference on Computer Modelling and Simulation in

Cambridge. I also thank Charlotte Hall for her keen interest in this research and for all her effort in

sending part of this research work to reviewers who have given their critique. I am indeed very grateful.

I will also like to thank Comrade Shittu Amitolu, consultant to the Osun stae governor, for his keen

interest in the implementation of this research work in Osun state, Nigeria and for his invitation to

present a proposal based on this research work to the delegates of the Osun state government during

their visit to UEL. I consider this opportunity to contribute to the development of ICT in Osun state a

great privilege which I very much appreciate.

I thank all my brothers and sisters and my parents Caroline and Peter Adebiyi, for all their support

during the course of this research work, I am eternally grateful for all what you have done. Lastly to my

wife Funke and children Erimi and Asepe, thank you for holding on and staying by me. I could not have

made it this far without all the sacrifice you have made for me. Thank you, God bless you.

Adebiyi Adetunji

2

Abstract

Software design flaws account for 50% software security vulnerability today. As attacks on

vulnerable software continue to increase, the demand for secure software is also increasing

thereby putting software developers under more pressure. This is especially true for those

developers whose primary aim is to produce their software quickly under tight deadlines in order

to release it into the market early. While there are many tools focusing on implementation

problems during software development lifecycle (SDLC), this does not provide a complete

solution in resolving software security problems. Therefore designing software with security in

mind will go a long way in developing secure software. However, most of the current approaches

used for evaluating software designs require the involvement of security experts because many

software developers often lack the required expertise in making their software secure.

In this research the current approaches used in integrating security at the design level is

discussed and a new method of evaluating software design using neural network as evaluation

tool is presented. With the aid of the proposed neural network tool, this research found out that

software design scenarios can be matched to attack patterns that identify the security flaws in the

design scenarios. Also, with the proposed neural network tool this research found out that the

identified attack patterns can be matched to security patterns that can provide mitigation to the

threat in the attack pattern.

3

Table of Contents
Acknowledgement... 1

Abstract .. 2

Table of Contents .. 3

List of Tables ... 4

List of Figures .. 6

Publications ... 8

Chapter 1. Introduction to Thesis .. 9

Chapter 2. Literature Review ... 22

Chapter 3. Software Design Evaluation by Neural Network .. 50

Chapter 4. Implementation of Neural Network I .. 70

Chapter 5. Implementation of Neural Network II .. 91

Chapter 6. Result and Discussion ... 113

Chapter 7. Conclusion.. 128

References .. 132

Appendix ... 140

Appendix I ... 140

Appendix II .. 141

Appendix III ... 144

Appendix IV ... 147

Appendix V .. 148

Appendix VI ... 151

Appendix VII .. 157

4

List of Tables

Table2. 1 Quality of Performance of TSP Projects.. 35

Table 3. 1: List of Security patterns .. 59

Table 3. 2: Security Patterns matched with Attack Patterns ... 60

Table 4. 1: List of Attack Attributes .. 75

Table 4. 2: List of Attack Components .. 78

Table 4. 3:Sample of Pre-processed Training Data from Attack Scenario .. 81

Table 4. 4: Sample of Training data after encoding .. 81

Table 4. 5:Sample of data input in Neural Network .. 82

Table 4. 6:Training and Test data sets .. 85

Table 4. 7:MSE of Neural Network I with SCG Applied.. 86

Table 4. 8: MSE of Neural Network I with RP Applied ... 87

Table 4. 9:Number of Epoch used in Neural Network I with SCG Applied ... 88

Table 4. 10: Number of Epoch used in Neural Network I with RP Applied ... 89

Table 5. 1: Classification of Attack Pattern ... 92

Table 5. 2: Security Design Pattern by Steel, et.al (2005) .. 93

Table 5. 3: Security Design Patterns by Blakley, et.al (2004) ... 93

Table 5. 4: Security Design Patterns by Kienzle and Elder (2003) ... 94

Table 5. 5: Attributes of Regularly Expressed Attack Patterns .. 95

Table 5. 6: Classification of Security Design Pattern by Blakley, et.al (2004) ... 95

Table 5. 7: Classification of Security Design Pattern by Kienzle and Elder (2003) 96

Table 5. 8: Classification of Security Design Pattern by Steel, et.al (2005).. 97

Table 5. 9: Sample of Pre-processed training data from attack pattern .. 98

Table 5. 10: Sample of training data after encoding ... 98

Table 5. 11: Sample of input data into neural network ... 98

Table 5. 12: Security Design Patterns Group 1.. 99

Table 5. 13:Security Design Patterns Group 2 .. 100

Table 5. 14: Security Design Patterns Group 3.. 100

Table 5. 15:Security Design Patterns Group 4 .. 101

Table 5. 16: Security Design Patterns Group 5.. 102

Table 5. 17: Security Design Patterns Group 6.. 103

Table 5. 18:MSE of Neural Network II with SCG Applied ... 106

Table 5. 19: MSE of Neural Network I with RP Applied ... 107

Table 5. 20:Number of Epoch used in Neural Network II with SCG Applied .. 108

Table 5. 21: Number of Epoch used in Neural Network II with RP Applied .. 109

Table 5. 22:Training Time for Neural Network II with SCG Applied ... 110

Table 5. 23:Training Time for Neural Network II with RP Applied ... 111

5

Table 6. 1:Hypothesis proposed for comparing performance of neural network l 113

Table 6. 2:Average of MSE Results of neural network implemented with SCG and RP 114

Table 6. 3:ANOVA Table for Average MSE Result for Neural Network l ... 114

Table 6. 4:Hypothesis proposed for comparing performance of neural network II 114

Table 6. 5:Average of MSE Results of Neural Network II implemented with SCG and RP 115

Table 6. 6:ANOVA Table for Average MSE Result for Neural Network II .. 115

Table 6. 7: Actual and expected output of Neural Network I .. 115

Table 6. 8:Actual and expected output of Neural Network I with input from design scenario 118

Table 6. 9: Actual and expected output of Neural Network II ... 119

Table 6. 10: Attack attributes for scenario 1 .. 122

Table 6. 11:Attributes of identified attack pattern in scenario 1 ... 123

Table 6. 12:Attributes for scenario 2 .. 123

Table 6. 13:Attributes of identified attack pattern in scenario 2 ... 124

Table 6. 14:Attributes for scenario 3 .. 125

6

List of Figures
Figure 1. 1: Real Cost of Software Security ... 19

Figure 2. 1: Microsoft Threat Modelling ... 26

Figure 2. 2: Sample of System Design ... 29

Figure 2. 3: TSP-Secure Methodology for Defect Removal (Davis, 2005)... 34

Figure 2. 4: Structure of a Neuron .. 44

Figure 2. 5: Feedforward Network ... 46

Figure 2. 6: Feedback Network .. 46

Figure 3. 1: Model Overview .. 51

Figure 3. 2: Information on CVE Details database showing attack on webmail 53

Figure 3. 3: Information on Security Focus database showing attack on webmail 53

Figure 3. 4: Information on Security Tracker database showing attack on webmail. 54

Figure 3. 5: Neural Network 1 Evaluation process steps ... 58

Figure 4. 1: Pie chart of data collected ... 72

Figure 4. 2: Analysis of Attack on Webmail using secure troopos approach .. 73

Figure 4. 3: Sequence diagram on Webmail ... 74

Figure 4. 4: Concept map showing interaction between the groups in which the attack components has

been categorized ... 78

Figure 4. 5: The Neural Network Architecture .. 83

Figure 4. 6: Plot of MSE for Neural Network I during training ... 86

Figure 4. 7: MSE of Neural Network I with SCG Applied.. 87

Figure 4. 8: MSE of Neural Network I with RP Applied .. 88

Figure 4. 9: Number of Epoch used in Neural Network I with SCG Applied ... 89

Figure 4. 10: Number of Epoch used in Neural Network I with RP applied .. 90

Figure 5. 1: Security Design Patterns Group 1 .. 99

Figure 5. 2: Security Design Patterns Group 2 .. 100

Figure 5. 3: Security Design Patterns Group 3 .. 101

Figure 5. 4: Security Design Patterns Group 4 .. 102

Figure 5. 5: Security Design Patterns Group 5 .. 103

Figure 5. 6: Security Design Patterns Group 6 .. 104

Figure 5. 7: Plot of MSE for Neural Network II .. 106

Figure 5. 8: Number of Epoch used in Neural Network I with SCG Applied .. 107

Figure 5. 9:MSE of Neural Network II with RP Applied.. 108

Figure 5. 10:Number of Epoch used in Neural Network I with SCG Applied .. 109

Figure 5. 11: Number of Epoch used in Neural Network II with RP Applied... 110

Figure 5. 12: Training Time for Neural Network II with SCG Applied ... 110

Figure 5. 13: Training Time for Neural Network II with RP Applied ... 111

7

Figure 6. 1: Actual vs. Expected output of Network 1 of NN I 117

Figure 6. 2: Actual vs. Expected output of Network 2 of NN I 117

Figure 6. 3: Actual vs. Expected output result of design Scenarios evaluated by NNI 119

Figure 6. 4: Actual vs. Expected output of NN II 120

Figure 6. 5: Class diagram of online shopping portal 121

Figure 6. 6: Sequence diagram for product selection 122

Figure 6. 7: Sequence diagram for shopping cart submission 124

Figure 6. 8: Sequence diagram for customer login 125

8

Publications
1. Adebiyi, A., et.al. (2011), ‘Applicability of Neural Network to Software Secur ity’, Abstract

accepted for the ACT 2012 conference, London, United Kingdom

2. Adebiyi, A., et.al., (2012), ‘Evaluation of Software Design using Neural Network’, In the

proceedings of the 8th International Conference on Web Information Systems and

Technologies (WEBIST), Porto, Portugal

3. Adebiyi, A., et.al., (2012), ‘Matching Attack pattern to Security Pattern using Neural

Network’, In the proceedings of the European Conference on Information Warfare and

Security (ECIW-2012), Paris, France

4. Adebiyi A., et.al., (2012), ‘Applicability of Neural Network to Software Security’ In

proceedings of the UKSim 14th International Conference on Computer Modelling and

Simulation, Cambridge, United Kingdom, pp19-24

5. Adebiyi, A. et.al (2012), Using Neural Network for Security Analysis in Software Design, ,

In the proceedings of the WORLDCOMP’12 conference, Las Vegas, USA.

6. Adebiyi, A., et.al (2012), ‘Security assessment of software design using neural network’

International Journal of Advanced Research in Artificial Intelligence (IJARAI), Vol.1.4,

pp1-6

7. Adebiyi, A., et.al (2012), ‘Using neural network to propose solutions to threats in attack

pattern’ International Journal of Soft Computing and Software Engineering (JSCSE)

Vol.3.1, pp1-11

8. Adebiyi, A., et.al (2012), ‘Security evaluation of online shopping cart using neural

network’ International Journal of Computer Application (IJCA), Vol.6.2, pp83 -93

9. Adebiyi, A., et.al (2013), ‘A neural network based security tool for analysing software

design’ Paper submitted and accepted for the 4th Doctoral Conference of Computing,

Electrical and Industrial Systems (DoCEIS) 2013.

10. Adebiyi, A., et.al (2013), ‘Resolving threats in attack patterns by security patterns using

neural network. Abstract accepted for the International Conference on Information and

Intelligent Systems (ICIIS) 2013.

9

Chapter 1. Introduction to Thesis

1.1 Introduction

 As software applications continue to expand into all areas of our business and private lives,

they have become an essential part of our day to day lives. It is now common to find software

applications running our airplanes, communication and transportation systems, bank

transactions, business supply chains, medical equipment, house appliances and enterprise

management systems. Therefore, it is very important that software function properly in the

production field today given the dependence of our society on technology.

 In essence, confidentiality, availability, reliability, safety and integrity are essential properties

that must be at the core of software applications today. Many companies investing heavily on

software applications now take into serious consideration these software properties in order to

ensure that they are not investing into software riddled with security vulnerabilities that will

pose a great risk to their business. As a result, the quality of software applications is becoming

more and more important in the software industry as software consumers demand for reliable

software that will continue to function correctly and meet the security demands of today.

 This is no surprise because the rate at which software vulnerabilities are discovered and

exploited currently is quite alarming. Several software vulnerabilities are being published each

week and many business organisations are paying dearly for poor quality software. The

Computer Security Institute (CSI) 2007 security survey report revealed that the cost of

cybercrime has doubled in the past year. It confirmed that companies reported average annual

losses of $350,424 up sharply from the $168, 000 reported in the previous year (Richardson,

2007).

 An earlier report by The National Institute of Standards and Technology (NIST) in 2002

revealed that poor quality software cost the US economy $59.5 billion per year (Cusumano,

2004). In the last decade, the damage reported due to Code Red virus in 2001 was estimated to

be at $2.62 billion and that of Melissa virus in 1999 to be $1.1 billion. The year 2000 Love bug

was also estimated to be at $8.75 billion (Erbshloe, 2002). Also, the cost of software security

breaches in the US for 2011 was estimated to be $48 billion (Jaspreet, 2012). The financial loss

due to Sony security breach was estimated to be $171 million for new protection, legal cost,

fines, and customer support programmes (James, 2011). Notable among Microsoft financial

losses due a security flaws is the $200 million loss during its campaign for .Net because of the

discovery of a security hole in Visual C++ .Net (Telang and Wattal, 2004).

10

 Apart from the financial losses reported by companies due to software vulnerabilities, they are

also negatively affected when the software vulnerabilities are publicly disclosed. This in turn

erodes their customers’ confidence, create an in-ability to attract and retain customers and

further cripple their reputation as they may face class-action lawsuits. To aggravate this issue,

David Rice an instructor at the SANS Institute in an interview with Forbes.com proposed that a

vulnerability tax should be created on software based on the number and severity of its security

flaws in order to force software industries to mend its buggy ways (Greenberg, 2008).

 Software security flaws have been attributed to defects unintentionally introduced during

SDLC especially during the design and the implementation phase. Therefore, it is now an on-

going challenge for the software industries to look into ways through which software defects

can be reduced during SDLC in order to produce more secured software. In view of this, Martyn

Thomas, Professor of Software Engineering at Oxford University commented that “the only way

to reduce costs and to keep projects within plans is to dramatically reduce the error rate at

every stage in the development.” By doing this he said that “the product is not only cheaper,

but higher quality: more secure, more reliable, and easier to maintain” (Croxford, 2005).

1.2. Motivation
Security vulnerabilities have been discovered in from time to time in various software

applications after they are deployed. Consequently software security holes have become

common and this problem is growing. Malicious attackers have been taken advantage of these

vulnerabilities to break into critical systems of cooperate bodies causing havoc with great

consequences. In dealing with this problem the underlying factors causing software

vulnerabilities making software insecurity need to be addressed. It has been argued that

security flaws pose the most concern among the factors making software insecure. According

to Noopur Davis, the analysis of Software Engineering Institute (SEI) on programs produced by

thousands of developers reveals that even experienced developers inject numerous defects

during SDLC. In line with this view, Frank Piessens stated that “analysis of causes of actual

incidents shows that many software vulnerabilities can be traced back to a relatively small

number of causes: software developers are making the same mistakes over and over again”

(Piessens, 2002). These mistakes constitute the security flaws which cause software insecurity.

 In the requirement phase of the SDLC for example, Frank stated that software flaws can be

introduced because of the absence of risk analysis where software are developed without any

security issues in mind or when there is a biased risk analysis (i.e. when risk analysis is carried

out by only one stakeholder of a given information system) or due to the presence of

unanticipated risks. Davis further affirmed that design and architectural flaws such as

inadequate authentication, invalid authorization, incorrect use of cryptography, failure to

11

protect data, and failure to carefully partition applications are causes of software insecurity. In

a broader view, Alan Paller the director of research at the SAN Institute in his comment on the

causes of the vulnerabilities stated that it is a result of poor coding, testing and sloppy software

engineering (Davis, 2005). Thus, at every phase of SDLC, security flaws can be introduced into

software products.

 To therefore ensure that software is built securely, Software security has been suggested as a

way for building more secured software by integrating security into every phase of software

development Lifecycle (SDLC). This approach views security as an emergent property of the

software and much effort is dedicated into weaving security into the software all through SDLC

(McGraw, 2003)

 Reportedly, 50% of security problems in software products today have been found to be

design flaws (McGraw, 2006). Design-level vulnerability has been described as the hardest

category of software defect to contend with. Moreover, it requires great expertise to ascertain

whether or not a software application has design-level flaws which makes it difficult to find and

automate (Hoglund and McGraw, 2004). To further buttress this fact, Paul (2011) applying

Pareto principle to software security, states that 80% of software defects arises from the 20%

of software design flaws. Therefore by finding and fixing the flaws found during the design

stage Paul argued that this will considerably mitigate the threat on the software being

developed.

 In line with this argument many authors have argued that it is much better to find and fix flaws

during the early phase of software development because it is more costly to fix the problem at

a late stage of software development and much more costly when the software has been

deployed (Spampinato et.al, 2008, Mockel and Abdallah, 2011, Gegick and Williams, 2007). To

ensure that security is integrated during the design phase of SDLC, many techniques such as

architectural risk analysis, threat modelling, attack trees, attack patterns, use of security tools

and other approaches have been proposed (see chapter 2 for further discussion).

 However, due to limitations of these techniques, the main motivation for investigating the

applicability of neural network to software security is highlighted below in the aims and

objective of this research work.

 Aim

This research aims at investigating how neural networks can be applied as a tool to evaluate

Software designs with regards to its security and also propose possible solutions to the

identified flaws in the software design. This will enable software developers to have a

12

feedback on the security of their software design before the implementation phase of the

software development lifecycle.

 Objectives

 To identify current techniques used for integrating security into software design and
their limitations

 To design and train a neural network to match attack patterns to software design
scenarios as a means of identifying security flaws in the design scenarios.

 To propose possible solutions to the security flaws identified in design scenarios by
training a second neural network to match possible security patterns that can mitigate
the threat in the attack pattern matched to the software design scenario.

 To analyse the performance of the trained neural networks by observing their mean
square error (MSE), number of epochs and training time.

 To find out the optimal performance of the neural networks by conducting statistical
analysis on the performance of the networks when different training optimization are
applied to the networks.

 To carry out a validation study to investigate the ability of the neural networks in
matching attack patterns to software design scenarios and in matching security design
patterns to attack patterns.

 To compare the proposed neural network approach with current approaches used in
integrating security software design during SDLC and also carry a case study to
demonstrate how the proposed approach can aid software developers to in integrating
security into software design.

Method
 This thesis documents the creation and design of a neural network that can be used as a tool
for the evaluating software design for security flaws and also suggest possible mitigation.
Previous researches have shown various ways in which neural network has been used in the
area of security. Neural network based applications has been used successfully in the area of
network security such as intrusion detection systems (IDS), misuse detection systems and
firewalls (Ahmad et. al, 2006, Bivens et.al, 2002). Also in the field of application security, neural
network has been proposed to be used as virus detection system and authentication system
(Cannady, 1998, Joseph et.al, 2009). The success of neural network in its usage in these
applications and its ability makes it a good candidate for predicting security flaws from software
design.

 With this in mind, this research adopts the creation and design approach which is based on the
following five process steps

 Awareness of Problem: This step of the creation and design process deals with the

recognition of the problem which may come from multiple sources. This could be from

previous researches which have identified areas of further research or from studying allied

13

discipline where there is an opportunity for new findings that would lead to generation of

knowledge. In this research, the problem that has been identified by previous research as

mentioned earlier is that 50% of security flaws have been identified to be as a result of

software design flaws. To address this problem, this research investigates further into two

research work carried out by Michael Gegick and Laurie Williams (2006) and Wiesauer and

Sametinger (2009). The outcome of this process step is a proposal for a new research

endeavour (Vaishnavi and Kuechler, 2007)

 Suggestion: During this process step, suggestions are offered on how the problem identified

in the first step is to be addressed based on current knowledge or theories in the domain

area where the problem has been identified. This step has been described as a creative leap

from curiosity in which tentative ideas offering new functionality are envisioned to provide

solution (Oates, 2006). The suggestion this research is offering to address the problem of

software design flaws is finding how Neural Networks can be used to evaluate software

design in order to help software designers reduce the flaws in their software designs to a

minimum before they are implemented. This will in turn reduce the security flaws in the

software products. The knowledge generated during this step is the tentative design of the

solution.

 Development: The tentative design proposed in the previous process step is implemented

during this process step. The way the tentative design will be implemented depends on the

nature of the artefact to be developed. In order to design the Neural Network suggested as

a solution to the problem identified in this research, various issues will be considered. Some

of these issues includes deciding the best architecture of the Neural Network (e.g. Feed-

forward network or Feed-back network), how the neural network is to be trained to

recognise flaws in software design and how the data used for the training data is going to

be collected and processed. The development of the artefact in this step is the contribution

to knowledge.

 Evaluation: The artefact developed either fully or partially is evaluated during this process

step based on its expected functionality specified in the suggestion (i.e. the second process

step) to examine its performance and observe any deviation from expectations. In this

research work, the experimental approach will be used to evaluate the developed Neural

Network (This is discussed further below). The outcome of the experiment during this stage

results into new knowledge.

 Conclusion: At this final step of the design process, the result of findings during the process

steps are written up and the knowledge gained are identified (Oates, 2006). The knowledge

gained according to Vaisgnavi and Kuechler, 2007 can be categorized as “firm” meaning

“facts that have been learned and can be repeatedly applied or behaviour that can be

14

repeatedly invoked” or as “loose ends” that is “anomalous behaviour that defies

explanation and may well serve as the subject of further research.”

 For training the neural network to evaluate the security of software design, data was collected
from various online vulnerability databases (see chapter 3 for further discussion) and this
formed the primary method of data collection. Secondary data was collected from various
research works discussed in chapter four and five and from the review of literature on software
security and neural networks. Information from the literature review provides an evaluation on
what has been done in previous research and also open us questions which needs to be
addressed.

1.3. Common Security Flaws in Software Design
 Many software vulnerabilities have been linked to flaws in the software design. Preventing
these flaws from being introduced during the design phase of SDLC will help software
developers make their software more secure and save them from making mistakes that will be
very costly to correct if the flaws are detected at a later stage of the SDLC. Some of the flaws
attributed to software design include:

1.3.1 Weak Access Control
 Access control is the way in which an application grants access to its content and functions to
different users (Hu, Ferraiolo, Kuhn, 2006). Granting and revoking privileges is a typical way of
providing access control. Privileges are described as what allows specific users to access the
application to do only what they are allowed to do (Connolly and Begg, 2005) When
authorization of users of a software application is not done properly, this could lead to various
security breaches. This design flaw allows users or systems to perform actions that they should
not perform. The presence of security flaw is not difficult to discover and exploit. All it would
take the attacker is to request for access to functions or content which normally he does not
have any privilege to access. If he is granted access, he would have discovered a flaw in the
access control that can be exploited and the consequence can be disastrous (CWE, 2013). In this
case, the attacker would have access to unauthorized content that is not properly protected
which he may be able to change or delete, execute arbitrary code or manipulate the application
especially if he is granted an administrator (Open Web Application Security Project (OWASP),
2010).

1.3.2 Weak Authentication
 Most applications use log-on passwords to authenticate users. However, a flaw in the
authentication routine could be exploited by attackers to impersonate legitimate users (OWASP
2010). This flaw could be in the form of exposed account passwords or session IDs. The attack
on Gawker’s database system in 2010 is an example of an attack that exploits this vulnerability
as the firm had no password policies for her internal users (Chickowski, 2010).

15

1.3.3 Failure to Validate Input
The lack of input validation in a software system also jeopardizes its security. This is a security
weakness in which an application allows foreign inputs which subverts the legitimate use of a
subsystem (Pomraning, 2005). Due to this, a malicious attacker taking the advantage of an un-
enforced and unchecked assumption an application makes about its inputs could inject
malicious code into the application. The purpose of the injected code typically is to bypass or
modify the originally intended functionality of the application. This attack becomes more
disastrous if the functionality bypassed is the security of the application. Attacks exploiting this
vulnerability could crash or confuse the software application and it could also enable attackers
to gain access to sensitive information or manipulate the database maliciously. Web-based
applications are noted mostly to be liable to these attacks as they need to collect data from
users. The flaw occurs when user supplied data are accepted without proper validation. This is
abused by attackers who supply malicious data that could contain code, arbitrary query strings
or commands to be processed further by the application, which assumes the input is valid
(OWASP, 2010) (Jones, 2010).

 For different applications, this flaw is exploited by different attacks. Notable among them is
the SQL injection which is particularly widespread and dangerous. It is a technique used to
exploit web sites that construct SQL statements from user-supplier inputs to query backend
database systems. In this attack, an unsuspecting web application blindly accepts malicious
database queries which are then forwarded to the database to be executed with the privileges
of the application (Shulman, 2006). In this way an attacker can gain unrestricted access to an
entire database and can therefore corrupt or destroy the content of the database. This flaw is
also exploited by the cross-site scripting (XSS) attack which is also known as the HTML Injection.
This occurs when an attacker send a malicious script in form of a script through web
applications to different end user. By running malicious script, the attacker can access any
cookie, session token or any other critical information on the end user’s browser.

1.3.4 Weak Encryption
 Software applications are also open to attacks when the encryption algorithms used for
protecting their data are not strong enough. This weakness could be exploited by attackers
using brute force to access the data. The OWASP report on the top ten application security risks
of 2010 states that ‘many web applications do not properly protect sensitive data, such as
credit cards, SSNs, and authentication credentials, with appropriate encryption or hashing.
Attackers may steal or modify such weakly protected data to conduct identity theft, credit card
fraud, or other crimes’ (OWASP 2010). Another factor contributing to the cause of this flaw is
that sometimes the encryption keys are not generated and stored securely. Attackers find the
keys easily and compromise all the data that has been protected. According to Open Web
Application Security Project (OWASP) a few areas in which developers make mistake leading to
insecure storage includes the following
• Failure to encrypt critical data
• Insecure storage of keys, certificates, and passwords
• Improper storage of secrets in memory
• Poor sources of randomness

16

• Poor choice of algorithm
• Attempting to invent a new encryption algorithm
• Failure to include support for encryption key changes and other required maintenance

procedures

1.4. Challenges in Integrating Security into Software Design
 There are various challenges facing the integration of security into software design. Some of

these challenges underpin the reason why neural network has been proposed as tool for

integrating security into software design. These challenges are discussed below.

1.4.1 Need for Security Experts

 There is need for security expert to be involved during SDLC for all the current approaches

used to develop secure software application. For instance, conducting architectural risk analysis

requires the involvement of security experts who will help in identifying the threats to the

software technology, review the software for any security issues, investigate how easy it is to

compromise the software’s security, analyse the impact on assets and business goals should the

security of the software be compromised and recommend mitigating measures to either

eliminate the risk identified or reduce it to a minimum (McGraw 2006).

 As a result, the existing gap between security professionals and software developers is a

challenge that must be addressed in order to integrate security into software during SDLC. The

disconnection between this two has led to software development efforts lacking critical

understanding of current technical security risks (Pemmaraju and McGraw, 2000). And as the

environment in which software are deployed becomes more hostile, ignoring security during

SDLC means releasing software with many security defects that could have been avoided.

 One of the reasons for this gap is because the goals for the two groups are different. The

developers, trained to think of functions and features, focus on the functionality of their

product and on-schedule delivery. Moreover, security is often thought of as a feature and not

as an emergent system property and developers who intend to integrate security into their

products often lack the requisite knowledge required in doing so (McGraw 2002). This critical

knowledge is possessed by security professionals who have over the years observed system

intrusions, dealt with malicious attackers and have studied software vulnerabilities in minute

detail because this has been their focus. However, because few security experts are software

developers themselves, their security solutions tend to be limited to reactive techniques such

as installing software patches and maintaining firewalls (Pemmaraju and McGraw, 2000).

 Recognising that developers lack the knowledge and training necessary to assess and improve

the reliability, safety and security of software products, some of the current approaches

17

includes training for developers on security issues. Even then, security experts outside the

development team still need to be involved during the software development especially when

very sensitive software systems is being developed or when new technologies is being used.

External security experts will also help in finding any assumptions that has being made about

the target system that may pose security risks (Wiseman, 2006). As the skills of both software

developers and security experts both complement each other in building more secure software

application it is therefore very important to find avenues for interdisciplinary cooperation

between the two groups (Kenneth and McGraw, 2005).

1.4.2 Process issues

 To integrate security into the software design most of the current approaches uses a high level

architectural design of the target system in order to allow the developers to view the overall

component of the system and know how they are connected and how they work. However, this

conflict with some software development processes like extreme programming (XP) that sees

no need for spending time up front thinking through the architectural design of the target

system before the production coding begins. This is because the architecture of the system is

taken to evolve spontaneously as the code base evolves (Stephens, 2002) and it is also claimed

that the code is the design (McGraw, 2006).

 Any software development process similar to XP that spend little or no time on developing a

comprehensible high level architectural design of the target system is therefore likely to come

up with software design flaws which may not be discovered until the software is deployed. The

unit tests conducted during the SDLC may catch the code-level bug but not the wrongness of

the design (Stephens, 2002). This problem is exacerbated when the development process

migrate to the often repeating ‘code-test-debug’ phase which could potentially introduce lots

of bugs as dependent code is broken when changes are made to the code during each iteration

and this could in turn lead to severe cost and timescale overruns (Croxford, 2005).

 The high level architectural design of the target system is very important if security is to be

integrated into the software design. This is because it encompasses everything about the target

system and also documents both the functional and non-functional design decision (Stephens,

2002). At the implementation phase, the big picture of the whole system which the high level

architectural design provides help the developers to know how the components fit together.

Thus when the unavoidable changes are to be made to the software during development, the

high level architectural design will serve as a roadmap that will help the developers to trace out

the overall impact of such changes so that flaws in the software design can be avoided.

18

1.4.3 Tight budget and time to market constraints

 Tight budget and time to market are other issues that also pose challenge into integrating

security into software. Many times software developers find themselves working under

pressure in fast internet time in order to meet the deadline for releasing their software product

to the market. Integrating security into software during SDLC during such intense pressure in

today’s competitive software market is often seen as too lofty or unattainable and thus a waste

of time and money by development managers. It is also observed that the management of

some software projects have warmed up to software development processes like XP who see

the lack of up-front design as a way of saving money (Stephens, 2002).Therefore software

developers are forced to live within their development manager’s schedule, feature priority and

resource constraints (Pemmaraju, Lord and McGraw, 2000).

 However, from previous research it is argued that maintenance and evolution costs account

up to 90% of software cost (Koskinen, 2003). Also, from a total cost of ownership (TCO) point of

view, by spending more during SDLC to build more secured software reduces the cost of

maintenance and this subsequently lowers the TCO. In this view Gary McGraw the CTO Cigital

Inc stated that “managers who choose to focus all of their attention on minimizing only the

development part of the TCO (often to the detriment of the maintenance part) have a tendency

to create poor software faster (resulting in an exploding TCO); while those managers who

understand the TCO equation properly can let the development expenses rise a little even as

the TCO moves down.” (McGraw, 2008)

 It is also important to note that the maintenance cost is separate from the cost of risks such as

litigation, reputation, brand damage and other risks involved in producing insecure software. As

a result, the development management can indeed estimate the future cost of maintenance

and resolving security flaws after the software has been released and trade this off with early

investment in integrating security into the software during SDLC (McGraw, 2008). A good

reason for this is because resolving software security problems after delivery has been

observed to be 100 times more expensive than finding and resolving them during the

requirement and design phase of SDLC as shown in the chart below (Boehm and Basili, 2001).

This further contributes into reducing the TCO of the software.

19

Figure 1. 1: Real Cost of Software Security (Berg 2007)

 With regards to time to market also, it has been observed that software projects which aim at

producing near defect free software consistently meet their schedule, thereby avoiding the cost

involved with delayed releases (Davis, 2005). Contrary to the views that sees integrating

security into software during SDLC as slowing down time to market, building secure software

given the right level of expertise can sometimes be designed more rapidly than other software

system with little or no security at all (McGraw and Viega, 2001).

1.4.4 Tools and technologies for software design analysis

 Unlike implementation tools, design tools and technologies for automated analysis of software

security at the architectural level has been slow in coming. This is still an area where many

researches are currently being undertaken. Because design-level defects are the hardest

category of defects to deal with, finding them as been particularly hard to automate (Hoglund

and McGraw, 2004). Most of the tools and technologies which are currently available to

support software developers in analysing software design for flaws are not widely in use. For

these reasons finding software flaws during SDLC still require great human expertise.

1.4.5 Massively distributed system

 It is not uncommon today to find complex software applications running on thousands of fat

clients connected simultaneously to banks of central servers in the client-server architecture.

The growth and complexity of software systems today alone already pose security concerns

20

because as software systems become larger, bugs cannot be avoided (McGraw, 2002). This

problem is exacerbated as these complex software systems become massively distributed, with

servers and thousands of users interacting all at the same time. This pushes the limit of

software technology especially with regards to state and time thereby posing a serious

challenge to software security today.

 Security risks arise when the state and time of complex software systems in a distributed

environment become entangled with complex trust models as they share their state among

distributed processors with different level of trustworthiness (Hoglund and McGraw, 2007). For

instance, in transaction based systems which are commonly used in the e-commerce set up; the

functionality state of the system is distributed among many components running on several

servers. Therefore, with the continuous use of massively distributed systems trust models get

more complex. Synchronizing and tracking state will also continue to be an on-going challenge.

 The move to web services such as software oriented architecture (SOA), web 2.0 and web 3.0

all the more increase the potential security risks involved in controlling states over trust

boundaries. As complex software systems are constructed from mashing up data and

functionality all over the web, defining trust boundaries during software design becomes a

more challenging endeavour as it becomes more difficult to tell which data can be trusted and

which piece of functionality will actually do what they say they do (McGraw, 2008). The massive

data mash-up provided by web services on the web poses security concern as they become

more exposed because malicious attackers can take the advantage to falsify data, provide

services that don’t do what they claim and also infiltrate legitimate services. Thus, issues such

as revoking identities, privacy and figuring how to evolve trust over time remain open

challenges (McGraw, 2008).

 Consequently, all these call for serious consideration by software developers during software

design. As client software can misbehave or can be manipulated by malicious users, implicit

trust assumptions has become a serious security risk which must be dealt with at the design

phase. Trust model boundaries for modern software architectures when confused can also

generate security problems especially when there is a misunderstanding of what should trust

what in the models (Hoglund and McGraw, 2007), (Miller, 2008). For instance, trust model

boundaries can become confused when defining trust zones in software systems exhibiting the

n-tier architecture relying on several third party components and programming languages in a

distributed environment (McGraw, 2006). Unfortunately, these are the software technologies

running our banking applications, e-commerce systems, online games and other critical systems

today. And with the move to web services, integrating security into the software design for

these technologies has become even more challenging.

21

1.5. Thesis Overview
 Chapter two covers discussion on previous researches and technologies that are related to this

research work from authoritative sources. To set the background for this research work, much

effort has been dedicated into discussing current approaches used in securing software. The

approaches include the use of security best practices, security oriented software development

methodologies, network Security, application Security, formal methods and security tools.

Discussion on neural networks and its application to areas of security that is related to this

research work is also presented. Chapter three discusses the proposed neural network

approach. The model overview for this research work is presented and each and module of the

model overview is discussed. Chapter four and five demonstrates the implementation of the

proposed neural networks. Demonstration on the data collection, data encoding, the neural

network architecture and training are presented. Chapter six presents the result, analysis and

discussion on the performance of the neural network. A statistical analysis on the performance

of the neural network is also conducted. Chapter seven provides a summary to this research

work and also highlights its benefits and limitations along with suggestion on future work.

1.6. Chapter Summary
 This chapter has provided a general back background to this research work. It was noted that

most security flaws are caused by software design defects and the need for integrating security

in the early phase of SDLC based on the fact that it is cheaper to find and fix the security flaws

at this time has been highlighted. The common security flaws in software design includes: weak

access control, weak authentication, failure to validate input and weak encryption. Some of the

challenges for integrating security into software design were also presented. The creation and

design methodology as has been discussed as the method that will be adopted for the research

work. The process steps in this approach have been presented. In the next chapter, a literature

review will be conducted on the current approaches for integrating security into software

design.

22

Chapter 2. Literature Review

2.1. Introduction
Software insecurity is a big concern to the software industry and to most consumers (Rice,
2007). To resolve the problem, many techniques have been suggested and implemented for
integrating security into software applications during software development and after the
software has been deployed. In this chapter, a literature review is conducted on some of the
techniques used to secure software application during the design phase of the SDLC. Some of
the commonly used techniques for providing security after the software has been deployed are
also reviewed.

2.2. Integrating security into software design
Some of the security vulnerabilities caused by architectural and design defects includes
incorrect use of cryptography, failure to protect data, inadequate authentication, failure to
carefully partition applications and invalid authorization (See chapter 1 for further discussion).
Most of these defects have been attributed to oversight leading to defect types such as
declaration errors, logic errors, loop control errors, conditional expressions errors, failure to
validate input, interface specification errors, configuration errors, and failure to understand
basic security issues (Davis, 2005). In order to integrate security into software design, different
approaches are currently being used in the software industry. Some these approaches are
discussed below.

2.2.1 Architectural Risk Analysis

Architectural risk analysis is used to identify vulnerabilities and threats to a software system at

the design phase of SDLC, which may be malicious or non-malicious in nature. It examines the

preconditions that must be present for the vulnerabilities to be exploited by various threats and

assesses the states that the system may enter after a successful attack on the system. One of

the advantages of architectural risk analysis is that it enables developers to analyse a software

system component by component, tier by tier and environment level by environment level in

order to apply the principles of measuring threats, vulnerabilities and impacts at each level

(McGraw, 2004). This functional decomposition of the system allows for a desktop review of

potential vulnerabilities and also enables the developers to design the high-level architectural

view of the system. Higher-level architectural design is also called the forest-level view and it

allows the developers to see the big picture of the system thereby enabling them to know how

the components are connected and how all the moving parts work (McGraw, 2006). During

architectural risk analysis, the high-level design view is used to consider the following important

factors:

a) The Assets

These are the resources that need to be protected and these could be in form of data, system

components or even a complete system (McGraw, 2004). Traditionally, security practitioners

23

have been concerned about the confidentiality, integrity, availability and auditability of the

assets; however, they also vary in how they are critical in various business organizations (Hope,

Lavenhar and Peterson, 2008). For instance, while confidentiality of the data may be the top

priority to one organization, availability and integrity of data may be the priority of another

organization. For risk analysis to produce good results, the assets that need protection are

identified to ensure proper security measures are put in place to protect them.

b) Threats

These are agents or actors who are the source of danger to the security of the system when

they carry out attacks on the system. The attacks could be in the form of denial of service, SQL

injection or any other form of attack that will eventually compromise the security of the

targeted system. Some of the well-known threats include crackers, criminals, malicious hackers

and disgruntled employees who violate the protection of assets of a system for a variety of

motivations, such as financial gain, prestige, or other motives. Other threats, which are not

conscious entities, such as hardware failures, natural disasters, performance delays and user

errors are also considered during risk analysis. While all the threat categories are considered,

malicious and accidental human activities are mostly considered.

c) Vulnerability

“A vulnerability is a defect or weakness in system security procedures, design, implementation,

or internal controls that can be exercised and result in a security breach or violation of security

policy” (McGraw, 2006). Vulnerability can exist in one or more components that make up a

system and they come in two basic forms, which are:

 Bugs: These are implementation-level problems, such as buffer overflow, leading to security

risks. Bugs result from the failure to implement the software architecture correctly and these

are resolved by fixing the broken lines of code (Hope, Lavenhar and Peterson, 2008).

Automated source code analysis tools are used mainly in this area to help in removing bugs

in the source code.

 Flaws: These are deep-seated failures in the software design that lead to a security risk no

matter how well the software is implemented. As stated earlier, architectural flaws are the

hardest category of software vulnerability to understand and contend with. As a result,

human expertise is required to uncover the flaws.

d) Risk

This is normally calculated as a product of the probability of a threat exploiting a vulnerability

and the impact on the organization (i.e. risk = probability × impact). Some of the factors used to

determine this calculation include: the ease of executing an attack, the motivation and

24

resources of an attacker, the existence of vulnerabilities in a system, and the cost or impact in a

particular business context (McGraw, 2006).

e) Impact

These are the consequences a business organization must face if there is a successful attack on

its software technology by a threat exploiting any vulnerability in the system. This could be

primarily expressed in monetary terms as loss of revenue or in terms of negative effects on the

business organization marketing abilities in the form of damage to reputation, loss of customer

confidence, inability to attract and retain customers, loss of market share and delay or failure in

delivery of services as promised within the service-level agreement (SLA). Secondarily, the

effects of a failing software technology can include increased maintenance cost, increased

customer support costs, longer time to market, impact on legal, regulatory and compliance

matters and higher cost of development (Hope, Lavenhar and Peterson, 2008).

f) Mitigation

“Risk mitigation refers to the process of prioritizing, implementing, and maintaining the

appropriate risk-reducing measures recommended from the risk analysis process.” (Hope,

Lavenhar and Peterson, 2008) Mitigating a risk in a software technology means changing the

software architecture in one way or another in order to make the system attack-resistant

thereby reducing the likelihood or the impact of the risk. Mitigation consists of management,

operational and technical controls prescribed for the software technology with the purpose of

protecting the system’s software architecture, availability, integrity and confidentiality. These

controls may set up either to prevent the risk or to detect the risk when it triggers.

McGraw (2006) presents the architectural risk analysis in three critical steps.

 Attack resistance analysis: This involves the use of known attack information in the form

of a checklist to identify risks in the architecture during risk analysis.

 Ambiguity analysis: This involves the activity needed to discover new risks.

 Weakness analysis: This aims at uncovering weaknesses originating from the use of

external software platforms.

However, it should be noted that conducting architectural risk analysis requires the

involvement of security experts because software developers often lack the knowledge

required to integrate security into SDLC.

There are various risk analysis methodologies for software and these are classified into two

different groups: commercial and standards-based (McGraw, 2006). Standards-based risk

analysis methodologies include:

25

 ASSET (Automated Security Self-Evaluation Tool) from the National Institute on Standard and

Technology (NIST)

 OCTAVE (Operationally Critical Threat, Asset and Vulnerability Evaluation) from the Software

Engineering Institute (SEI)

 COBIT (Control Objectives for Information and Related Technology) from the Information

System Audit and Control Association (ISACA).

Commercial risk analysis methodologies include:

 STRIDE from Microsoft

 Security Risk Management Guide from Microsoft

 ACSM/SAR (Adaptive Countermeasure Selection Mechanism/Security Adequacy Review from

Sun

 Citigal‘s architectural risk analysis process.

2.2.2 Threat Modelling

Threat modelling is another important activity carried out at the design phase to describe

threats to the software application in order to provide a more accurate sense of its security

(Agarwal, 2006). Threat modelling is an engineering technique that can be used to identify

threats, attacks, vulnerabilities and countermeasures that could affect a software system

(Meier, Mackman and Wastell, 2005). This allows for the anticipation of attacks by

understanding how a malicious attacker chooses targets, locates entry points and conducts

attacks (Redwine and Davies, et al., 2004). Threat modelling addresses threats that have the

ability to cause maximum damage to a software application.

A structured method for threat modelling has been defined by Microsoft and this consists of

the following steps.

 Identify security objectives: This gives the software developers an idea of the business risk

decision that needs to be taken thereby helping them to focus the threat modelling activity

into building the necessary security control and also determines how much effort is to be

spent on doing this.

 Create an application overview: This is done by surveying the software system’s

architecture and design documentation in order to identify the software system’s

characteristics and actors such as components, data flows and trust boundaries, which in

turn would help to identify relevant threats.

 Decompose the application: This involves the decomposition of the software architecture

in order to obtain a detailed understanding of the mechanics of the software. This would

help to further identify the features and modules of the system that needs to be evaluated

for security impact.

26

 Identify Threats: All known threats for the software system are identified during this step.

Threats identified could then be categorized using the Microsoft threat classification

scheme: STRIDE (Spoofing, Tampering, Repudiation, Information disclosure, Denial of

service and Elevation of privilege).

 Identify the vulnerabilities: Following the identification of known threats to the software

system, possible security weaknesses of the system are identified and these can also be

categorized using DREAD. DREAD is Microsoft’s classification model for quantifying,

comparing and prioritizing the amount of risk by each evaluated threat (OWASP, 2008) and

the acronym stands for Damage potential, Reproducibility, Exploitability, Affected users and

Discoverability.

The figure below shows the five major threat modelling steps discussed above.

Figure 2. 1: Microsoft Threat Modelling (Meier, Mackman, and Wastell, 2005)

2.2.3 Dynamic Software Architecture Slicing (DSAS)

Kim T. et al. introduced the notion of dynamic software architecture slicing (DSAS) through

which software architecture can be analysed. “A dynamic software architecture slice represents

the run-time behaviour of those parts of the software architecture that are selected according

to a particular slicing criterion such as a set of resources and events” (Kim et al., 2000). DSAS is

used to decompose software architecture based on a slicing criterion. “A slicing criterion

provides the basic information, such as the initial values and conditions for the ADL execuTable,

an event to be observed, and occurrence counter of the event”.

27

To begin with, the software architecture is designed using any ADL (architecture description

language) and then implemented by mapping the behavioural part of the design into program

statements while retaining the structural properties. During run-time, the components and

connector information is identified by the Forward Dynamic Slicer when it reads the ADL source

code from the slicing criterion it receives as input, and executes the ADL execuTable to

generate a set of partially ordered events. The events relevant to the slicing criterion are then

filtered and passed to the Forward Architecture Slicer which examines the components and

ports based on the given slicing criterion in order to compute an architecture slice dynamically.

When the slicing criterion is satisfied the slice computed up to the event of interest is said to be

the ‘forward dynamic software architecture slice’.

The main benefit of this approach is that software engineers are able to examine the behaviour

of parts of their software architecture during run time. However, the trade-off of this approach

is that it requires the software to be implemented first of all because the events examined to

compute the architecture slice dynamically are generated while the Forward Dynamic Slicer

executes the ADL execuTable.

2.2.4 Attack Trees and other related techniques
This is used to characterize system security by modelling the decision-making process of

attackers. In this technique, attack against a system is represented in a tree structure in which

the root of the tree represents the goal of an attacker. The nodes in the tree represent the

different types of action an attacker can take on or outside the software system to accomplish

his goal, which may be in the form of bribes or threats (Ralston, Graham and Hieb, 2007),

(Gegick and Williams, 2006). “Attack trees are used for risk analysis, to answer questions about

the system’s security, to capture security knowledge in a reusable way, and to design,

implement, and test countermeasures to attacks” (Redwine and Davis, et al., 2004).

Attack nets is a similar approach, which includes “places” analogous to the nodes in an attack

tree to indicate the state of an attack. Events required to move from one place to the other are

captured in transitions and arcs. Arcs connect places and transitions indicate the path an

attacker takes. Therefore as with attack trees, attack nets also show possible attack scenarios to

a software system and they are used for vulnerability assessment in software designs (Gegick

and Williams, 2006).

Another related approach is the vulnerability tree, which is a hierarchy tree constructed on the

basis of how one vulnerability relates to another and the steps an attacker has to take to reach

the top of the tree (Ralston, Graham and Hieb, 2007). Vulnerability trees also help in the

28

analysis of different possible attack scenarios that an attacker can undertake to exploit

vulnerability.

Mouratidis et al. (2007) also propose a scenario-based approach called Security Attack Testing

(SAT) for testing the security of a software system during design time. To achieve this, two sets

of scenarios (dependency and security attack) are identified and constructed. Security test

cases are then defined from the scenarios to test the software design against potential attacks

to the software system. Essentially SAT is used to identify the goals and intentions of possible

attackers based on possible attack scenarios. Software engineers are able to evaluate their

software design when the attack scenarios identified are applied to investigate how the system

developed will behave when under such attacks. From this, software engineers better

understand how the system can be attacked and also why an attacker may want to attack the

system. Armed with this knowledge, necessary steps can be taken to secure the software with

capabilities that will help in mitigating such attacks.

Gegick and Williams (2006) have also proposed regular expression-based attack patterns which

help in indicating the sequential events that occur during an attack. The attack patterns are

based on the software components involved in an attack and are used for identifying

vulnerabilities in software design. It comprises an attack library of abstraction that can be used

by software engineers conducting Security Analysis for Existing Threats (SAFE-T) to match their

system design. The attack patterns are based on a set of components that have been observed

in a vulnerability that has been analysed and represented as a sequence of events during an

attack. For instance the attack patterns begins with an event represented by the component

used to trigger the attack, followed by successive events in the attack path and terminated by

the threat target, which is the final objective of the attacker. The following is an example of a

regular expression-based attack pattern, by the authors:

(Client +)(Server +)(LogFile +)(HardDrive +)

This attack pattern consists of four components i.e. Client, Server, LogFile and HardDrive. The

authors state that the attack pattern can be read as “a series of Client (the start component)

requests, followed by a series of Server actions, followed by a series of log updates to the

LogFile, followed by a series of disk writes to the HardDrive (the threat target). The access log

records an entry for each request and if enough requests are made, then the hard drive can be

consumed by the access log file”. The figure below is a sample of a system design used to

illustrate the attack pattern above by the authors.

29

Figure 2. 2: Sample of System Design (Gegick and Williams, 2006)

Using the numbered components in the figure above the authors identified two attack paths

corresponding to (Client +) (Server +) (LogFile +) (HardDrive +), these are 1-2-3-5 and 1-2-4-5. The

authors affirm that when software developers are able to match the attack pattern to their

software design, this would enable them to obtain the graphical representation of the attack

path and the vulnerability. An occurrence of a match indicates that the vulnerability may exist

in the system being analysed and therefore helps in integrating effective countermeasures

before coding starts. Another advantage of this approach is that it can be easily adapted by

developers who are novices on security unlike other approaches discussed above, which would

need involvement of security experts. However, this approach can generate false-positive

results when it is used.

The attack patterns were compared to taxonomies provided by Hoglund and McGraw,

Landwehr et al. and Krsul. The authors reported that the attack patterns mapped to 62.2% of

vulnerabilities abstracted by Hoglund and McGraw, 100% to that of Landwehr and 66% to that

of Krsul.

30

2.2.5 Security Patterns
Several works have been done based on security patterns since the pioneer work of Yoder et.al,
1997 who applied design patterns to specific security issues. Different security patterns have
been developed by many authors in different context which gave raise to different definitions
on security pattern (Halkidis, et.al, 2006). However, most authors define security patterns as
patterns describing particular recurring security problem in specific context and presents a well-
proven solution to it (Wiesauer and Sametinger, 2009, Laverdiere et.al, 2006, Kiiski, 2007,
Kienzle and Elder, 2002, Blakley, et.al, 2004).

These are design patterns that encapsulate security expertise solutions to recurring security
problems that are applied to software designs to achieve security goals, such as availability,
confidentiality or integrity (Agarwal, 2006) Through the use of security patterns, software
developers are able to apply expertise worked solutions from security experts on their software
design. In this way, developers are able to understand the strength and weaknesses of various
approaches and make informed trade-off decisions on their design. Kienzle and Elder (2002)
describe the objectives of security patterns as:

 A means of bridging the gap between software developers and security experts.

 A means of capturing security expertise solutions in form of worked-out solutions to
recurring problems

 Intended to be used and understood by software developers who are not security
professionals

 Intended to be constructive and educational as it tries to provide constructive assistance to
software developers in the form of worked-out solutions (and not a checklist of what not to
do) and also provide the guidance to apply the solutions properly

From objectives above, it can be noticed that the benefits of security patterns is that it provides
an effective way for software developers who are not expert in security to learn from security
experts. Since security patterns documents proven solutions to recurring problems in a well-
structured manner that is familiar and easily understood by software developers it also
enhances reusability of the patterns (Hafiz and Johnson, 2006). Therefore by using security
pattern, software developers who are not expert in security able to expand their security focus
from low level implementation to high level architectures (Schumacher, et.al, 2006)

In previous research, many authors describe security patterns for different purposes. This
includes security patterns for web applications (Steel, et.al, 2005, Kienzle and Elder, 2003),
security patterns for mobile Java code (Mahmoud, 2000), security patterns for agents systems
(Mouratidis, et.al, 2003), Security patterns for Voice over IP (VoIP) (Fernandez, et.al, 2007) and
security pattern for capturing encryption-based access control to sensor data (Cuevas, et.al,
2008). To enable software developers to choose the appropriate security pattern addressing
the security risks in their designs, several authors have proposed different classification scheme
for security patterns. This include classification based on applicability (Blakley, et.al, 2004),
classification based on product and process (Kienzle and Elder, 2003) classification based on
logical tiers (Steel, et.al, 2005), classification based on application domain (Bunke, et.al, 2011)

31

classification based on security concepts (Hafiz and Johnson, 2006), classification based on
system viewpoints and interrogatives (Zachman, 1987), classification based on confidentiality,
integrity and availability (CIA) model (Hafiz and Johnson, 2006) and classification based on
attack patterns (Wiesauer and Sametinger, 2009)

For the purpose of this research work, further investigation was done on research work carried
out by Wiesauer and Sametinger (2009) in chapter four. The motivation behind this research is
to provide a new taxonomy for security design patterns that will enable software developers
who are not necessarily expert in software security to easily select and apply them to their
software design. The authors argued that because software developers without experience in
security will not be able to apply security design patterns in a correct and effective manner,
there is a need for pattern selection criteria. After identifying existing taxonomies and their
draw backs the authors proposed a new taxonomy based on attack patterns that will enable
software developers to select appropriate security patterns according to possible attacks.

Halkidis, S.T. et al. (2006) conducted a qualitative analysis of the features of the security
patterns developed by the Open Group Security Forum to investigate how they conform to
three main sets of criteria and how they guide the software to be designed. The three criteria
included:

 Guidelines by Viega and McGraw on how to build secure software. These guidelines are the
design principles discussed below.

 A guideline based on software hole categories that enable software to be exploited by
attackers as described by Viega and McGraw. The security vulnerability used under this
criterion includes buffer overflow, poor access control and race condition.

 How well a specific security pattern can respond to different categories of attacks as
identified by Howard and LeBlanc in the STRIDE model.

Their findings showed that not all the security patterns met all the criteria from the three sets
of criteria used for the analysis. Therefore, as no security pattern has all the desired
characteristics, it has been suggested that developers would need a good combination of the
security patterns when designing software in order to make it secure.

However, combining security patterns to secure software design can also lead to other security
holes. There can be inconsistencies among the security patterns, which may cause problems in
the design when multiple security patterns are used to provide a level of security in software
design. While each security pattern addresses a specific security problem, inconsistencies
between patterns mean that security properties may no longer hold when they are combined
and used to secure software designs (Dong J. et al., 2009).

2.2.6 Secure Design Principles
As many software developers often lack the much-needed security experience to develop
secure software, secure design principles, such as the security patterns discussed above, bridge
the gap between security experts and developers by offering guidelines that can help

32

developers build more secure software. The principles address practices that can be applied to
architectural decisions and are recommended regardless of the language in which the software
is to be written or the platform in which it would run (Barnum and Gegick, 2005).

The design principles of software security include:

 Securing the weakest link

 Defence in depth

 Failing Securely

 Least Privilege

 Separation of privilege

 Economy mechanism

 Least-Common Mechanism

 Reluctant to trust

 Never assume that your secrets are safe

 Complete Mediation

 Psychological Acceptability

 Promoting privacy.

To apply the principles, Over (2002), states that developers need:

 A supportive environment and infrastructure

 An operational process to put the principles into practice

 A measurement system to manage and control the result.

It should be noted that in many cases, software developers find these principles conflicting one
another and this forces them to make trade-off decisions on their software development
(Barnum and Gegick, 2005). As a result, software developers sometimes find these principles
hard to follow and are not convinced of the benefits of disciplined software engineering
methods (Over, 2002).

2.2.7 Defect Prevention and Reduction

As software riddled with defects poses a great security risk today, it has become increasingly
important to prevent the defects from being introduced into the software or to reduce the
number of defects to the minimum. As discussed earlier, security flaws are design errors that
allow hackers, criminals or terrorists to obtain unauthorized access or use the software system
(Humphrey, 2004). It is important to note here that a piece of software riddled with security
defects may still function properly, since many of these defects do not cause functional
problems. As a result, focusing on functional defects alone during software development would
not be sufficient in dealing with potential security flaws in the system. Examples of software
engineering practices which focus on reduction and prevention of overall software design and
implementation defects include the Team Software Process (TSP) and Correction by
Construction (CbyC). The approach taken by these practices to reduce software defects
especially at the design phase of SDLC is discussed briefly below.

33

2.2.7.1 The Team Software Process (TSP)

TSP was developed by the Software Engineering Institute (SEI) as a set of defined and measured

best practices for use by individual software developers and software development teams. TSP

was designed as an operational process to support the establishment of good principles of

software engineering (Over, 2002). TSP offers an integrated package which includes best

practices for developing secure software. This includes team project management, risk

management, process management, product quality management and software metrics.

Teams using TSP are first trained in the Personal Software Process (PSP) which enables the

software developers to acquire the necessary skills of software engineering practice and also

appreciate its benefits in developing secure software applications. According to Noopur Davis of

SEI software development, teams using the TSP:

1. Manage defects throughout the software development lifecycle

a) Defect prevention so specification, design, and implementation defects are not

introduced to begin with

b) Defect removal as soon as possible after defect injection

1. Control the process through measurement and quality management

2. Monitor the process

3. Use predictive measures for remaining defects

TSP does not only offer a process solution for producing near defect-free software applications,

it also includes training for software developers in security issues, such as common causes of

vulnerabilities, security-orientated design methods, secure coding and security testing

especially with the TSP for Secure Software Development (TSP-Secure). This is a variant of TSP

that augments TSP with security practices throughout SDLC for producing secure software. In

their report on Security in Software Lifecycle Goertzel et al. (2006) states that TSP-Secure

provides techniques and practices for:

• Vulnerability analysis by defect type

• Establishing predictive process metrics and checkpoints

• Quality management for secure programming

• Design patterns for common vulnerabilities

• Security verification

• Removal of vulnerabilities from legacy software.

The TSP-Secure research objective is to reduce or eliminate software vulnerabilities that result

from software design and implementation defects, and to provide the capability to predict the

likelihood of latent security defects in delivered software (Davis, 2005).

34

To archive this, the TSP-Secure quality management strategy is to have multiple defect removal

points in the SDLC. This increases the likelihood of finding software defects from the time the

defects are introduced. In this way defects detected can be easily fixed and their root causes

investigated and addressed. Davis (2005), states that “each defect removal activity can be

thought of as a filter that removes some percentage of defects that can lead to vulnerabilities

from the software product”. Therefore with more defect removal filters in SDLC, defects leading

to security holes in the released software products will be drastically reduced. Also, as defects

are measured early during SDLC, software development organizations can save money by

taking corrective action early in the SDLC.

Figure 2. 3: TSP-Secure Methodology for Defect Removal (Davis, 2005)

TSP has been used by many organizations and it has helped to produce near defect-free

software applications. It is reported in a study of 20 projects in 13 organizations that teams

35

using TSP-produced software have an average of 0.06 delivered design and implementation

defects per thousand lines of new and changed code produced (Redwine and Davis, et al.,

2004). Table 2.1 below shows the quality performance of these projects compared to other

typical software projects.

 Table2. 1 Quality of Performance of TSP Projects (Redwine and Davis, et al., 2004)

Measure TSP Projects
Average
Range

Typical
Projects
Average

System test defects (design and implementation defects discovered during
system test, per thousand lines of new and changed code produced)

0.4

0 to 0.9

2 to 15

Delivered defects (design and implementation defects discovered after delivery,
per thousand lines of new and changed code produced)

0.06

0 to 0.2

1 to 7

System test effort (% of total effort of development teams) 4%

2% to 7%

40%

System test schedule (% of total duration for product development) 18%

8% to25%

40%

Duration of system test (days/KLOC, or days to test 1000 lines of new and
changed code produced)

0.5

0.2 to 0.8

--

2.2.7.2 Correctness by Construction

CbyC was developed by Praxis High Integrity System Limited in the UK and it has been used for

over fifteen years to develop low-defect mission-critical software applications. It combines the

best of both formal methods and agile development methodology (precise notation and

incremental development respectively) (Amey, 2006). CbyC has evolved over the years and it is

now applied all through SDLC from validation of the concepts of operation to preserving

properties during long-term maintenance (Croxford and Chapman, 2005). The underlying

principles of CbyC are:

 Do not introduce errors in the first place.

 Remove any errors as close as possible to the point that they are introduced.

 Generate evidence of fitness for purpose throughout the SDLC as a natural by-product.

In contrast to build and debug (the major way software products are developed today), CbyC

aims to produce software products that are initially correct. With this in place, testing is no

longer a point where debugging begins but a point where correct functionality of the software

product is demonstrated. Amey (2006) describes CbyC as a natural fit to the goals of building

security in security practices and states that CbyC “emphasizes the need to ensure that a

system is developed integrating required properties rather than just retrospectively examined

for those required properties.”

36

CbyC achieves its goals of not introducing any defects and making it easy for it to be detected

and removed early by following the techniques below. These techniques form the CbyC

process.

• Use of Sound notation. Sound formal notations are used to write the specification. This

removes ambiguity, thus making it difficult for errors to be introduced.

• Use of Strong Validation. With the use of formal notation, carrying out proofs of formal

specification and static code analysis using strong, tool supported methods is made possible.

• Incremental Development. This involves building the software in small increments and

making sure that each increment behaves correctly.

• Avoidance of Repetition. A good example of how CbyC avoids repetition as described by

Amey (2006) is the separation of software specification from high-level design. While

software specification describes what the software will do, high-level design describes how

the software will be structured and designed to meet requirements such as security safety

and performance. Thus, the design does not repeat any information from the specification.

• Striving for Simplicity. To ensure that software that is easily validated is designed and

produced, the process of verification is simplified and the code is kept simple and directly

traceable to the specification.

• Managing Risk. CbyC tackles the most complex and least understood areas first when faced

with a complex task as this is where risks and potential bugs are hidden.

• Think hard. This involves thinking hard about the real objectives of the software product to

be developed and using the right tool for developing it.

As mentioned earlier, CbyC incorporates formal (mathematical) methods into the overall

process of early verification and defect removal all through SDLC (Redwine and Davis et al.,

2004). At the design stage the formal methods and notations are used to specify the behaviour

of the software and to model its characteristics (Croxford, 2005). This forms high-level design,

which gives a top-level description of the system’s internal structure and also explains how the

components work together. High-level design is validated by review and analysis to ensure

correctness and consistency. For example, by using automated tools such as model checkers, a

formal software design can be validated to ensure that it has desired properties such as

freedom from deadlock (Hall and Chapman, 2004).

CbyC also contains a detailed design stage in which the set of software modules and processes

is explicitly modelled and analysed. The module structure describes the software architecture

and defines how functionality described in the specification and high-level design is allocated to

each module. For secure systems, the system state and operations are categorized according to

their impact on security with the aim of arriving at an architecture that minimizes and isolates

37

security-critical functions that reduce the cost and effort of the (possibly more rigorous)

verification of those units (Hall and Chapman, 2004).

CbyC has proved to be very cost effective in developing software because errors are eliminated

early during SDLC or not introduced in the first place. This subsequently reduces the amount of

rework that would be needed later during software development. The use of formal methods

helps CbyC to harness precision to every step of the development so that the system is more

likely to meet the requirement and to work correctly when deployed. (Croxford, 2005) The

Certification Authority system supporting the MULTOS multi-application smart card operating

system was developed by Mondex International (now part of Mastercard) using CbyC. The

system was delivered at a low operational defect rate of 0.04 defects/kloc (thousand lines of

code)

CbyC has not been widely used. Hall and Chapman (2005) state ‘that this is because individuals

and organizations do not believe that it is possible to develop software that is low defect’

Secondly, practical questions such as how to acquire the necessary capability or expertise and

how to introduce changes necessary to make the improvement, need to be answered where

the need for the improvement is acknowledged and considered achievable.

2.2.8 Formal Methods
“Formal methods are mathematically based techniques for the specification development and

verification of software and hardware systems” (Hinchey et al., 2008). To overcome the

problem of complex design errors, which when left undetected can lead to implementation

defects that are difficult to detect and remove during testing, Howe (2005), argues that the

industry needs to invest in solutions that apply formal methods in analysing software

specification and design in order to reduce the number of defects before implementation

starts. Recent advances in formal methods have also made verification of memory safety of

concurrent systems possible (Hinchey et al., 2008). As a result, formal methods are being used

to detect design errors relating to concurrency (Howe, 2005).

Hinchey et al. (2008) describes formal models as an engineering task that is best accomplished

in the normal design discipline. With normal design, engineers are able to predict the behaviour

of a system from its design before it is implemented. According to Hinchey et al. normal design

embodies the accumulated knowledge of the models of the product in question and its

environment that meets the desired level of dependability. This is implicitly handled in the

configuration of a normal design and also considered in the checks and calculations mandated

by the discipline of the normal design practice.

38

A software development process incorporating formal methods into the overall process of early

verification and defects removal through all SDLC is CbyC (Redwine and Davis et al., 2004). CbyC

has proved to be very cost effective in developing software because errors are eliminated early

during SDLC or not introduced in the first place. This subsequently reduces the amount of

rework that would be needed later during software development. Unfortunately, formal

methods are not widely used and some software development organizations are reluctant to

use them. Apart from this, formal methods require a mathematically meticulous way of

judgment that many software developers are not used to (Redwine and Davis et al., 2004).

2.2.9 Secure Tropos
This is software development methodology that aims at integrating security into SDLC. Secure
Tropos addresses the need to simultaneously analyse the technical and social dimensions of
security to software systems. This methodology is based on Tropos methodology, which uses
the i* modeling framework. This framework proposes an agent-oriented approach to
requirement engineering during SDLC by focusing on the intentional characteristic of the agent
(Yu et al., 2007). The following concepts are used in the framework.

 Actor: This is an entity that has intentions and strategic goals within a system.

 Goal: This represents the actors’ strategic interest. It is a condition or state of the world that
the actor likes to achieve (Also referred to as ‘hard goal’).

 Soft Goal: This is used to capture non-functional requirements of the system to-be. It lacks
the criteria for determining whether it is satisfied or not and therefore is subject to
interpretation.

 Task: This is also referred to as ‘plan’ and represents a way of doing something.

 Resource: This represents a physical or informational entity that may serve a purpose or be
required by an actor.

 Social Dependencies: These occur between actors in which one of the actors depends on the
other to attain a goal, execute a task or deliver a resource. The depending actor is referred
as the depender and the actor depended upon is referred to as the dependee. The type of
dependence between the two actors specifies the kind of agreement (dependun) between
them.

The Secure Tropos methodology extends the Tropos methodology by integrating security into
the concept described above and also by introducing new concepts. This includes the following.

 Security Constraint: This represents the restriction related to the security of the system (i.e.
such as privacy, integrity, availability) that can influence the analysis and design of the
system to-be during SDLC by restricting some alternative design solutions, by conflicting
some of the requirements of the system or by refining some of the system’s objectives.

 Secure Entity: This refers to any plan or goal relating to the security of the system.

 Secure Goal: This represents the strategic interest of an actor in relation to security. This is
introduced in order to achieve the security constraint imposed on an actor or the security
constraint imposed on in the system.

 Secure Plan: This represents a particular way of satisfying a secure goal.

39

 Secure Dependency: This introduces security constraints that both the depender and the
dependee must agree to fulfill in order to satisfy the dependency.

The Secure Tropos process involves ‘analyzing the security needs of the stakeholders and the
system in terms of security constraints imposed on the stakeholders and the system, identifying
secure entities that guarantee the satisfaction of the security constraints, and assigning
capabilities to the system to help towards the satisfaction of the secure entities’ (Mouratidis et
al., 2007). The Secure Tropos methodology has four phases, which are:

1) Early Requirement Phase: During this phase the activities below are carried out.

 A security reference diagram is constructed.
 Security constraints are imposed on the stakeholders of the system.
 Secure goals and entities are added to corresponding actors in order to satisfy the

security constraints.

2) Late Requirement Phase: The activities carried during this phase include the following.

 Security constraint are imposed on the system under development in reference to the
security reference diagram.

 Security constraints are further analyzed.
 Identification of security goals and entities that are necessary for the system to

guarantee security.

3) Architectural Design phase: This stage includes the activities below.

 Analysis of security constraints and secure entities that may be introduced by new
actors.

 Definition of the architectural style of the system with regards to security requirements.
 Transformation of the security requirements of the system into a design with aid of

security patterns.
 Identification of the agents of the system and their capabilities.

4) Detailed Design: During this phase the components identified in the previous phase are

designed with the aid of the Agent Unified Modeling Language (AUML).

2.2.10 Alloy

Alloy is a tool used for the analysis of software design. With the high-level coding notation of a

software design, the analysis tool is used to check billions of possible executions of the system

for unusual conditions and constraints that will cause the system to behave in an unexpected

way. This helps in detecting the design flaws before the software is coded and therefore results

in a more reliable and robust software design.

Alloy is built upon two elements that help in making software designs more robust. One of the

elements is the new language that helps to reveal the structure and behaviour of the software

40

design and the second element is an automated analyser that incorporates the SAT

(satisfiability) solver to analyse the multitude of possible scenarios of the software during

execution. Alloy works by trying to find solutions to software design puzzles that meet all the

good constraints that could occur during the execution of the software as well as the bad

constraints that may make the software behave unexpectedly during execution (Jackson, 2006).

The solution (also called the ‘counterexample’) if found would reveal flaws in the design which

would need to be fixed.

To use Alloy to analyse a software design the first step taken is to create the model of the

design that specifies the moving parts and specific behaviours (both desired and undesired) of

the system and its components. The software engineer will have to write down the definitions

of the various types of objects in the design and then group the objects with similar structure

and behaviour into mathematical sets. Following this, the facts that constrain these sets and

their relation are identified. These facts include the mechanism of the software system and

assumptions about other components, such as how human users are expected to behave. Some

of the facts may be simple assumptions and may reflect the design itself. From the facts,

assertions are made specifying that the system can never get into certain undesirable states

and that specific bad sequences of events can never occur (Jackson, 2006).

Alloy uses the SAT solver to search for counterexamples, i.e. possible scenarios of the software

system that are permitted by its design but violate the stated assertions. Alloy does this by

constructing situations that satisfy the facts but go against a stated assertion that will make the

system behave in an unaccepTable way. The discovery of such scenarios would reveal the flaws

in the software design. It is important to note that the essence of the software design is

captured by an abstraction made up of the declarations of the sets and relations, the facts and

the stated assertions that all make explicit the limitation of the software design. This compels

the software engineer to find which abstractions will work best for the system.

So far, Alloy has been used to uncover flaws in some published software designs such as “a key

management protocol that was supposed to enforce special-access rules based on membership

in a group but turned out to grant access to former members who should have been rejected.”

(Jackson, 2006) Though tools such as Alloy are yet to be widely used in the software industry,

their use during software development will help software developers to better evaluate their

software design thereby producing more reliable and robust software systems.

2.2.11 Tools for evaluating security in Software design

Security related activities such as threat modelling and risk analysis has historically been in the

domain of security experts. Over the years this has created a knowledge gap between the

41

software developers who are trained to think of functions and features of their product and its

on-schedule delivery and the security expert who focus on observing system intrusions, dealing

with malicious attackers and studying software vulnerabilities (Kenneth, Wyk and McGraw,

2006). To reduce this knowledge gap some security tools has been developed in the recent

years which enable software developers to scrutinize their software design and identify security

flaws in a similar way as a security expert (Adebiyi, et.al, 2012).

Microsoft developed two of these security tools. The first that was release for public use is the

Threat Analysis and Modelling (TAM) tool. This was developed by the Microsoft Application

Consulting; Engineering (ACE) team with the aim of enabling non-security expert software

developers to use already known data and specific line of business application requirement and

architecture to carry out threat modelling in an asset-centric approach. With this tool software

developers can focus on protecting the assets within their application by identifying associated

threats and counter-measures when it’s being designed. This information enables the software

developers to understand and manage business risks in their application early in the SDLC.

Following the release of TAM tool, Microsoft also released the SDL Threat Modelling Tool. This

tool had been used extensively by Microsoft for threat modelling internally prior to its release.

SDL Threat Modelling tool is a core element in the design phase of Microsoft Security

Development Lifecycle which helps software developers to analyse their software designs prior

to its implementation. According to Microsoft, this tool was not developed for security experts

but for software developers to aid the creation and analysis of threat models (Microsoft, 2011).

In contrast to TAM tool, SDL Threat Modelling tool builds on well-known development activities

such as the use of data flow diagram (DFD) for drawing the architecture of the software being

designed. Thus, following a software-centric approach, threat modelling with this tool focuses

on the software and the analysis of its design (Swigart and Campbell, 2008).

While these tools have lots of useful features that enable software developers to do threat

modelling easily, they have a few draw backs. Firstly, the quality of report generated by the

tools is still limited by the knowledge of the software developer creating the threat model.

Secondly, software developers require the understanding and interpretation of the extensive

list of threats identified by the tools. This may become a daunting task especially when the

threats are not prioritized as the case is with the use of SDL Threat Modelling Tool. Thirdly the

process of threat modelling can increasingly become complex while using the tools due to

factors such as number of developers involved in the threat modelling process, the nature of

DFD created and potential stakeholders)(Mockel and Abdallah, 2011) (Berg, 2010).

There is now a range of security tools from open source with similar threat modelling approach

like that of Microsoft threat modelling tools such as SeaMonster, TRIKE and Coras, which use

42

techniques that software developers are familiar with for the identification and mitigation of

threats. There are other threat modelling approaches based on standards such as the Risk

Analysis Toolkit based on ISO 1799 which generates security polices based on question and

answers (Ricard, 2011)and other open security tools like the Common Vulnerability Scoring

System (CVSS) that is designed to for rating IT vulnerabilities(CVSS-SIG, 2011).

2.2.12 Network Security
Network security is the process of taking both physical and software measures to protect

networks and their services from unauthorized modification, destruction or disclosure and the

provision of assurance that the network would perform its critical functions correctly without

any harmful side effects (Gregory, 2001). Some of the network security tools used for

protecting various networks includes firewalls, anti-virus, anti-spyware, software intrusion

detection and intrusion prevention systems, encryption, virtual private networks (VPN) and

vulnerability scanners.

Today, the network security environment has become a mature field with the development of

various tools and technologies for securing the network. It had also influenced the

development of technologies such as application firewalls and encryption devices for securing

software product in a reactive way. However, as deployed software now come under

continuous attack, it is being argued that so much time, money and effort would not have been

spent on network security if we didn’t have bad software security (Viega and McGraw, 2002).

This stems from the fact that building secure software is better than protecting a bad one. On

this note, Gary McGraw of Citigal Inc stated that “trying to protect software from attack by

filtering its input and constraining its behaviour in a post facto way (application security) is

nowhere near as effective as designing software to withstand attack in the first place (software

security)”.

Therefore, while network security aims at protecting networks and its resources such as the

software applications running within it, software security aims at integrating security into

software during development in order to produce secured software applications that can

withstand attack proactively in a hostile environment. Thus, network security could be viewed

as providing security in depth to software applications through the use of network security

tools to establish many layers of protection in the network environment whereby software

security helps in providing security within software applications itself. Hence, network security

and software security can both work together to provide an overall protection against malicious

attackers within networks and software applications.

2.2.13 Application Security
With the increase of attacks targeting vulnerable software applications, the need for
application security measures arose to augment network security measures as this could no

43

longer provide adequate security for software applications. Application security uses a
combination of system engineering security practices, such as defence-in-depth (DiD) measures
(e.g. protecting against malicious code, encryption, extensible markup language (XML) security
gateways, locking down execuTables, sandboxing, application layer firewalls, policy
enforcement) and secure configurations, with operational security practices, including patch
management and vulnerability management to protect software application from attacks
(Goertzel, et.al, 2007). Application Security protection measures are mostly defined at network
and system architectural level instead of the individual software architectural level and these
are implemented when the software application is deployed and fully operational (McGraw,
2002).

One of the benefits of application security is that it minimizes the exposure of vulnerable
software to threats that could exploit them by using security practices such as patch
management to reduce the number of vulnerabilities in the software application. Another
benefit of application security is that it helps to specify trust boundaries which controls access
to vulnerable software application and also provide safe execution environment through the
use of boundary protection technologies (e.g. application firewall) that offer protection from
attacks. This subsequently constrains interactions with the vulnerable software application,
thus reducing its exposure to attackers.

In analogy to band aid that offers protection against the wound but does not remove the
disease, some authors have been referred to application security as band aid security based on
the benefits highlighted above. These authors argue that these benefits are in favour of
application security as many software developers do not have the skill to integrate security into
software during development. Furthermore, as banks and many other companies through
mergers and acquisition take over software applications often infested with various
vulnerabilities, it has been argued that application security provides the cheapest way of
maintaining the application because most of these companies do not have the money or time
to rebuild the applications (Hogland, 2002).

In a contrary view, application security has been described as protecting software applications

in a reactive way by finding and fixing security problem only after they have been exploited.

While application security deal with security problems under the band –aid security approach,

i.e. addressing security symptoms such as stopping buffer overflows attacks by monitoring the

application inputs or HTTP traffic on port 80, it ignores the root cause of the problem which is

the vulnerability in the software itself. Therefore, some authors have argued that ‘in the fight

for better software, treating the disease itself (poorly designed and implemented software) is

better than taking an aspirin to stop the symptom’(McGraw, 2002) This is the software security

approach and it involves software risk management, secure coding, design for security and

security tests during software development. In support of this argument is the IEEE P1074

Standard for Developing Project Life Cycle Processes. According to Bar Biszick-Lockwood who

headed the volunteer team who proposed this standard to IEEE, P1074 is the first IEEE software

44

process Standard to embed dedicated, mandatory, security-related activities in the software

development life cycle.

2.3.0 Neural Networks
Neural Networks were inspired by the studies of the brain and nervous system in biological
organisms. An artificial neural network consists of very large highly interconnected simple
processing elements (called artificial neurons) which can demonstrate complex overall
behaviour depending on the interconnected neurons and element parameters. The
interconnected processing elements work together to solve specific problems through a
learning process just like biological systems.

A typical neuron in the human brain that neural networks model, collects signals from others
through a fine structure of projections called the dendrites. The neuron uses an axon (a long,
thin stand which also splits into many branches) to send out spikes of electrical activity when it
receives an excitatory input that is suitably larger than the input. Another structure, called a
synapse, at the end of each branch of the axon converts the activity of the axon into electrical
effects that either excite or inhibit connecting neurons.

Figure 2. 4: Structure of a Neuron (Turchin, 1977)

Artificial Neural Networks (ANN) have been used in various applications to extract and identify
trends that are too complex to observe by computer techniques or by humans because of their
ability to obtain meaning from complicated or incomplete data. They are used to infer functions
from various observations, which can be used to provide projections – given new situations of
interest – and answer “what if” questions. Other advantages as stated by Stergiou and Siganos,
1997 include:

45

1) Adaptive learning: An ability to learn how to do tasks based on the data given for training or
initial experience.

2) Self-Organisation: An ANN can create its own organisation or representation of the
information it receives during learning time.

3) Real Time Operation: ANN computations may be carried out in parallel, and special
hardware devices are being designed and manufactured that take advantage of this
capability.

4) Fault Tolerance via Redundant Information Coding: Partial destruction of a network leads to
the corresponding degradation of performance. However, some network capabilities may be
retained even with major network damage.

2.3.1 Artificial Neural Network and Conventional computers
While conventional computers are good at calculating arithmetic very fast and doing precisely
what they have been programmed to do, they are not good at:
• Dealing with noisy data from the environment
• Massive Parallelism
• Adapting to circumstances.

The reason for this is because conventional computers resolve problems using an algorithm
approach that follows a set of instructions as specified by the programmer. Without these
instructions, the computer will not be able to solve the problem. This factor restricts the
problem-solving capability of conventional computers to well-understood problems and the
methods of resolving them.

Unlike conventional computers, neural networks cannot be programmed to carry out specific
tasks. They learn by example. Information is processed similarly to the way the human brain
processes information through its large number of highly interconnected network of processing
elements that work in parallel to resolve specific tasks.

Smith 2003, states that ANN can help especially in the following areas:
• Where an algorithmic solution cannot be formulated
• Where structure needs to be picked out from existing data
• Where there are lots of examples for the behaviour that is required.

Up till now neural networks have been used successfully in many disciplines for different

applications. They have been used in the area of forecasting, predicting, data validation,

marketing, risk management in many business organizations and also in the medical field. The

area most relevant to this research where neural networks have been used is in the area of

network security and application security. This is discussed below.

46

2.3.2 Neural Network Architectures
Neural network architectures are divided into two categories: supervised and unsupervised
architectures. In the supervised architecture the neural network is trained to give desired
outputs when inputs are fed into the network. Examples of supervised architecture include:
• Feed-Forward Networks: This network has only a one way connection between its input

and output layer through which signals are allowed to travel. It is a straightforward
network associating inputs with outputs. They are commonly used for pattern recognition,
prediction and non-linear function fitting (Stergiou and Siganos, 1997) (MathWorks, 2011).
Examples of feed-forward networks include perceptron networks, feed-forward back-
propagation, linear networks, feed-forward input delay back-propagation and cascade-
forward back-propagation.

Figure 2. 5: Feedforward Network (Edward, 2008)

• Feedback Networks. These networks allow signals to travel in both directions, thereby

introducing loops in the network. This makes the networks dynamic as their state keeps
changing continuously until it reaches an equilibrium point. They are usually used for
nonlinear dynamic modelling, control system application and time-series prediction.

Figure 2. 6: Feedback Network (Edward, 2008)

47

• Radial basis Network: This is a network with only one hidden layer, which provides an
alternative method for designing non-linear feed-forward networks (MathWorks, 2011)
(Smith, 2003). The hidden layer has a receptive field with a centre in which outputs tails off
as the input moves away from it.

• Learning Vector Quantization (LVQ): This network enables classification of patterns that
are not linearly separable. Class boundaries and granularity of classification can be
specified with LVQ.

In unsupervised architecture neural networks, no external teacher is involved. The neural
network self-organises the data presented to it and detects their emergent collective
properties (Stergiou and Siganos, 1997). Examples of unsupervised architecture include:

• Competitive Layers: This network recognises similar input vectors and groups them
together. This eventually allows for the inputs to be automatically sorted into categories.
Competitive layers are usually used for pattern and classification recognition.

• Self-Organizing Maps: This also groups inputs according to their similarity but differs from a
competitive layer in that it is able to preserve its topology of the input vectors such that
nearby inputs are assigned to nearby categories (MathWorks, 2011).

2.3.3 Applications of Neural Networks
Previous researches have shown how neural networks can be used in the area of network

security as intrusion detection systems. In this area, neural networks are being used to decide

when an attack is taking place against a computer system and this has offered possible

solutions to some of the problems experienced by other present approaches to intrusion

detection, which are rule-based systems (Cannady, 1998), (Ahmad, Swati and Mohsin, 2007).

Neural networks were proposed to recognize the distinctive characteristics of users of software

systems and point out statistically significant variations from their recognized behaviour using

data from the network environment even if the data is flawed or distorted. Since a network can

come under several coordinated multiple attacks, neural networks have also helped to identify

such attacks because of their ability to process data from a number of sources in a non-linear

fashion (Ahmad, Swati and Mohsin, 2007). Furthermore, a neural network has the ability to

detect novel attacks it has never been exposed to during its learning process. This is because by

creating and refining abstractions from raw data, it learns not just what an attack is and what

it’s not, but what makes an attack an attack (McAvinney and Turner, 2005).

Ahmad, Swati and Mohsin (2007) proposed a neural network trained using a Resilient Back

Propagation (RPROP) algorithm and this was tested against different types of network attack

such as DOS and probing and the result gave an overall detection rate of 95.93% which is noted

to be of better performance when compared to other neural network approaches to IDS. It is

important to note here that although the neural network has been applied as a network

security tool for detecting network attacks, it does not give a 100% detection of network

48

attacks as the result shows. However, it equally demonstrates the ability of neural networks to

detect network attacks to a very reasonable degree.

Also, neural networks have been proposed for detecting computer viruses using statistical

analysis approaches. The proposed neural network was designed to study the features of

normal system activity and recognize statistical variations from the normal activity that may

indicate the presence of a virus (Cannady, 1998).

In the area of software quality, neural networks have also been proposed for predicting the

reliability of a software application by using the failure history of the software as their raw data

to develop their own internal model of the failure process to predict the total number of faults

to be detected at the end of a future test session of the software (Malaiya Y. K. et al., 1992).

Similarly, Tamura, Yamada, and Kimura (2003), having noted the difficulty of assessing software

reliability due to the increase in software complexity especially in a distributed environment

proposed a software reliability assessment method based on a neural network model that takes

into consideration the interactions of software components in the distributed environment.

This method was compared to other software reliability growth models (SRGMs) using real

software fault data to conduct a goodness of fit comparison and the result showed that this

method gave the best fit to the data. Owing to the positive performance of neural networks in

this area, it has been suggested as an alternative in modelling software reliability data (Ho, Xie

and Goh, 2003).

Neural networks have also been applied in the area of cryptography. Karras and Zorkadis (2003)

used neural networks for strengthening the existing traditional generators of random numbers

used in many cryptographic protocols for secure communication systems. The use of the

Overfitting Multilayer Perceptron (MPL) type of neural networks and recurrent ANN of the

Hopfield type for generating pseudorandom numbers were the two types of neural network-

based mechanisms proposed. Their performance was compared to the traditional generators

and the results showed that ANN-based generators performed better in the statistical and non-

predictability tests than the traditional generators. In another approach by Lian (2008), a neural

network is used to construct a block cipher that has the ability to encrypt data with the control

of its key. The neural network consists of the chaotic neuron layer and the linear neuron layer

which helps it to realize data diffusion and confusion functionalities respectively and these are

the essential properties for the operation of a secure cipher. As a result, it offers a higher

security against select cipher attacks when compared to other existing ciphers and it is more

suiTable for encrypting images.

In the area of application security, a neural network has been proposed to solve the problems

occurring in systems using a password Table and a verification Table for user authentication

where an attacker can add a forged user-ID and password to the verification Table or replace

49

someone’s password. This approach was proposed by Lin, Ou and Hwang (2005) using the

characteristic memory of a back-propagation network to recall the password information

generated and memorized during its training. This proposed method was tested using 200 pairs

of usernames and passwords consisting of eight characters. In terms of the accuracy, the result

of this proposed method showed that the output of the trained neural network was close to

the expected output and, with regards to its performance, its time complexity was found to be

0. This is because it uses simple multiplication and addition to produce its results unlike the

methods using encryption to store password information on the verification Table requiring

exponential computing, which is more time consuming. However, it is noted that it takes a long

time to train the network and that the proposed method does not protect against guess attacks

in which an attacker can try all possible passwords until a match is found.

2.4. Summary of Chapter Two

Creating software applications that work and at the same time will continue to function

correctly under malicious attack remain a very great challenge to the software industry. Many

of the approaches used to integrate security into software application during the design phase

SDLC has been explored in this chapter. While these approaches help towards developing a

secure software application, the need for involvement of security experts and developers lack

of experience in security was noted as factors affecting their effectiveness. The use of formal

methods and security tools were also explored and their draw backs such as lack of adoption

were highlighted. Network security and application security protects software applications by

embracing standard approaches such as penetrate and patch, input filtering (i.e. blocking

malicious inputs), monitoring programs as they run, enforcing software use policy with

technology and providing value in a reactive way. While network security and application

security offers protection to software applications after development, it was established that it

is better to integrate security during software development. The background to neural

networks was presented in this chapter and its applications especially in the area of network

security and application security in technologies such as IDS, cryptography, anti-virus and user

authentication techniques. In the next chapter the proposed neural network approach is

presented and neural network model overview will be discussed.

50

Chapter 3. Software Design Evaluation by Neural Network

3.1. Introduction

Neural network is proposed as an evaluation tool in this research for evaluating software

designs for security flaws. The evaluation by the proposed neural network tool is based on two

previous research works by Michael Gegick and Laurie Williams (2006) and Wiesauer and

Sametinger (2009) (See chapter 2 for further discussion). In the first research work, Gegick and

Williams (2006) created regular expression based attack patterns which show sequence of

events that could occur during an attack. These attack patterns are based on software

components involved in attacks and are tailored towards identifying security flaws in system

design. The authors argued that software engineers can conduct a Security Analysis for Existing

Threats (SAFE-T) by matching the attack patterns to their system design. Their motivation for

this approach is to enable software developers identify vulnerabilities in their system design

before coding start as this is seen as a cheaper way of integrating security into software

compared to when it is been retrofitted after development. In the second research work,

Wiesauer and Sametinger (2009) proposed a new a new taxonomy for security design patterns

based on attack patterns. The authors argue that there is a need for a selection criterion

because software developers who are not experienced in security are unable to select and

apply security pattern in a correct and effective manner. Therefore by using their proposed

taxonomy the authors state that software developers can match identified attack patterns in

their software designs to corresponding security design patterns that would provide the

appropriate mitigation.

One of the limitations with some of the current approaches for integrating security into

software design is the difficulty of getting software developers to think like attackers during the

threat modelling process as this mind-set is not native to them(Swigart and Campbell, 2008). It

has been suggested that software developers can instead look at the attack surface of their

software design and think of how to build defences into their application (Swigart and

Campbell, 2008). The proposed neural network tool achieves this by associating components in

the design with attacks that can be performed on them when possible attack patterns are

matched to the software design. This subsequently assists the software developers in

addressing security defences needed to be put in place.

In this chapter, the model overview of this research work is presented. The components of the

research model show the way through which the proposed neural network tool would be

evaluating software design for security flaws based on the previous research works highlighted

above. As a result, each of the components of the research model would also be discussed.

51

3.2. Model Overview

The figure below shows the model overview. This includes the input module, the neural

network module and the output module. The input module consists of the system design,

which is in form of scenarios that has been abstracted from a software design. The scenarios

consist of the participating software components and actors in the design during each scenario.

The neural network module consists of two neural networks. The first neural network is trained

to recognise possible attacks from the set of scenarios presented to it by matching it to

corresponding attack patterns proposed by Gegick and Williams (2006). The second neural

network accepts the output of the first neural network (i.e. identified attack pattern) as input

and suggests possible security design pattern that could mitigate the threat in the attack

pattern identified in the first neural network. The output module simply shows the attack

identified by the first neural network and the security pattern suggested by the second neural

network that has been mapped to deal with the attack.

System Design
Scenarios

Identified Attack
Pattern &
Suggested
Solution

Neural
Network 1

Neural
Network 2

Model Overview

Input
Module

Output
Module

Neural Network Module

Figure 3. 1: Model Overview

3.3 The Input Module

The proposed Neural Network tool uses the abstract and match technique for identifying

security flaws in software designs by matching possible attack pattern to the design. For the

purpose of this research work, data was abstracted from the attack scenarios in the reported

attacks in online vulnerability databases. As all the attacks considered were mainly caused by

security flaws in the design of the reported software application, the abstracted attack

scenarios were used as the software design in the input module of the research model because

this provided information on the software design of the reported vulnerable software

application. In a similar way, using well known approaches such as data flow diagrams (DFD)

52

and sequence diagrams, software developers are able to abstract information from scenarios in

their software designs needed by the Neural Network tool for matching possible attack

patterns to their design. In the following sections, the source of the attack scenarios and the

attributes used to abstract the information needed to train the neural network are discussed.

3.3.1 Source of attack scenario

To generate the attack scenarios linking the software components and actors identified in the

attack pattern, online vulnerability databases were used to identify attack scenarios

corresponding to the attack pattern. Data of attack scenarios from the following online

vulnerability databases were used in this research.

1. CVE Details
2. Security Tracker
3. Secunia
4. Security Focus
5. The Open Source Vulnerability database (OSVD)
6. IBM Internet Security Systems

For each of the attack scenarios, the online vulnerability databases gave various types of
information. The variety of information given on the same attack scenarios provided
comprehensive information about the attacks. Most of the online vulnerability databases gave
a brief description of the attack as seen in the figure below. NoTable among other information
provided is information about source of the attack (i.e. whether the attack is a remote attack
or a local attack), the impact of the attack on confidentiality, integrity and availability of the
reported software application, the vulnerability exploited in the attack, the CVSS score of the
attack which indicated the severity rating of the attack, details of exploits code and level of
access gained by the attacker. The figure below shows the information provided on the attack
on webmail server from CVE details, security focus and security tracker online databases.

53

Figure 3. 2: Information on CVE Details database showing attack on webmail

Figure 3. 3: Information on Security Focus database showing attack on webmail

54

Figure 3. 4: Information on Security Tracker database showing attack on webmail.

3.3.2 Attack Attributes

For the purpose of training the neural network the following attributes were used to abstract

the information needed from the attack scenarios.

 The Attacker: The information captured with this attribute is the capability of the attacker.
This examines what level of access possessed when carrying out the attack. The following
levels of the access were examined for each of the attack scenario.
1. No access: This shows the attacker has no access when carrying out the attack. The

attacker could escalate his privilege during the course of the attack. In some attack
scenarios, no access is required by the attacker for carrying out the attack.

2. Read access: This indicate where the attacker has a form of user account with access
limited to reading or viewing information in an application

3. Write/Change access: This also shows where the attack having a form of user account
but with more privileges. In this case, the attacker is able to read and write. He is able
to make changes or modify the data that he is able to access.

4. Admin access: For this level of access, the attacker is able to read, write, make changes
to data, create and delete user accounts. With this access, the attacker has full
administrative right.

55

 Source of attack: This attack attributes captures the location of the attack during the
attack. In particular, the attack scenarios are examined under this attribute to find out
whether the attack was carried locally (i.e. internally) or remotely (i.e. externally)

 Target of the attack: This captures the system component that is targeted by the attacker.
This could be a system resource such as memory, buffer or data that is stored in a
database.

 Attack vector: This attributes captures the mechanism (i.e. software component) adopted
by the attacker to carry out the attack. For instance, the webmail attack scenario in the
figure above, the attacker uses a long Get Request to cause buffer overflow and also
execute arbitrary code.

 Attack type: The security property of the application being attacked is captured under this
attribute. The security property under attack could be:
1. Confidentiality: This is when privacy in the application is compromised. For example,

when information is disclosed to users who are not authorized to have access to it.
2. Availability: This is when the attack is aimed at making services provided by the

software system unavailable to valid users. For instance, in denial of service attack
3. Integrity: Attack against this security property includes attacks where the data stored

or processed by the targeted software application is maliciously modified.

 Input Validation: This attributes examines whether any validation is done on the input
passed to the targeted software application before it is being processed. Attack scenarios
are categorized into the following groups using this attributes
1. No Validation: where no input validation was carried out on inputs
2. Partial Validation: Where insufficient input validation was done on the inputs
3. All inputs validated: Where all input was properly validated or where the attack was

not associated to this security flaw.

 Dependencies: The interaction of the targeted software application with the users and
other systems is analysed under this attributes. The intention here is find out whether any
measure is implemented in the software application to make sure its dependency on users
or other software system is secured. With this attributes, attack scenarios are examined
under the following categories
1. None: This is where no security measure is implemented before accepting any form of

interaction from users or other software system. For example, attack scenarios where
visitors to a website are allowed to post messages without any form of authentication

2. Authentication: This examines whether authentication was carried out before
interacting with users and other software system

3. Access Control: In this category, the targeted software application in the attack
scenario is examined for failure in restricting access to resources to unauthorized users

56

4. Trust Boundary Defined: This examines whether the targeted software application
define a trust boundary between itself and other users or software system it is
interacting with

5. Encryption: For this category, the failure of the targeted software application to secure
the communication between itself and other users or software systems when
exchanging sensitive information is examined

 Output encoding to external applications/services: Attack scenarios are examined under
this attributes to check whether the attack is associated with flaws due to failure of the
targeted software application in properly verifying and encoding its outputs to other
software systems. For instance, in SQL injection attacks, the targeted web application is
checked for failure in sanitizing user supplied query before passing this to the database.
Therefore, under this attributes, attack scenarios are examined to see if the flaws exploited
in the attack is due to failure of the targeted software application to verify untrusted data
using techniques such as escaping all inputs, use of parameterized interface or prepared
statements.

 Authentication: This attribute checks for failure of the targeted software application to
properly handle account credentials safely or when the authentication is not enforced in
the attack scenarios. Attack scenarios are examined under this attributes to see of the flaw
is associated to any of the issues below include:
1. Use of plaintext password

2. Use of salted or harsh password

3. Lack of account lock outs and time outs

4. Session Management

5. Credential management

6. Lack of re-authentication for assessing sensitive data

7. Lack of decision logs showing whether failure or success of authentication

 Access Control: Failure in enforcing access control by the targeted software application is
examined in the attack scenarios with this attribute. The attacked scenarios are analysed
with flaws associated to the following:
1. Data access authorization
2. URL access authorization
3. Service access authorization
4. Function access authorization
5. File access authorization
6. Server side enforcement of access control
7. Failure in checking all access path

 HTTP Security: Attack Scenarios are examined for security flaws related to HTTP requests,
headers, responses, cookies, logging and sessions with this attribute. The following issues
are examined in the attack scenarios with this attribute:

57

1. Lack of validation when redirecting data
2. Lack of defined HTTP request methods
3. Failure to validate HTTP request and response
4. Use of weak random token when processing or accessing sensitive data
5. Lack of secure flag set up on cookies that contain sensitive data

 Error handling and logging: Attack scenarios are examined under this attributes for failure
of the targeted application in safely handling error and security flaws in log management.
Security flaws examined with this attributes include
1. Display of sensitive data in error messages
2. Lack of server side controlled logging
3. Access not denied by default by the error handing logic
4. Failure to log success or failure of security relevant log
5. Failure to control access to log
6. Lack of validation of untrusted data used in event logged

3.4. The Neural Network Module

The neural network module contains two neural networks. The first neural network is trained

using the information from the input module to match possible attack pattern. The second

neural network uses the information about the identified attack pattern to match possible

security design patterns that can mitigate the threat in the attack. During the implementation

of the two networks in this research, the neural networks were designed to work

independently as two separate networks and not and not as a single system. The neural

network module as shown in Figure 3.1 illustrates how the two networks relate to each other.

3.4.1 Neural Network I

The abstract and match technique has been used as a security identification technique for

abstracting vulnerabilities that can be matched to different set of software systems. Attack

trees and other related techniques use these techniques (see chapter 2 for further discussion)

to abstract known vulnerabilities to a high level representation in a generalized form so that

software developer can match the abstracted vulnerabilities in the same or different software

systems they have been found originally (William and Gegick, 2006). Building on this approach,

William and Gegick (2006), proposed the regularly expressed attack patterns for representing

vulnerabilities in software design in a generic way (i.e. independent of any software application

and programming language) so that this could be easily adopted by software developers for

matching the attack patterns to their software design. Table 3.2 in section 5 shows the 53

regularly expressed attack patterns proposed by the authors.

Following a similar approach, the first neural network in the neural network module uses the

information abstracted from software design scenarios in the input model to match the security

58

flaws in the scenarios to the regularly expressed attack patterns proposed by William and

Gegick (2006). Figure 3.5 shows the steps taken to achieve this. The output of the first neural

network (i.e. the identified attack pattern) is used as an input for the second neural network in

the mitigation step

Figure 3. 5: Neural Network 1 Evaluation process steps

3.4.2 Neural Network II

In the second neural network in the neural network module of the model overview, this

research aims to use neural network to suggest possible solutions to the attack patterns

identified by the first neural network. This approach builds on the proposed selection criterion

by Wiesauer and Sametinger (2009) which matches attack patterns to security design patterns.

To achieve this, data was abstracted from the 51 regularly expressed attack patterns by William

and Gegick (2006). Also, using Microsoft threat classification scheme (STRIDE) the attack

patterns were grouped into six groups in order to align the attack patterns to their

corresponding threat category. The data abstracted from the attack patterns formed the

attributes of the attack patterns that were used in training the neural network. The attributes

consists of:

The Attack ID: This is the unique ID that identifies the attack

59

Resource Attacked: This is the resource that is attacked in the attack pattern.

Attack Vector: This is method through which the attacker uses to attack the resource

Attack Type: This state whether the attack is an attack against confidentiality, integrity or

availability

The second neural network is used to match attack patterns to security design patterns defined

by Kienzle and Elder (2002), Blakley, et.al (2004) and Steel, et.al, (2005). The security design

patterns defined by these authors are stated in the Table 3.1 below

Table 3. 1: List of Security patterns

Security patter by Steel,
et.al, (2005)

Security Patterns by Blakley,
et.al (2004)

Security patterns by Kienzle
and Elder (2003)

Authentication Enforcer Checkpointed System Account Lockout

Authorization Enforcer Standby Authenticated Session

Intercepting Validator Comparator- Check Fault –
Tolerant System

Client Data Storage

Secure Base Action Replicated System Client Input filters

Secure Pipe Error/ Detection/Correction Directed Session (M)

Secure Service Proxy Hidden Implementation (M)

Secure Session Manager Protected System Encrypted Storage

Intercepting Web Agent Policy Minefield

Secure logger Authenticator Network Address Blacklist

 Subject Descriptor Partitioned Application

Audit Interceptor Secure Communication Password Authentication

Container Managed Security Security Context Password Propagation

Dynamic Service
Management

Security Association Secure Assertion

Obfuscated Transfer Object Secure Proxy Server Sandbox

Policy Delegate Trusted Proxy

Secure Service Façade Validated Transaction

Secure Session Object

 Build Server From Ground up

Message Inspector Gateway Choose the right stuff

Secure Message Router Document Security goals

Message Inspector Document Server
Configuration

 Enrol by Validating out of band

Assertion Builder Enrol Using Third party
Validation

Credential Tokenizer Enrol with pre-existing Shared
Secret

Single Sign On (SSO)
Delegator

 Enrol without validating

Password Synchronizer Log for Audit

60

 Patch Proactively

 Red Team the Design

 Share responsibility for
security

 Test on a staging server

3.5. The Output Module

In the output module of the model overview, the result of the evaluation of the two neural

networks in the neural network module is presented (i.e. the identified attack pattern and the

matched security design pattern). Table 3.2 shows the regularly expressed attack pattern

proposed by Gegick and Williams (2006) and the security design patterns defined by Steel, et.al,

(2005).

Table 3. 2: Security Patterns matched with Attack Patterns

Regular
Expression

ID

Regular Expression Description Security
Pattern

Regex1 (User
+
)(Server

+
)(Log

+
)

(HardDrive
+
)

A user can exceedingly access a
server that logs accesses to the
hard drive. If permitted, the log file
may become large enough to fill the
hard drive causing the system to
crash -- a denial- of-service attack
(DoS). This may also occur on
servers that log errors.

Authorization

Enforcer

Regex2 (User)(Message)(Server)

(Header
+
)

(MessageHeaderHandler)

(Memory + CPU)

A user may send a message with
thousands of headers (e.g. MIME
headers) to a server, causing a
server memory/CPU DoS.

Intercepting

Validator

Regex3 (User)(HTTPServer)

(GetMethod)

(GetMethodBufferWrite)

(Buffer)

A user that submits an excessively
long HTTP GET request to a web
server may cause a buffer overflow.
Either the requestURI or HTTP
version may be too long for the
buffer. The attacker may be able to
escalate their privileges.

Intercepting
Validator

Message Inspector

61

Regex4 (User)(Variable + Filename +

Header)(HTTPServer)

(PostMethod)(BufferWrite)

(Buffer)

A user that submits an excessively
long POST request via a variable,
Filename or Header, may cause a
buffer overflow on the server. The
POST request may be in the form of
a hidden variable, filename or
header). The attacker may be able
to escalate their privileges.

Intercepting
Validator

Message Inspector

Regex5 (User)(Server)(Message)

(HeaderFieldBufferWrite)

(Buffer)

A user may submit an excessively
long header field value causing a
buffer overflow on the server (e.g.
HTTP, email headers). The attacker
may be able to escalate their
privileges.

Intercepting
Validator

Message Inspector

Regex6 (User)(HTTPServer)

(HTTPMessageHandler)(Log)

(SysAdmin)(LogEntryRead)

(BufferWrite)(Buffer)

A user that submits an excessively
long message to the server can later
induce a buffer overflow when
viewed by a system administrator. It
is possible for the attacker to
escalate their privileges.

Intercepting
Validator

Secure Logger

Regex7 (User)(HTTPServer)

(PostMethod)(HTTPContent

LengthHeaderValue)

(HTTPMessagePayloadLength)

(ServerConnectionState)

A user may submit a value via the
POST method that specifies the
Content-Length of the HTTP header
be less than the content-length of
the message, thus causing the
socket to stay open (DoS). (see
regex37)

Intercepting
Validator

Message Inspector

Regex8 (User)(UserNameEntry)

(PasswordEntry) (Server)

(AuthenticationRoutine)

(BufferWrite)

(Buffer)

A user that submits an excessively
long string of characters for either
the username or password may
cause a buffer overflow in the
authentication routine. The attacker
may be able to escalate their
privileges.

Intercepting
Validator

Regex9 (User)(SQLInput)(Server)

(WebApplication)

(Database)(Data)

Failure to sanitize user input (e.g.
Query string) can allow a user to
submit an arbitrary SQL query, thus
allowing for unauthorized access to
data. This regex is too abstract to
cover the many possibilities of
invalid SQL input.

Intercepting
Validator

Message Inspector

62

Regex10 (User)(SQLInputField)

(Server)

(WebApplication)(Database)

(CPU)

An attacker may submit a malicious
SQL query (such as a Cartesian join
of all Tables) consuming the CPU.

Intercepting
Validator
Message Inspector

Regex11 (User)

(CommandLineArgumentEntry)

(ApplicationServer?)

(Application)

(CommandLineArgumentBufferW

rite)(Buffer)

A user may submit an excessively
long command line parameter
causing a buffer overflow. The
attacker may be able to escalate
their privileges.

Intercepting
Validator

Message Inspector

Regex12 (User
+
)(HTMLPage

+
)(Server

+
)

(HardDrive
+
)

A user may submit an excessive
amount of data in an HTML page,
thus filling up the hard drive on
which the server resides.

Message Interceptor

Regex13 (User)(InjectionOfMalicious

HTMLTags/scriptInURL/Form)

(Cookie*)(FormData*)

(ServerVariables*)

(Information)

A user may inject malicious
scripts/tags (SCRIPT, OBJECT,
APPLET, EMBED, FORM) or
variables (e.g. JSP, ASP, search
string) in a web page, msg. board,
email, message (e.g. IM), Script in
URL, URL parameter or HTML/CSS
TAG, or HTML injection in HTML tag
to obtain access to information such
as cookies. This is called Cross Site
Scripting (XSS).

I

Intercepting

Validator

Regex14 (User)(Machine)

(SyslogFunction)(Log)

(Memory)

It is possible to corrupt memory by
passing format strings through the
Syslog(), a logging function. This
may potentially be exploited to
overwrite arbitrary locations in
memory with attacker- specified
values. The Syslog function is often
improperly used and is thus a target
of attacks. Machine is any computer
that uses the syslog function.

Intercepting

Validator

63

Regex15 (User)(ReadUserInput)

(EnvironmentVariableWrite)

(Buffer)

A user may submit an excessively
long environment variable causing a
buffer overflow in the application.
The attacker may be able to
escalate their privileges.

Intercepting

Validator

Regex16 (User)(GUI/Browser)

(BookMarkSave)

(BookmarkBufferWrite)

(Buffer)

A user may save an excessively
long bookmark and cause a buffer
overflow. The bookmark may be
written by the attacker or come from
a long web page title. The attacker
may be able to escalate their
privileges.

Intercepting

Validator

Regex17 (User)(Application)(File)

(FileRead)
An application that reads a file may
throw an exception or halt if the file
is corrupt or has been tampered with
by an attacker.

Intercepting

Validator

 Regex18 (SocketRead)

(SocketBufferWrite)(Buffer)
A user may submit an excessively
long stream to a socket and cause a
buffer overflow. This is true for
handling any connection on the
internet (e.g. GET request). The
attacker may be able to escalate
their privileges.

64

Rgex19 (Class)(Subclass)

(OverriddenSecuredMethods)

(Application)

Overriding methods that have been
secured in a super class may create
a software vulnerability. In Netscape
4.0 the ClassLoader overrode the
definition of built-in "system" types
like java.lang.Class - applications
usually subclass ClassLoader - a
better example is from
http://java.sun.com/j2se/1.4.2/docs/
guid e/security/jce/JCER
efGuide.html - suggests to not
override methods/constructor s in
CipherInputStream because the
class takes into account many
security considerations.

Regex20 (User)(Hyperlink)(Server)

(HyperlinkBufferWrite)

(Buffer)

A user may make an excessively
long hyperlink on a webpage and
cause a buffer overflow on a server.
If the hyperlink is used to connect to
a session, then the malicious user
may take over the application.

Message Inspector

Regex21 (User)(Server)

(MessageHeaderHandler)

(Server)

A user may send a negative, NULL,
or invalid value (e.g. not include ":'
between header name/value) in a
header field resulting in a DoS on
the server.

Message Inspector

Regex22 (UserInput)

(PointerDereference)

(Application)

A user may fail to submit a
username causing a DoS. This
could be the result of a pointer that
is dereferenced to obtain the
username, but NULL is returned
instead.

Message Inspector

http://java.sun.com/j
http://java.sun.com/j

65

Regex23 (User
+
)(Server

+
)(CPU

+
)

(HardDrive*)
A script that make an excessive
number of connections to the
listening daemon process of a
server may cause a DoS. This script
need only make connections --
further I/O may not be necessary
with the connections.

Message Interceptor
Gateway

Regex24 (UserInput)

(IntegerEvaluationRoutine)

(BufferWrite)(Buffer)

A user that supplies an integer
larger than the integer variable type
expected may cause an
exception/buffer overflow or DoS.

Intercepting

Validator

Regex25 (User)(HTTPServer)

(GetRequestRoutine)

(Application + Information)

A malformed URL (e.g. excessive
forward slashes, directory
traversals, special chars such as '*',
Unicode chars, format string
specifier, NULL) may cause a DoS
or in case of directory traversal the
user may obtain private information.

Intercepting

Validator

Authorization
Enforcer

Regex26 (User)(Server)

(SearchString)

(Information)

A user may insert a directory
traversal such as "../../" in a search
string (e.g. CGI) and obtain private
information.

I

Intercepting

Validator

Regex27 (User)(SearchString)

(Server)

(Data)(User)(BufferWrite)

(Buffer)

A user that requests data from an
untrusted server may receive large
data and result in a buffer overflow.
Often happens in gaming
environments.

Intercepting

Validator

 Regex28 (Read)(FileHeader)

(BufferWrite)(Buffer)
A user may label a file with an
excessively long filename and cause
a buffer overflow in the process
reading the file. This occurred in an
operating system context.

Message Inspector

66

Regex29 (User)(EmailHeader)

(Firewall)(Buffer)
A user can overflow a buffer in their
firewall with a large email header to
escalate their privileges (the user
can attack their own company's
LAN).

Message Inspector

Regex30 (User)(MalformedDTD)

(SOAPServer)

(XMLParser)(CPU + Memory)

A user that submits a malformed
DTD may cause the XML parser of a
SOAP server to consume the
CPU/Memory.

Message Inspector

Regex31 (User)(HTTPRequest)

(ProxyServer)(BufferWrite)

(Buffer)

A user that submits an excessively
long HTTP GET request to a proxy
server may cause a buffer overflow.
The attacker may be able to
escalate their privileges.

Message Inspector
Gateway

Regex32 (User)(RequestMessage)

(Router)
A user that submits malformed
headers (e.g. failing to supply
expected headers) may cause a
DoS. Also, NULL as a header value
may cause a DoS.

Message Inspector

Regex33 (User)(HTTPgetRequest)

(Router)(EmbeddedServer)

(Bufer*)

A user that sends an excessively
long GET request to a router may
cause a DoS via a buffer overflow or
CPU consumption.

Intercepting

Validator

Regex34 (User+)(HTTPServer+)

(GetRequestRoutine+)

(Buffer + CPU)

A user may submit consecutive
multiple long GET request URIs to
either consume the CPU or overflow
a buffer.

Message Inspector
Gateway

Regex35 (User)(HTTPgetRequest)

(Router)
A user may submit a malformed
GET request (e.g. a blank (NULL))
request and cause a router to DoS.

Intercepting

Validator

67

Regex36 (User)

((FTPCommand+MailCommand)+

OSCommand)(FTPServer +

MailServer))(BufferWrite)

(Buffer)

A user that submits an overly long
OS command or FTP/Mail command
may cause a buffer overflow in the
FTP/Mail server. The attacker may
be able to escalate their privileges.

Intercepting

Validator

Regex37 (User)(Socket)(Server)

(ExceptionThrown*) (Server)
A user may cause an exception to
be thrown in the server and cause it
to hang. (No data needs to be
transferred) (similar to regex 7)

Secure Pipe

Secure Base Action

Regex38 (User)(UserNameEntry)

(PasswordEntry)

(AuthenticationServer?)

(AuthenticationRoutine)

A user that submits a malformed
username or password for
authentication may cause a DoS
(e.g. format string specifier) or NULL
as part of the name may bypass the
authentication routine.

Authentication
Enforcer

Intercepting

Validator

 Regex39 (User)(FTPRequest)

(FTPServer)(BufferWrite)

(Buffer)

A user may submit a long directory
request (e.g. in the URL of a
browser) by using long directory
names or "/" can cause a buffer
overflow or DoS in the FTP server.
The attacker may be able to
escalate their privileges.

Intercepting

Validator

Regex40 (User)(FTPRequest)

(FTPServer)

(GetRoutine)(Server)

A user that requests a file that does
not exist on the server may cause a
DoS (e.g. Get <unavailable file>)

Message Inspector
Gateway

Regex41 (Metafile)(SizeField)

(FileHeader)(FileRead)

(BufferWrite)(Buffer)

A user that specifies the "Size" field
of a metafile to be less than the
actual file may cause a buffer
overflow.

Message Inspector

Regex42 (Application)

(DownloadMalicousFile)

(PredicTableFileLocation)

(AttackerReference)

(Information)

A user that saves files to
predicTable locations especially
where applications let you reference
them may allow for information
disclosure.

Obfuscated Transfer
Object

68

Regex43 (Application)(FileCreation)

(System)
If an application creates a
file/directory that allows malicious
users to write to them (makes them
symbolic links or simply changes
them), then attackers can escalate
their privileges.

Obfuscated Transfer
Object

Regex44 (ApplicationRun)

(Privileges) (System)
An application that runs with
SYSTEM privileges and lets a user
execute another program such as
CMD.EXE may grant themselves
SYSTEM privileges.

Container Manager
Security

Regex45 (User)(MessageHeader+

QueryParam))

(Server)(System)

A user may insert shell commands
into a message handler on a server
(e.g. email server), which may allow
the attacker run those commands on
that system.

Message Inspector

Regex46 (User)(Message)(Server)

(System)
A user that submits a message
(command) to the server before
authentication may cause a DoS
(done in C code).

Authentication
Enforcer

Message Inspector

Gateway

Regex47 (SourceFile)(IncludeFile)

(EnvironmentVariable+

ProgramVariable+

URLparam)(System)

An attacker can change/influence an
environment, program, or URL
variable to point to a remote
machine. If the variable points to an
"include" directory, then the
attacker's include file can be
executed on the target system

Intercepting

Validator

Regex48 (User)(MalformedFTPCommand)

(FTPServer)

(BufferWrite)(Buffer)

A user that submits an excessively
long FTP command may cause a
DoS or buffer overflow.

Intercepting

Validator

69

Regex49 (User)(InvalidRequest)

(ErrorMessage)

(System)

A user that submits an invalid
request may be returned with an
error message that shows the
installation path of the server.

Obfuscated Transfer
Object

Intercepting

Validator

Regex50 (User)(Application)

(Subprocess)(System)
An application that spawns a sub
process to handle a user command
must ensure that the sub process
does not have elevated permissions.

Container Manager
Security

Regex51 (WebBrowser)(CLSID)

(Filename)(System)
A user that embeds a CLSID in the
filename of a malicious file can trick
a web browser into opening the file
with a different application than
intended.

Authentication
Enforcer

Message Inspector
Gateway

Regex52 (Server)(QueryString)

(Command)(System)
A user may insert a command for
the value of a URL parameter and
execute that command on the server
(remote execution attack)

Intercepting

Validator

 Regex53 (User)(URL)(Server)(Device)

(System)
A user that submits a URL with a
device as part of the request may
cause a DoS (e.g.
http://[victim]/COM1)

Intercepting

Validator

3.6. Summary of Chapter three.

When potential attack patterns are matched against software design, the software developers

are able to take the necessary steps in mitigating the security flaw identified in the design. To

achieve this, the proposed neural network tool in research work matches the security flaws in

the design to possible attack patterns. The data source and attributes used in abstracting the

information from the attack scenarios has been highlighted in this chapter. To suggest possible

solutions to the flaws identified with the attack pattern, the second neural network matches

the attack patterns to security design pattern that can provide mitigation. The attributes for

abstracting the information used in training the second neural network and the security design

patterns which are matched to attack patterns were highlighted. Finally, the result of the

output module of the model overview was discussed. In the next chapter the implementation

of the first neural network will be demonstrated.

70

Chapter 4. Implementation of Neural Network I

4.1. Introduction
This chapter demonstrates the implementation of the first neural network in the neural

network module discussed in chapter three. This include demonstration on how data is

abstracted from attack scenarios reported in authoritative data sources using the attack

attributes for training the neural network; demonstration on how the training data is encoded,

the implementation of the neural network architecture and the training of the neural network.

The analysis of performance of the network is also presented in this chapter.

4.2. Data Collection

A total of 715 attacks from the online vulnerability databases (see chapter 3) relating to 52 of

Gegick and Williams’ regular expressed attack patterns were analysed. Table 4.1 is sample of

data collected on the attacks from the vulnerability databases. At the time of collecting data

from the online vulnerability databases, there was not enough data to fully analyse regularly

expressed attack pattern 19. However, from the 715 attacks that were analysed, 260 of the

attacks were unique in terms of their impact, mode of attack, software component and actors

involved in the attack. The remaining 455 attack are a repetition of the same type of exploit in

different applications that has been reported in the vulnerability databases (See Figure 4.1). As

this research is focused on evaluating software design for security flaws, only attacks that

exploited software design flaws were considered in the online vulnerability database. Table 4.1

shows a sample of data collected from the vulnerability databases. A complete list of data

collected can be seen in Appendix VII. Once the attack has been analysed the attack attributes

discussed in chapter three are used to abstract the data capturing the attack scenario in the

exploit for training the neural network.

Table 4.1 Sample of data collected from vulnerability databases

Date published Title of Vulnerability from Vulnerability Databases ID

2006-07-12 Shopping Cart Multiple HTML Injection Vulnerabilities CVE-2006-3542

2007-02-26 Shop Kit Plus StyleCSS.PHP Local File Include Vulnerability CVE-2007-1127

2009-01- 27 Shop-inet 'show_cat2.php' SQL Injection Vulnerability CVE-2009-0292

2000-02-01 Multiple Vendor Web Shopping Cart Hidden Form Field
Vulnerability

BID -1237

2010-09-02 Shop a la Cart Products Multiple Input Validation
Vulnerabilities

BID-42953

2008-01-07 Shop-Script 'index.php' Local Information Disclosure
Vulnerability

BID- 27165

2006-10-23 Shop-Script Multiple HTTP Response Splitting
Vulnerabilities

BID-20685

2005-05-16 Shop-Script CategoryID SQL Injection Vulnerability BID-13633

2005-05-16 Shop-Script ProductID SQL Injection Vulnerability BID-13635

71

2008-06-08 Shop-Script Pro 'current_currency' Parameter SQL Injection
Vulnerability

BID-35429

2011-10-20 Wizmall Multiple Remote File Disclosure Vulnerabilities BID-50300

2011-10-20 Wizmall Multiple SQL Injection Vulnerabilities BID-50302

2004-02-16 ShopCartCGI Remote File Disclosure Vulnerability CVE-2004-0293

2005-12-23 ShopCentrik ShopEngine EXPS Parameter Cross-Site
Scripting Vulnerability

BID-16054

2010-05-22 ECShop 'search.php' SQL Injection Vulnerability BID-40338

2010-05-07 ECShop 'category.php' SQL Injection Vulnerability BID-40001

2009-05-29 ShopEx ECShop 'integrate.php' Multiple Remote Command
Execution Vulnerabilities

BID-44497

2009-04-27 ECShop 'user.php' SQL Injection Vulnerability BID-34733

2010-02-06 ShopEx Single 'errinfo' Parameter Cross Site Scripting
Vulnerability

BID-39941

2009-08-21 Shopmaker Local File Include and SQL Injection
Vulnerabilities

BID-35937

2008-10-22 ShopMaker 'product.php' SQL Injection Vulnerability BID-31854

2008-02-01 CandyPress Multiple Input Validation Vulnerabilities CVE-2008-0546

2007-10-23 CandyPress Store Logon.ASP Cross-Site Scripting
Vulnerability

CVE-2007-5629

2007-01-09 Shopstorenow E-commerce Shopping Cart Orange.ASP SQL
Injection Vulnerability

CVE-2007-0142

2010-04-06 ShopSystem 'view_image.php' SQL Injection Vulnerability BID-39260

2006-11-15 ShopSystems Index.PHP SQL Injection Vulnerability CVE-2006-5935

2006-04-11 ShopWeezle Multiple SQL Injection Vulnerabilities CVE-2006-1706

2005-08-01 Opera Web Browser Download Dialog Manipulation File
Execution Vulnerability

CVE-2005-2407

2012-02-07 WordPress AllWebMenus Plugin 'actions.php' Arbitrary File
Upload Vulnerability

CVE-2012-1010

2010-07-02 Qt Remote Denial of Service Vulnerability CVE-2010-2621

2010-06-16 SolarWinds TFTP Server Write Request Denial Of Service
Vulnerability

CVE-2010-2310

2010-06-15 Dlink Di-604 IP Textfield Size Cross-Site Scripting and Denial
of Service Vulnerabilities

CVE-2010-2293

2010-06-15 uniper Networks IVE OS 'homepage.cgi' URI Redirection
Vulnerability

CVE-2010-2289

2001-09-08 Hassan Consulting Shopping Cart Arbitrary Command
Execution Vulnerability

CVE-2001-0985

2004-12-31 Virtual Programming VP-ASP Shopping Cart CatalogID SQL
Injection Vulnerability

CVE-2004-2412

2004-11-23 RobotFTP Server Username Buffer Overflow Vulnerability CVE 2004-0286

http://www.cvedetails.com/cve/CVE-2010-2621/

72

Figure 4. 1: Pie chart of data collected

4.3. Data Encoding

In order to encode the data needed for training the neural network, data collected on the
reported attacks from the vulnerability database was analysed. All the attack scenarios
analysed from the vulnerability databases exploited software design flaws in the applications
they were found. In most cases, the attacks are carried out in ways the software designer did
not intend the software application to be used at the time of design. For instance a system that
is designed to accept user input can be exploited by a malicious user who enters a long string of
characters to cause a buffer overflow. Therefore, all the attack scenarios analysed were actual
software design scenarios containing flaws that were exploited by attackers. Information
provided on each reported attack was used in modelling the attack scenarios in the attacks.
Figure 3.2 in chapter 3 is an example of attack on webmail in the CVE detail online vulnerability
database. This attack corresponds to regularly expressed attack pattern 3 (See Table 3.2 in
Chapter 3, Section 5). This attack pattern is:

(User)(HTTPServer) (GetMethod) (GetMethodBufferWrite) (Buffer)

In order to get a clearer picture of the attack, the attack modelling concept of the secure
troopos was used to analyse the attacks (See chapter for 2 for further discussion). Using this
approach, the attack components such as the attacker, the actors and resources under attack
and their interaction were clearly identified in the design. Figure 4.1 below shows how the
attack on webmail was analysed using this approach.

36%

64%

Data collected on Reported Attacks

Unique Attacks

Repeated Attacks

73

Attack

Attack

Attack

Attacker

Attack Webmail
System

Make system
unavailable

Steal
Infromation

Make System
unreliable

Send Long Get
Request

Mail
Manager

User

Get Mail
Request Read Mail Send Mail

Search Mail
Request

Attack

Execute
Arbitrary Code

Figure 4. 2: Analysis of Attack on Webmail using secure troopos approach

From the figure above, it could be seen that the goal of the attacker is to attack the webmail
system. To achieve this, he can perform any of the following tasks:

 Make system unavailable: The attacker can accomplish this task by sending long Get
Request to manipulate the URL when playing the role of the user. The Mail Manager
(depender) depends on the User (dependee) for Get Mail Request and Send Mail Request (i.e.
the dependun) which are resources the attacker can manipulate when performing this task.

 Make system unreliable: The attacker can also execute arbitrary code as a sub task to be
performed in order to make the system unreliable. This task can be performed in a multi-
stage attack where the attacker has initially escalated his privileges by performing the task
above followed by running arbitrary codes through the Search Mail or Get Mail Request
resource

 Steal Information: The attacker can perform this task by attacking Read Mail and Send Mail
resources. The attacker can also escalate his privilege using the sub-task (i.e. send Long Get
Request) on Get Mail Request and Send Mail Request resources to cause a buffer overflow.
An attacker gaining the privileges of the administrator will be able to access the information
on any user account on the webmail server.

74

Once the data collected on the attacks from the vulnerability databases has been analysed, the
attack scenario in the attack is established. Using the attack attributes in Table 4.1, the data
needed for training the neural network is abstracted from the attack scenario.

Apart from using the secure troopos approach to analyse the data collected on the attacks in

the vulnerability database, the sequence diagram was also used. Figure 4.2 gives two possible

design scenarios when analysing the webmail attack in figure 3.2 in chapter 3. This involves the

client who could be the attacker requesting for access from the webserver by presenting his

login information. In response, the webserver retrieves the client details from the database,

validates the client and gives a notification that the login is successful. The client then proceeds

to request for mail access. The webserver redirects the request to the mail server who in turn

retrieves the mail from the database for the webserver. The webserver then sends the mail to

the client. It should be noted that webserver, login information, mail server and database in the

sequence diagram are resources which the attacker may be choosing as targets for his attacks

Figure 4. 3: Sequence diagram on Webmail

From the sequence diagram, two design scenarios i.e. the login scenario and the request for

mail scenario were established. Using the Long Get Request, during the two design scenarios,

the attacker can stage a buffer overflow attack. Through this way, attack scenarios were also

established for the purpose generating data for training the neural network.

The training data sample consists of 12 input units for the neural network. This corresponds to

the number of the attributes used in abstracting data from the attack scenarios. Table 4.1

75

shows gives an overview of the attack attributes and the code for each data abstracted using

the attribute.

Table 4. 1: List of Attack Attributes
S\N Attributes Observable Value

1 Attacker No access 0

Read access 1

Change Access 2

Delete All 3

2 Source of Attack External 1

Internal 2

3 Target of Attack Data resource 1

System resource 2

4 Attack Vector

Software component used for attack Component ID

5 Attack Type

Availability 1

Integrity 2

Privacy 3

6 Input Validation No Validation 3

Partial validation of inputs 2

All inputs validated 1

7

Dependencies

None 0

Authentication 3

Access Control
3

Input validation 3

Trust Boundary undefined 3

Encryption 3

8 Output encoding to
external
applications/Services

None 0

Parameterized Interface 3

Stored procedure 3

Escaping all user supplied input 3

9

Authentication

None 0

Plain text password 5

Harsh password
25

Salted password 2

One time password 3

Lock outs 3

76

Session management 3

Time outs 3

Decisions logged 3

Credential management 3

Re-authentication for accessing sensitive data
3

10 Access Control

None 0

Data access authorization 1

URL access authorization 2

Service access authorization 3

Function access authorization 4

File access authorization 5

All access path checked 6

Server side enforcement 10

11 HTTP Security

None 0

Redirect data validation 3

Defined HTTP request methods 3

Input Validation for HTTP request and response
3

Secure flag set up for cookies with sensitive data 3

Strong random token 3

12 Error handling and
Logging

Sensitive application data in error message 3

Server side controlled logging 3

Server side error handled on server 3

Access not denied by default 3

Success and failure security relevant event logged 3

No Access control to log
3

No Validation of un-trusted data used in event logged 3

To generate the corresponding values for attack attributes four and five in Table 4.1 above, 106

attack components were abstracted from the regularly expressed attack pattern in Table 3.2 in

chapter 3 (See Table 4.2 and the appendix for the description on the attack components).

Also, to make it easier for the attack components to be identified using the attack attributes

above, each attack component was allocated a unique ID and were also classified into the

following groups:

 Users: This group normally depicts users of the software application system. However, in the

context of this research work, the group mostly refer to the attackers or the victims of the

attacks

77

 Inputs: This signifies the input the user is supplying to the software application to be

processed. An example of this is a search string submitted to a search engine on a web site

 Data: Attack components in the regularly expressed attack pattern such as file, information

or cookie referring to any for data which is involved in the attack was classified under this

group.

 Parameter: This group is used classify the attack components used as parameters in

software applications. For example, parameter used in establishing the size of a field,

memory reference point or the payload length of an HTTP message.

 Hardware: This group refer to any hardware such as CPU, hard drive or memory that is

involved in an attack.

 Software: This group also refer to software applications involved in attacks such as when an

attacker takes over a software application that has system privileges to run malicious code.

Attack components such as application, browser, firewall or sub process of an application

are classified under this group

 Server: Attack components representing any server processes in the regularly expressed

attack pattern is classified under this group. Example of this include application server,

proxy server or FTP server

 Event: All the attack components representing system events such as when reading or

writing to a file or buffers is classified under this group. Example of this attack component

includes buffer write, file read, HTTP Request and Get Method

 Others: Three attack components that could not be categorized under the groups above

were included in this group. The attack component includes: class, subclass and privilege.

To further analyse the attack components in the regularly expressed attack pattern a concept

map in figure 4.3 was used to illustrate how they interact with one another using the groups in

which the attack components has been categorized into. Using this concept the following

interactions were observed between the attack components.

1. The user or client group interacts with other groups by:

 Using Inputs to trigger Events and receiving responses from Events

 Having privileges. It should be noted here that in many attack scenarios the attacker

may not need to have any privilege to stage an attack

2. The Event group interacts with other groups by:

Responding to actions triggered by the Users or other Software systems. E.g. A software

application responding to user requests to open a file.

Accessing Data. E.g. User triggering the Get Request event to access web pages

78

3. The Software and Server group comes under the Application/System group in the concept

map. They interact with other groups by:

Using Inputs to trigger Events and receiving responses from Events

 Having privileges.

 Uses Hardware / Resources

4. The Hardware/ Resource group interact with other groups by

 Saving, retrieving or processing data when it is used by software systems

 Has privileges

Uses

Has

Users/Client Data
Application/

System

Events

Privilege
Hardware/
Resources

Inputs

Responds/Trigger

Acc
ess

Save/R
etri

eve/P
ro

ce
ss

Uses

Trigger U
se

s

Has

Figure 4. 4: Concept map showing interaction between the groups in which the attack

components has been categorized

Table 4. 2: List of Attack Components

Component
ID

Software Component Group

1 Application Software

2 Application Run Events

3 Application Server Parameter

4 Attacker Reference Parameter

79

5 Authentication Routine Event

6 Bookmark Buffer Write Event

7 Bookmark Save Event

8 Browser/GUI Software

9 Buffer Hardware

10 Buffer Write Event

11 Class Other

12 Client User

13 CLSID Parameter

14 Command Inputs

15 Command Line Argument Buffer Write Event

16 Command Line Argument Entry Inputs

17 Computer Hardware

18 Cookie Data

19 CPU Hardware

20 Data Data

21 Database Data

22 Daemon Process Software

23 Device Hardware

24 Download Malicious File Data

25 Email Header Data

26 Embedded Server Server

27 Environment Variable Parameter

28 Environment Variable Write Event

29 Error Message Data

30 Exception Thrown Event

31 File Creation Event

32 File Header Data

33 Filename Data

34 File Read Event

35 Firewall Software

36 Form Data Data

37 FTP Request Event

38 FTP Server Server

39 Get method Event

40 Get Request Routine Event

41 Get Routine Event

42 Hard Drive Hardware

43 Header Data

44 Header field Buffer Write Event

45 HTML Page Data

46 HTTP Content Data

80

47 HTTP Get Request Event

48 HTTP Message Handler Event

49 HTTP Message Payload length Parameter

50 HTTP Request Event

51 HTTP Server Server

52 Hyperlink Parameter

53 Include File Data

54 Information Data

55 Integer Evaluation Routine Event

56 Invalid Request Inputs

57 Length Header Value Parameter

58 Log Data

59 Log Entry Read Event

60 Malformed DTD Data

61 Malformed FTP Command Inputs

62 Malicious client User

63 Malicious Include File Data

64 Memory Hardware

65 Message Header Data

66 Message header Handler Event

67 Metafile Data

68 Overridden Secured Methods Event

69 Password Entry Input

70 Pointer Dereference Event

71 Post Method Event

72 PredicTable File Location Parameter

73 Privileges Other

74 Program Variable Parameter

75 Proxy Server Server

76 Query Parameter Parameter

77 Query String Input

78 Read User Input Event

79 Request Message Event

80 Search String Input

81 Server Server

82 Server Connection State Event

83 Server Variables Parameter

84 Size Field Parameter

85 SOAP Server Server

86 Socket Software

87 Socket Buffer Write Event

88 Socket Read Event

81

89 Source File Data

90 SQL Input Input

91 SQL Input Field Input

92 Subclass other

93 Sub process Software

94 Sys admin User

95 Syslog Function Event

96 System Software

97 URL Input

98 URL param Parameter

99 User User

100 User Input Input

101 Username Entry Input

102 Variable Parameter

103 Victim Client User

104 Web App Software

105 XML Parser Software

106 FTP Handler Event

To demonstrate how the data for training is encoded using the code for each of the attributes

in the Table above, information was abstracted on the attack scenario on webmail by looking at

the online vulnerability databases to get the details of the attributes we are interested in (See

chapter 3). In this example, the data abstracted from the attack scenario using the attack

attribute list is as follows.

Table 4. 3:Sample of Pre-processed Training Data from Attack Scenario
Attacker Source Target Attack

Vector
Attack
Type

Input
Validation

Dependencies Output
Encoding

Authentication Access
Control

HTTP
Security

Error

No
Access

External Buffer Long Get
Request

Availability Partial
Validation

Authentication
& Input

Validation

None None URL
Access

Input
Validation

None

Using the corresponding values for the attributes, the data is then encoded as shown in Table

4.4 below.

Table 4. 4: Sample of Training data after encoding
Attacker Source Target Attack

Vector
Attack
Type

Input
Validation

Dependencies Output
Encoding

Authentication Access
Control

HTTP
Security

Error

0 1 9 39 5 2 6 0 2 2 3 0

The second stage of the data processing involves converting the encoded data into ASCII
comma delimited format which can be used to train the neural network as shown below

0, 1, 9, 39, 5, 2, 6, 0, 0, 2, 2, 3, 0

82

 Finally, the data is loaded in the neural network for training as shown in the following Table.

Table 4. 5:Sample of data input in Neural Network
Input 1 Input 2 Input 3 Input 4 Input 5 Input 6 Input 7 Input 8 Input 9 Input 10 Input 11 Input 12

0 1 9 39 5 2 6 0 0 2 3 0

The data for the expected output of the neural network are derived from the attack pattern

that is to be identified in each of the attack scenarios. Therefore, each of the attack patterns is

given a unique ID to derive the expected output for each of the input data samples. The unique

ID corresponds to the number of the regularly expressed attack pattern as shown in Table 3.2 in

chapter 3. The output data sample consists of output units corresponding to the attack pattern

IDs. For example the neural networks implemented in this chapter classify attacks into different

attack patterns. The above sample data on webmail attack corresponds to regularly expressed

attack pattern 3. Therefore, the neural network is trained to identify the expected attack

pattern as 3 using the following output data

0, 0, 3, 0,

4.4. The Neural Network Architecture
The feed-forward back-propagation neural network is used to evaluate scenarios from software

designs and identify possible attacks in the design. The back-propagation neural network is a

well-known type of neural network commonly used in pattern recognition problems (Srinivasa

and Settipalli, 2009). It has been used in this research because of its simplicity and reasonable

speed. The three layer back-propagation architecture (see Figure 4.4) was adopted in this

research work for training the neural network. The choice of this architecture is mainly due to

the fact that it is the most standard and general architecture commonly used for training neural

networks (Ryan, Lin and Mikkulainen, 1998). Therefore, by adopting this architecture, the

feasibility of the proposed neural network tool in this research can be demonstrated and its

results can be replicated easily.

83

Figure 4. 5: The Neural Network Architecture

To find out the optimal performance of the neural network, three different training

optimization algorithms were applied to the back propagation network. The tree training

algorithms has been selected because they are commonly used in training neural networks for

resolving pattern recognition problems. The training algorithms consisted of the following:

 Levenberg-Marquardt (LM): This training optimization algorithm has been described as the

fastest training algorithm. It is also the recommended first choice for supervised neural

network. The advantage of the LM optimization algorithm is noticeable mostly on function

approximation problems with relatively small size neural network where very accurate

training is required (Gavin, 2011, Beale, Hagan and Demuth et.al, 2010, Lourakis, 2005).

Compared to other training optimization algorithms, LM training algorithm also obtains a

lower mean square error (MSE). However LM training algorithm is less efficient when used

with large neural network because it requires more memory and computational time. Also,

in pattern recognition problems, the performance of LM training optimization algorithm is

less efficient (Beale, Hagan and Demuth et.al, 2010). Based on the advantages of LM training

algorithms highlighted above, it has been considered for training the neural network in this

research work

 Resilient Back-propagation (RP): RP optimization training algorithm has been described as

the fastest algorithm for training neural networks on pattern recognition problems (Beale,

84

Hagan and Demuth et.al). It requires relatively small memory but when its error goal is

reduced, its performance degrades.

 Scaled Conjugate Gradient (SCG): The SCG training optimization algorithm give a good

performance on various types of problems especially where the size of the neural network is

large. It is commonly used in pattern recognition problems because it converges quickly. It is

almost as fast RP training algorithm and requires a relative small memory. In comparison

with RP training algorithm, when the error is reduced, its performance does not degrade

quickly.

Beale, Hagan and Demuth et.al (2010) states that any neural network whose weight, net input,

and transfer functions have derivative functions can be trained using the optimization

algorithm discussed above. Once any of the conditions below is met, the training of the neural

network stops. Beale, Hagan and Demuth et.al (2010) states that these conditions include:

 Reaching the maximum number of epochs (repetitions) is reached.

 Exceeding the maximum amount of time.

 When performance is minimized to the goal.

 The performance gradient falls below the set minimum gradient

 Validation performance has increased more than maximum fail times since the last time it

decreased (when using validation).

For each of the above training optimization algorithms applied to the neural network in this

research work, different number of hidden neurons was also used to further optimize its

performance. Each layer of the hidden nodes in the neural network architecture apply a tan-

sigmoid transfer function to the various connection weights and in the output nodes, the linear

transfer function is applied to its weight. As back-propagation neural network is a supervised

learning architecture, the training set of data discussed in section 2 was used for its training.

From this, the neural network derives its weights and parameters. The weights and parameters

are computed by calculating the error between the actual and expected output data of the

neural network when the training data is presented to it. The error is then used to modify the

weights and parameters to enable the neural network to have better chance of giving a correct

output when it is next presented with same input.

4.5. The Neural Network training

To train the neural network the training data set is divided into two sets. The first set of data is

the training data sets (260 Samples) that were presented to the neural network during training.

The second set (52 Samples) is the data that were used to test the performance of the neural

network after it had been trained. At the initial stage of the training, it was discovered that the

neural network had too many categories to classify the input data into (i.e. 52 categories)

85

because the neural network was not able to converge. To overcome the problem, the training

data was further divided into two sets. The first set contained 143 samples and the second set

contained 117 samples. These were then used for training two neural networks. For each of the

neural networks, the training optimization algorithms discussed above were applied and its

performance was observed when 80, 90, 100, 110 and 120 hidden neurons were used. Mat lab

Neural Network tool box is used to perform the training. The training performance is measured

by Mean Squared Error (MSE) and the training stops when the generalization stops improving

or when the 1000th iteration is reached. The training parameters also include the learning rate

which is set to 0.01 with a goal of 0; maximum fail set to 6, a minimum gradient of 0.000001.

The results and analysis of the performance of this neural network is presented in section six.

Table 4. 6:Training and Test data sets

Number of samples Training Data Test Data

Data Set 1 143 26

Data set 2 117 26

Total 260 52

4.6. Analysis and Discussion

As highlighted above, different numbers of neurons were applied to the neural network I to

further optimize its performance. In order to find out when neural network I had the best

performance, the training was executed in five simulations to obtain the average results of its

performance. The average results on the training time, MSE and number of epoch were used in

analysis of the performance of the neural network because the neural network is initiated with

random weights during its training and this gives different results. The results of the

performance of the neural network when RP and SCG training optimization algorithms were

applied are presented in this section. Also, statistical analysis was carried out to establish the

significance of the training optimization algorithms applied to the neural network using

statistical tools. The result of the performance of the neural network when LM training

optimization algorithm is applied is not presented because the performance of the neural

network was poor when the training algorithm is applied. It took an average of 15 minutes to

complete its training and the result of its MSE was an average of 4.5 which is very far from the

set goal.

4.6.1. Mean Square Error (MSE)
Table 4.7 and Table 4.8 show the result of the performance of first neural network based on
MSE using different number of hidden neurons. The performance of neural network when SCG
training optimization algorithm was applied was considered to be very good as the neural
network was able to reach its set goal for training with the different number of hidden neurons

86

used. The MSE results obtained were below 0.005 for which the neural network could generate
an outcome very close to the expected attack pattern. Figure 4.7 shows the plot of the average
MSE result for the different number of neurons applied to the network. From this plot it could
be noticed that the MSE dropped sharply to the lowest MSE (0.002148) when 90 neurons were
implemented. To test the performance of the neural network, the second data sets in Table 4.6
were used to test the two neural networks implemented under neural network l and the result
produced an output as close as possible to the expected output (See Chapter 6 for more
discussion)

Figure 4. 6: Plot of MSE for Neural Network I during training

Table 4. 7:MSE of Neural Network I with SCG Applied

s\n
o

Number of Hidden Neurons

80 90 100 110 120

1 0.00279 0.00119 0.00398 0.00199 0.00239

2 0.00199 0.00199 0.000796 0.00239 0.00159

3 0.00447 0.00358 0.002790 0.00279 0.00318

4 0.00389 0.00159 0.001990 0.00279 0.00451

5 0.00309 0.00239 0.00279 0.00199 0.00239

Ave 0.003246 0.002148 0.002469 0.00239 0.002812

87

Figure 4. 7: MSE of Neural Network I with SCG Applied

The performance of the first neural network when the RP training optimization algorithm was
applied was also considered to be very good. The differences in the average MSE results
obtained is small and were also below 0.005. Compared to the MSE result obtained when SCG
training optimization algorithm was applied the MSE result obtained for RP was slightly higher.
However, when the network was tested with the second data set in Table 4.6 the generated
output was also identical to the expected output. Figure 4.8 shows the plot of the average MSE
results obtained. The plot showed that the lowest MSE (0.00284) was obtained when 90
neurons were implemented in the neural network.

Table 4. 8: MSE of Neural Network I with RP Applied

s\n
o

Number of Hidden Neurons

80 90 100 110 120

1 0.00358 0.0019 0.00279 0.00239 0.00239

2 0.00318 0.00402 0.00477 0.00358 0.00279

3 0.00318 0.00159 0.00239 0.0034 0.0042

4 0.00438 0.00404 0.00279 0.00336 0.00407

5 0.00279 0.00265 0.00474 0.00491 0.00239

Ave 0.003422 0.00284 0.003496 0.003528 0.003168

0.002

0.0022

0.0024

0.0026

0.0028

0.003

0.0032

0.0034

80 90 100 110 120

M
SE

Number of Hidden Neurons

MSE

MSE

88

Figure 4. 8: MSE of Neural Network I with RP Applied

4.6.2. Number of Epochs
Table of 4.9 and Table 4.10 show the performance of the first neural network based on number
of epochs used in training the network. The highest number of average epoch used when SCG
was applied as the training optimization algorithm was 462.8 with 100 neurons implemented.
This dropped to the lowest (355) when 120 neurons were implemented in the network. Figure
4.9 shows the plot of the average number of epoch used in training with different number of
neurons. From the plot, it would noticed that the number epoch increases as the number
neuron increased from 80 to 100 and reduces after 110 and 120 neurons were implemented in
the network.

Table 4. 9:Number of Epoch used in Neural Network I with SCG Applied

s\n
o

Number of Hidden Neurons

80 90 100 110 120

1 359 402 585 370 300

2 551 385 379 341 325

3 513 536 514 358 395

4 429 530 424 306 333

5 392 399 412 411 422

Ave 448.8 450.4 462.8 357.2 355

0.0025

0.0027

0.0029

0.0031

0.0033

0.0035

0.0037

80 90 100 110 120

M
SE

Number of Hidden Neurons

MSE

MSE

89

Figure 4. 9: Number of Epoch used in Neural Network I with SCG Applied

The highest number of epoch used in training the network when RP training optimization
algorithm was applied is 559.8 when 80 neurons were implemented and the lowest was 454.4
when 100 neurons were implemented. The plot of the average number of epoch used when RP
training optimization algorithm was applied in Figure 4.10 shows that the number of epochs
used decreases as the number of neurons implemented increases from 80 to 100. However, the
number of epoch used increased as number neurons implemented increased from 110 to 120.
In comparison to number of epoch used in training the network when SCG training optimization
algorithm was applied, the number of epoch used when RP training optimization algorithm was
applied was more.

Table 4. 10: Number of Epoch used in Neural Network I with RP Applied

s\n
o

Number of Hidden Neurons

80 90 100 110 120

1 433 560 551 472 518

2 425 426 425 456 599

3 810 602 483 411 533

4 615 253 395 504 438

5 516 483 418 441 515

Ave 559.8 464.8 454.4 456.8 520.6

300

350

400

450

500

80 90 100 110 120

N
u

m
b

e
r

o
f

Ep
o

ch

Number of Hidden Neurons

Epoch

Epoch

90

4.6. Summary of Chapter 4
The implementation of the first neural network has been demonstrated in this chapter. Data

from online vulnerability databases were used as the data source for the information needed

on the attack scenarios used in training the neural network. To model the attack scenario from

the data, secure troopos approach and sequence diagrams were used. This provided all the

needed information on the attack components in the attack. Using the 12 attack attribute, data

was abstracted from the attack scenarios and then encoded. Further analysis was done on the

attack attribute four and five in order to encode the data. This involved generating all the attack

components from the regularly expressed attack patterns, giving each attack component a

unique ID and classifying them into different groups to illustrate how they interact with one

another. A discussion on the concept map showing their interaction was presented. The data

abstracted was used subsequently as the input data for the neural network. For the expected

output data, unique IDs were allocated to the regularly expressed attack patterns which the

neural network is trained to identify based on the information on the attack scenario presented

to it. The standard three layer neural network architecture was adopted for this research and to

obtain an optimal performance for the neural network, three training optimization algorithms

were used along with different number of hidden neurons. The training optimization algorithm

includes Levenberg-Marquardt (LM), Resilient Back-propagation (RP) and Scaled Conjugate

Gradient (SCG). The strength and weakness of all the training optimization algorithms were

highlighted. The performance of neural network during training was measured by Mean Square

Error (MSE).

The performance of the neural network were analyzed based on MSE, number of epoch used in

training and time of training. The analysis of the overall result of the performance of the

350

400

450

500

550

600

80 90 100 110 120

N
u

m
b

e
r

o
f

Ep
o

ch

Number of Hidden Neurons

Epoch

Epoch

Figure 4. 10: Number of Epoch used in Neural Network I with RP

applied

91

network showed that neural network I gave a better performance when SCG training

optimization algorithm was applied. The best MSE performance of network was observed when

90 neurons were implemented and the training was completed in 51 seconds. Based on this

result, 90 hidden neurons were chosen for the implementation of neural network I and SCG

training optimization algorithm was chosen for its training. In the next chapter, the

implementation of neural network II is demonstrated.

92

Chapter 5. Implementation of Neural Network II

5.1. Introduction
This chapter demonstrates the implementation of neural network II the neural network model.

The process through which the neural network matches the security patterns to identified

attack pattern by neural network I model is demonstrated. This includes the implementation of

the neural network, demonstration on data collection and encoding and training of the neural

network. The result and analysis of performance of the network is also presented in this

chapter.

5.2. Data Collection
The identified 52 regularly expressed attack patterns by William and Gegick was used as the

data source for training the second neural network. To align the regularly expressed attack

patterns to the threats that can exploit security flaws they represent, Microsoft threat

classification scheme (STRIDE) was used to classify them into six groups according to their

corresponding threat category. Table 5.1 shows that out of the 52 regularly expressed attack

patterns, 1 of them was classified under spoofing identity attack category, 2 was classified

under tamper with data attacks, none was classified under repudiation attacks, 6 was classified

under the information disclosure attacks, 21 was classified under the denial of service attacks

and 27 was classified under the elevation of privilege attacks. No attack was classified under

repudiation attacks because none of the regularly expressed attack patterns demonstrated this

type of attack. However, it was assumed that this attack was covered under the elevation of

privilege attack because the attacker must have escalated his privileges before been able to

cover his tracks in a multi-stage attack scenario.

Table 5. 1: Classification of Attack Pattern

 Attack Category Attack IDS Frequency

1 Spoofing 51 0.02%

2 Tampering 9, 47 0.04%

3 Repudiation 0.00%

4 Information Disclosure 13, 24, 25, 26,42, 49 0.12%

5 Denial of Service 1, 2, 7, 10, 17, 21, 22, 23, 24, 25, 32, 33,
34, 35, 37, 38, 39, 40, 46, 48, 53

0.41%

6 Elevation of Privilege 3, 4, 6, 8, 9, 11, 12, 14, 15, 16, 17, 20, 28,
29, 30, 31, 36, 38, 39, 41, 43, 44, 45, 47,
50, 51, 52

0.53%

Data was also collected from the security design patterns defined by Steel, et.al (2005), Blakley,

et.al (2004) and Kienzle and Elder (2003). The security patterns defined by these authors can be

93

seen on Table 5.2, 5.3 and 5.4 below. A total of 23 security design patterns were defined by

Steel, et.al (2005). These were classified into four logical tiers consisting of the web tier, the

business tier, web services and identity tier. Table 5.2 show the security design patterns defined

under each logical tier:

Table 5. 2: Security Design Pattern by Steel, et.al (2005)

S\no Web Tier Business Tier Web Services Identity Tier

1
Authentication
Enforcer Audit Interceptor

Message Inspector
Gateway

Assertion
Builder

2
Authorization
Enforcer

Container Managed
Security

Secure Message
Router

Credential
Tokenizer

3 Intercepting Validator
Dynamic Service
Management Message Inspector

Single Sign On
(SSO) Delegator

4 Secure Base Action
Obfuscated Transfer
Object

Password
Synchronizer

5 Secure Pipe Policy Delegate

6 Secure Service Proxy Secure Service Façade

7
Secure Session
Manager Secure Session Object

8
Intercepting Web
Agent

9 Secure logger

A total of 13 security design patterns were defined by Blakley, et.al (2004) and these were

classified into two groups. This consisted of the available security design patterns and the

protected security design patterns. Table 5.3 shows the security design patterns classified

under each category.

Table 5. 3: Security Design Patterns by Blakley, et.al (2004)

s\no Available Protected

1 Check pointed System Protected System

2 Standby Policy

3 Comparator- Check Fault – Tolerant
System

Authenticator

4 Replicated System Subject Descriptor

5 Error/ Detection/Correction Secure Communication

6 Security Context

7 Security Association

8 Secure Proxy

94

The security design patterns defined by Kienzle and Elder (2003) were also classified into two

categories. These include the structural patterns and procedural patterns. The structural

patterns consist of 13 main security design patterns and 3 mini-patterns. The mini-patterns are

less formal and shorter discussion that were included as a supplement to the main security

design patterns. The procedural patterns consist of 13 security design patterns. Table 5.4 shows

the security design patterns that were classified under each category.

Table 5. 4: Security Design Patterns by Kienzle and Elder (2003)

s\no Structural Patterns Procedural Pattern

1 Account Lockout Build Server From Ground up

2 Authenticated Session Choose the right stuff

3 Client Data Storage Document Security goals

4 Client Input filters Document Server Configuration

5 Directed Session (M) Enrol by Validating out of band

6 Hidden Implementation (M) Enrol Using Third party Validation

7 Encrypted Storage Enrol with pre-existing Shared Secret

8 Minefield Enrol without validating

9 Network Address Blacklist Log for Audit

10 Partitioned Application Patch Proactively

11 Password Authentication Red Team the Design

12 Password Propagation Share responsibility for security

13 Secure Assertion Test on a staging server

14 Server Sandbox

15 Trusted Proxy

16 Validated Transaction

There are other security design patterns that have been defined by other authors different

from the ones highlighted above (See chapter 2 for further discussion). For this reason, a

decision had to be made on which security design patterns to be analysed for abstracting the

data needed for training the neural network. The decision to use the security design patterns

defined by Steel, et.al (2005), Blakley, et.al (2004) and Kienzle and Elder (2003) base on the

following reasons:

1. Security design pattern by Blakley, et.al (2004) was initiated by the Open Group Security
Forum in a coordinated effort to resolve the problem of lack of clear definition of security
design patterns. The security design patterns were defined based on a comprehensive list of
existing security design pattern to be used as a guide by software developers.

2. There is an existing research work by Halkidis, S.T. et al. (2006) in which the security design
by Blakley, et.al (2004) was analysed qualitatively which provided insight into this research
work (See section 3 further discussion)

95

3. Since security design patterns have been defined for different purposes, the security design
patterns by Steel, et.al (2005) and Kienzle and Elder (2003) were chosen because they both
address web related security issues.

5.3. Data Encoding
In order to encode the data needed for training the second neural network, the collected data

were initially analysed. Since the data to be used as input for the second neural network is

based on the regularly expressed attack pattern identified by the first neural network, no

further analysis was required because the data was already analysed (See chapter 4 for more

discussion) and classified according to the type of threat they represent as shown in Table 5.1.

The information from the analysis on the attack components in the regularly expressed attack

patterns was used to encode the input data. Table 5.5 shows the attributes of the regularly

expressed attack patterns used in encoding the input data to the second neural network (See

Chapter 3 section 4.2 for further discussion).

Table 5. 5: Attributes of Regularly Expressed Attack Patterns

s\no Attribute Observable Value

1 Attack ID Attack Pattern Attack ID

2 Resource Attacked Attack Component Attack Component ID

3 Attack Vector Attack Component Attack Component ID

4 Attack Type Availability 1

Integrity 2

Confidentiality 3

The taxonomy of security design patterns by Wiesauer and Sametinger (2009) was based on the

description of the attack patterns in Common Attack Pattern Enumeration and Classification

(CAPEC) catalogue and the intent and purpose of the security design patterns. The authors

stated that since the classification of the attack patterns in CAPEC catalogue is based on STRIDE,

their proposed taxonomy on security design patterns could be considered as classification

based on STRIDE as well. Building on this approach, the security design patterns defined by

Steel, et.al (2005), Blakley, et.al (2004) and Kienzle and Elder (2003) in section 2 were analysed.

From previous research by Halkidis, S.T. et al. (2006), it was observed that security design

pattern by Blakley, et.al (2004) was analysed qualitatively using Microsoft threat classification

(STRIDE) to find out the security design pattern that provides protection on each of the threat

category. The result of the analysis is shown on Table 5.6 and was used as part of the data

needed for training the second neural network.

Table 5. 6: Classification of Security Design Pattern by Blakley, et.al (2004)

s\no Security Pattern S T R I D E

1 Check pointed System X

96

2 Standby X

3 Comparator- Check Fault – Tolerant
System

 X

4 Replicated System X

5 Error/ Detection/Correction X

6 Protected System X X X X

7 Policy X X X X

8 Authenticator X X X X

9 Subject Descriptor

10 Secure Communication X X X X X

11 Security Context X X X

12 Security Association X X X X

13 Secure Proxy X X X X

In a similar manner, security design patterns defined by Steel, et.al (2005), and Kienzle and
Elder (2003) were analysed. During the analysis of security design patterns by Kienzle and Elder
(2003), the procedural patterns were not analysed because they consisted security patterns
which were not implemented in the software application. Procedural patterns were defined for
the purpose of improving the development process of mission critical software applications.
They can impact the management of a software development project when adopted by
software developers. Table 5.7 and Table 5.8 show the threat category that the security design
patterns were classified after the analysis. It would be noticed that the secure assertion and
dynamic service management on Table 5.7 and Table 5.8 respectively were not classified under
any category. These security design patterns are related to each other and could not be
classified under any threat category because they only provide monitoring and reporting of the
system events but do not offer protection against STRIDE attacks

Table 5. 7: Classification of Security Design Pattern by Kienzle and Elder (2003)

s\no Structural Patterns S T R I D E

1 Account Lockout X X X X

2 Authenticated Session X X X X

3 Client Data Storage X X

4 Client Input filters X X X X

5 Directed Session (M) X

6 Hidden Implementation (M) X

7 Encrypted Storage X X

8 Minefield X X

9 Network Address Blacklist X X

10 Partitioned Application X

11 Password Authentication X X X X

12 Password Propagation X X X X

13 Secure Assertion

97

14 Server Sandbox X X X

15 Trusted Proxy X X X X

16 Validated Transaction X

Table 5. 8: Classification of Security Design Pattern by Steel, et.al (2005)

s\no Security Pattern S T R I D E

1 Authentication Enforcer X X X X

2 Authorization Enforcer X X X X

3 Intercepting Validator X X X

4 Secure Base Action X X X X X

5 Secure Pipe X X X X X

6 Secure Service Proxy X X X X

7 Secure Session Manager X X X X

8 Intercepting Web Agent X X X X

9 Secure logger X X X

10 Audit Interceptor X X X

11 Container Managed Security X X X X

12 Dynamic Service Management

13 Obfuscated Transfer Object X

14 Policy Delegate X X

15 Secure Service Façade X X X X

16 Secure Session Object X X X

17 Message Inspector Gateway X X X X X

18 Secure Message Router X X

19 Message Inspector X X X X

20 Assertion Builder X

21 Credential Tokenizer X X

22 Single Sign On (SSO) Delegator X X

23 Password Synchronizer X X

Following the analysis of the data collected on the regularly expressed attack patterns and the
security design patterns, the data needed for training the second neural network was encoded.
A total of 226 training data samples were abstracted from the regularly expressed attack

patterns using the attributes in Table 5.5. To encode the data, the corresponding value for the

information abstracted by each attribute in the Table was used in encoding the data. For

instance, regularly expressed attack pattern 1 is represented as:

(User
+
)(Server

+
)(Log

+
)(HardDrive

+
)

Based on the analysis of the data collected on this attack pattern, the information on Table 5.9

was abstracted from attack pattern 1 using the regularly expressed attack pattern attributes.

98

Table 5. 9: Sample of Pre-processed training data from attack pattern

Attack ID Resource
Attacked

Attack Vector Attack Type

1 Hard Drive Log Availability

In order to encode the information abstracted in the Table, the attack component ID for Hard
Drive and Log was used for their encoding (See Table 4.2 in chapter 4 Section 3) The

corresponding values for Availability and Denial of Service in Table 5.5 was also

used for their encoding. Table 5.10 below shows the training data for the example above after
it has been encoded.

Table 5. 10: Sample of training data after encoding

Attack ID Resource
Attacked

Attack Vector Attack Type

1 42 58 1

The next stage involves converting the encoded data into ASCII comma delimited format which
can be used to train the neural network as shown below

1, 42, 58, 1

The data is then loaded into the neural network for training as shown in the following Table.

Table 5. 11: Sample of input data into neural network

Input 1 Input 2 Input 3 Input 4
1 42 58 1

For the expected output, security design patterns by Steel, et.al (2005), and Kienzle and Elder
(2003) were grouped into six groups with respect to STRIDE. Each group provides possible
solutions to the threats identified under each threat category of STRIDE. A unique ID is assigned
each group so that the neural network can match them to the corresponding attack patterns.
Based on this encoding, the neural network is expected to identify the possible solution for the
attack pattern in the Table 5.11 above by giving the following output:

1, 0, 0, 0, 0, 0

Table 5.12 -5.17 shows the six groups the security design patterns were classified into using
STRIDE

99

Table 5. 12: Security Design Patterns Group 1

s\no Security patterns by Steel,
et.al, (2005)

Security Patterns by
Blakley, et.al (2004)

Security patterns by Kienzle
and Elder (2003)

1 Authentication Enforcer Protected System Account Lockout

2 Authorization Enforcer Policy Authenticated Session

3 Secure Base Action Authenticator Minefield

4 Secure Pipe Secure Communication Network Address Blacklist

5 Secure Service Proxy Security Association Password Authentication

6 Secure Session Manager Secure Proxy Password Propagation

7 Intercepting Web Agent Trusted Proxy

8 Container Managed
Security

9 Secure Service Façade

10 Secure Session Object

11 Message Inspector
Gateway

12 Secure Message Router

13 Message Inspector

14 Assertion Builder

15 Credential Tokenizer

16 Single Sign On (SSO)
Delegator

16 Password Synchronizer

 Figure 5. 1: Security Design Patterns Group 1

0

2

4

6

8

10

12

14

16

18

Steel, et. Al Blakey, et.al Kinezle and Elder

N
u

m
b

e
r

 o
f

Se
cu

ri
ty

 P
at

te
rn

s

Group One

Security Patterns

100

Table 5. 13:Security Design Patterns Group 2

s\no Security patterns by Steel,
et.al, (2005)

Security Patterns by
Blakley, et.al (2004)

Security patterns by Kienzle
and Elder (2003)

1 Authentication Enforcer Protected System Account Lockout

2 Authorization Enforcer Policy Authenticated Session

3 Intercepting Validator Authenticator Client Input filters

4 Secure Base Action Secure Communication Directed Session (M)

5 Secure Pipe Security Context Password Authentication

6 Secure Service Proxy Security Association Password Propagation

7 Secure Session Manager Secure Proxy Server Sandbox

8 Intercepting Web Agent Trusted Proxy

9 Secure logger Validated Transaction

10 Audit Interceptor

11 Container Managed
Security

12 Secure Service Façade

13 Message Inspector
Gateway

14 Message Inspector

 Figure 5. 2: Security Design Patterns Group 2

Table 5. 14: Security Design Patterns Group 3

s\no Security patterns by Steel,
et.al, (2005)

Security Patterns by
Blakley, et.al (2004)

Security patterns by Kienzle
and Elder (2003)

1 Secure logger Minefield

2 Audit Interceptor

3 Message Inspector

0

2

4

6

8

10

12

14

16

Steel, et. Al Blakey, et.al Kinezle and Elder

N
u

m
b

er
 o

f
Se

cu
ri

ty
 P

at
te

rn
s

Group Two

Security patterns

101

Gateway

4 Message Inspector

5 Credential Tokenizer

 Figure 5. 3: Security Design Patterns Group 3

Table 5. 15:Security Design Patterns Group 4

s\no Security patterns by Steel,
et.al, (2005)

Security Patterns by
Blakley, et.al (2004)

Security patterns by Kienzle
and Elder (2003)

1 Authentication Enforcer Protected System Account Lockout

2 Authorization Enforcer Policy Authenticated Session

3 Intercepting Validator Authenticator Client Data Storage

4 Secure Base Action Secure Communication Client Input filters

5 Secure Pipe Security Context Hidden Implementation (M)

6 Secure Service Proxy Security Association Password Propagation

7 Secure Session Manager Secure Proxy Password Authentication

8 Intercepting Web Agent Password Propagation

9 Secure logger Server Sandbox

10 Audit Interceptor Trusted Proxy

11 Container Managed
Security

12 Obfuscated Transfer Object

13 Policy Delegate

14 Secure Service Façade

15 Secure Session Object

16 Message Inspector
Gateway

17 Secure Message Router

0

1

2

3

4

5

6

Steel, et. Al Blakey, et.al Kinezle and Elder

N
u

m
b

er
 o

f
Se

cu
ri

ty
 P

at
te

rn
s

Group Three

Security patterns

102

18 Message Inspector

19 Single Sign On (SSO)
Delegator

20 Password Synchronizer

 Figure 5. 4: Security Design Patterns Group 4

Table 5. 16: Security Design Patterns Group 5

s\no Security patterns by Steel,
et.al, (2005)

Security Patterns by
Blakley, et.al (2004)

Security patterns by Kienzle
and Elder (2003)

1 Secure Base Action Check pointed System Client Input filters

2 Secure Pipe Standby Network Address Blacklist

3
Policy Delegate

Comparator- Check Fault –
Tolerant System

4 Replicated System

5 Error/ Detection/Correction

6 Secure Communication

0

5

10

15

20

25

Steel, et. Al Blakey, et.al Kinezle and Elder

N
u

m
b

er
 o

f
Se

cu
ri

ty
 P

at
te

rn
s

Group Four

Security Patterns

103

 Figure 5. 5: Security Design Patterns Group 5

Table 5. 17: Security Design Patterns Group 6

s\no Security patterns by Steel,
et.al, (2005)

Security Patterns by
Blakley, et.al (2004)

Security patterns by Kienzle
and Elder (2003)

1 Authentication Enforcer Protected System Account Lockout

2 Authorization Enforcer Policy Authenticated Session

3 Intercepting Validator Authenticator Client Data Storage

4 Secure Base Action Secure Communication Client Input filters

5 Secure Pipe Security Context Encrypted Storage

6 Secure Service Proxy Security Association Partitioned Application

7 Secure Session Manager Secure Proxy Password Authentication

8 Intercepting Web Agent Password Propagation

9 Container Managed
Security

 Server Sandbox

10 Secure Service Façade Trusted Proxy

11 Secure Session Object

12 Message Inspector
Gateway

0

1

2

3

4

5

6

7

Steel, et. Al Blakey, et.al Kinezle and Elder

N
u

m
b

er
 o

f
Se

cu
ri

ty
 P

at
te

rn
s

Group Five

Security Patterns

104

 Figure 5. 6: Security Design Patterns Group 6

5.4. Neural Network Architecture
A feed-forward back-propagation neural network is used to analyse the attack patterns and

generate possible solutions from the security design patterns that can be help in mitigating the

threat identified in the attack patterns. The architecture of the second neural network is the

same as that of the first neural network. This is the standard three layer neural network

architecture consisting of the input layer, the hidden layer and the outer layer. To optimize the

performance of the neural network, LM, RP and SCG training optimization algorithms were also

applied in the same way as the first neural network (See chapter four for further discussion)

With respect to the transfer functions, a tan-sigmoid transfer function was applied to the

various connection weights in the hidden nodes and in the output nodes, the linear transfer

function is applied to its weight. Since a supervised learning architecture (i.e. back-propagation)

was adopted for the second neural network, the data discussed in section 3 was used for its

training.

5.5. Neural Network Training
To train the second neural network the training data set is divided into two sets. The first set of

data is the training data sets (201 Samples) that were presented to the neural network during

training. The second set (26 Samples) is the data that were used to test the performance of the

neural network after it had been trained. In a similar way as the first neural network, the

performance of the second neural network was observed when 80, 90, 100, 110 and 120

hidden neurons were used for each training optimization algorithm that was applied. The

training performance is measured by Mean Squared Error (MSE) and the training stops when

the generalization stops improving or when the 1500th iteration is reached. Mat lab Neural

0

2

4

6

8

10

12

14

Steel, et. Al Blakey, et.al Kinezle and Elder

N
u

m
b

e
r

o
f

Se
cu

ri
ty

 P
at

te
rn

s

Group Six

Security Patterns

105

Network tool box was used to perform the training. The training parameters also include the

learning rate which is set to 0.01 with a goal of 0; maximum fail set to 6 and a minimum

gradient of 0.000001

5.6. Performance Analysis and Discussion

In a similar way to neural network l, different numbers of neurons were applied to the neural
network to further optimize its performance. The training was executed in five simulations to
obtain the average results of its performance because the neural network is initiated with
random weights during its training and this gives different results. Therefore, following the
same process used in the analysis of the performance results from neural network l, the
average results on the training time, MSE and number of epoch were also used in analysis of
the performance of the neural network II. The result of the performance of the neural network
II when LM training optimization algorithm is applied is also not presented in this section
because the performance neural network was poor when the training algorithm was applied. It
took an average of 2 minutes to complete its training which was faster than the time observed
when it was used in training neural network I. The lowest MSE obtained during its training was
0.659 which is very far from the set goal in training the network. A statistical analysis was also
carried out to establish the significance of the training optimization algorithms applied to
neural network II using statistical tools.

5.6.1. Mean Square Error (MSE)
Table 5.18 and 5.19 show the performance of the neural network II when SCG and RP training

optimization algorithms were applied to the network based on their MSE results. The lowest

MSE result (0.001838) obtained when SCG training optimization algorithms was applied to the

network with 100 neurons. The highest MSE result was observed when 90 neurons were

implemented in the network. It was also observed that the MSE results were below 0.0044 for

the network could closely match the attack patterns to the expected security design patterns.

The performance of the network was tested with the 25 test data sample. The output

generated from the network was identical to the expected output. Therefore the performance

of neural network II when SCG training optimization algorithm was applied was considered to

be very good. Figure 5.7 shows the plot of the MSE result for neural network II during training.

Figure 5.8 shows the plot of the average MSE result for the different number of neurons applied

to the network.

106

 Figure 5. 7: Plot of MSE for Neural Network II

Table 5. 18:MSE of Neural Network II with SCG Applied
s\no Number of Hidden Neurons

80 90 100 110 120

1 0.0029 0.00332 0.00124 0.00347 0.00319

2 0.000829 0.00126 0.00166 0.00159 0.00264

3 0.00455 0.00376 0.00265 0.00124 0.00191

4 0.00333 0.0029 0.000829 0.00385 0.00124

5 0.00249 0.00438 0.00281 0.00373 0.00145

Ave 0.00282 0.003124 0.001838 0.002776 0.002086

107

Figure 5. 8: Number of Epoch used in Neural Network I with SCG Applied

The performance of neural network II was better when RP training optimization algorithm was

applied to the network. It was observed that the MSE results obtained were lower than the

MSE results obtained with SCG training algorithm was applied to the network. The highest MSE

(0.002286) was obtained when 110 neurons were implemented in the network and the lowest

(0.001055) was obtained when 90 neurons were implemented. The performance of the

network was also tested with the test data sample and this generated an output which was

identical to the expected output (see chapter 6 for more discussion). Figure 5.9 shows the plot

of the average MSE results obtained

Table 5. 19: MSE of Neural Network I with RP Applied
s\no Number of Hidden Neurons

80 90 100 110 120

1 0.000323 0.0019 0.000522 0.00115 0.00394

2 0.00385 0.00138 0.0038 0.00488 0.000757

3 0.000376 0.000776 0.000324 0.000969 0.000537

4 0.001 0.00114 0.000316 0.00147 0.000107

5 0.000367 0.0000789 0.00351 0.00296 0.000509

Ave 0.001183 0.001055 0.001694 0.002286 0.00117

0.0015

0.0017

0.0019

0.0021

0.0023

0.0025

0.0027

0.0029

0.0031

0.0033

80 90 100 110 120

M
SE

Number of Neurons

MSE

MSE

108

Figure 5. 9:MSE of Neural Network II with RP Applied

5.6.2. Number of Epochs
Table 5.20 and 5.21 shows show the performance of the first neural network based on number
of epochs used in training the network. The highest number of average epoch used when SCG
was applied as the training optimization algorithm was 532.4 with 100 neurons implemented.
This dropped to the lowest (364.2) when 110 neurons were implemented in the network.
Figure 5.10 shows the plot of the average number of epoch used in training with different
number of neurons.

Table 5. 20:Number of Epoch used in Neural Network II with SCG Applied
s\no Number of Hidden Neurons

80 90 100 110 120

1 582 512 636 281 345

2 535 408 686 302 312

3 257 410 352 370 385

4 315 518 626 302 659

5 722 408 362 566 574

Ave 482.2 451.2 532.4 364.2 455

0

0.0005

0.001

0.0015

0.002

0.0025

80 90 100 110 120

M
SE

Number of Neurons

MSE

MSE

109

Figure 5. 10:Number of Epoch used in Neural Network I with SCG Applied

It was observed that when RP training optimization algorithm was applied to the network, the

number of epoch used was greater than when SCG training optimization algorithm was applied.

The highest number of epoch used with RP training optimization algorithm is 1324.8 when 80

neurons were implemented and the lowest was 906.8 when 110 neurons were implemented.

The plot of the average number of epoch used when RP training optimization algorithm was

applied in Figure 5.11 shows that the number of epochs used decreases as the number of

neurons implemented increases from 80 to 110 and increased slightly when the number of

neurons was increased to 120.

Table 5. 21: Number of Epoch used in Neural Network II with RP Applied
s\no Number of Hidden Neurons

80 90 100 110 120

1 1500 1448 1005 1101 610

2 1038 845 998 635 987

3 1500 1245 989 827 980

4 1086 1188 1133 983 1009

5 1500 1500 1056 988 993

Ave 1324.8 1245.2 1036.2 906.8 915.8

300

350

400

450

500

550

80 90 100 110 120

N
u

m
b

er
 o

f
Ep

o
ch

Number of Neurons

Epoch

Epoch

110

Figure 5. 11: Number of Epoch used in Neural Network II with RP Applied

5.6.3. Training Time
Table 5.22 and 5.23 show the time spent in training neural networks II with SCG and RP training
optimization algorithms respectively. The plot of the average time spent in training the
network when SCG RP training optimization algorithm was applied (Figure 5.12) shows a sharp
increase in the training time from 20 seconds to 45 seconds when the number of neurons
implemented increased from 110 to 120.

Table 5. 22:Training Time for Neural Network II with SCG Applied
s\no Number of Hidden Neurons

80 90 100 110 120

1 00:25 00:23 00:30 00:17 00:34

2 00:22 00:29 00:34 00:16 00:30

3 00:11 00:18 00:17 00:20 00:38

4 00:13 00:23 00:32 00:17 01:05

5 00:30 00:19 00:17 00:31 00:57

Ave 00:20 00:22 00:26 00:20 00:45

Figure 5. 12: Training Time for Neural Network II with SCG Applied

800

900

1000

1100

1200

1300

1400

80 90 100 110 120

N
u

m
b

e
r

o
f

Ep
o

ch

Number of Neruons

Epoch

Epoch

00:00

00:09

00:17

00:26

00:35

00:43

00:52

80 90 100 110 120

Ti
m

e
 S

p
en

t
in

 t
ra

in
in

g

Number of Neurons

Time

Time

111

Compared to the time spent when SCG training optimization algorithm was applied to the
network, the time spent in training the network when RP training optimization algorithm was
applied to the network was longer. The plot of the average time spent in training the network
as shown in figure 5.13 reveal that the shortest time spent in training (47 seconds) was when 90
neurons was implemented in the network and the longest time spent in training the network (1
minutes and 1 second) was when 80 neurons was implemented. It would be noticed that the
time spent in training the network when RP training optimization algorithm was applied
decreased as the number of neurons implemented increased from 80 to 110 and increased
slightly when 120 neurons were implemented.

Table 5. 23:Training Time for Neural Network II with RP Applied
s\no Number of Hidden Neurons

80 90 100 110 120

1 01:32 01:05 00:48 00:54 00:31

2 00:44 00:38 00:46 00:34 00:52

3 01:01 00:54 00:46 00:43 00:50

4 00:44 00:51 00:52 00:52 00:59

5 01:02 01:05 00:49 00:51 01:01

Ave 01:01 00:55 00:48 00:47 00:51

Figure 5. 13: Training Time for Neural Network II with RP Applied

6. Summary of Chapter 5
The Implementation of the second neural network has been demonstrated in this chapter.
Using the data from the analysis of the regularly expressed attack pattern and security design
pattern data needed for the training of the neural network was abstracted. The list of attributes
used in abstracting the data was presented and the encoding of the data was demonstrated.
Similar neural network architecture to the first neural network was adopted for the second
neural network architecture. LM, RP and SCG training optimization algorithms was also applied

00:43

00:48

00:52

00:56

01:00

01:05

80 90 100 110 120

T
im

e
 s

p
e

n
t

in
 t

ra
in

in
g

Number of Neurons

Time

Time

112

to neural network and its performance was measured by Mean Square Error (MSE)
The overall result of the network shows that neural network II perform better when it was
trained with RP training optimization algorithm. The best MSE performance was observed when
90 neurons were implemented in the network and the training time lasted for 55 seconds.
Based on this result, 90 hidden neurons were chosen for the implementation of neural network
II and RP training optimization algorithm was chosen for its training. Similarly neural network II
was tested using test data sample and output generated was identical to the expected security
design pattern. In the next chapter, the validation study is presented to analyse how close the
output of the proposed neural network tool produce matches the expected out. A case study is
also presented to demonstrate how the neural network tool can be used to integrate security
into software design.

113

Chapter 6. Result and Discussion

6.1. Introduction
Having analyzed the performance of neural network I and II in the previous chapter, in this

chapter a statistical analysis is conducted to compare the performance of the networks when

SCG and RP training optimization algorithms were applied. This is followed by a validation study

in which the test data from chapter 4, section 5 and chapter 5, section 5 is used to test the

performance of neural network I and II respectively. The results of the actual output of the

networks are compared to their expected output. Their difference are identified and analyzed.

The performance of neural network I was also compared to the performance of students

conducting SAFE-T in Gegick and Williams’ feasibility study. To demonstrate how the proposed

neural tool can be used in integrating security into software design, a case study on a real life

system is presented.

6.2. Statistical Analysis on the Performance of Neural Network I
To compare the performance of the neural network I when SCG and RP training optimization

algorithms were applied to the network a statistical analysis was conducted. The one way

analysis of variance (ANOVA) was used to compare the average MSE results obtained when the

two training algorithms were applied to the network. Table 6.1 shows the hypotheses that

were proposed in the analysis.

Table 6. 1:Hypothesis proposed for comparing performance of neural network l

Hypothesis Test Explanation

Ho µ1 = µ2 The mean of MSE results obtained from the network when the two
training algorithms are applied are the same

HA µ1 ≠ µ2 The mean of MSE results are different

To carry out the analysis, the average results of the MSE obtained was processed by multiplying
each value by 1000 to make it easier for the calculation to be computed. Table 6.2 shows the
initial and final data after it was processed. The decision rule for accepting or rejecting the
proposed hypothesis given the two training algorithms each with five different numbers of
neurons is based on the critical F- distribution value (Fcrt) of 5.32 with 1 degree of freedom
(DF)(i.e. between the groups) and 8 DF (i.e. within the groups) and at 0.05 confidence level
interval. If the observed F statistic value (Fobs) is lesser than Fcrt value (i.e. Fobs < Fcrt) the null
hypothesis Ho, is accepted otherwise it is rejected in favour of HA. Table 6.3 is the ANOVA Table
used in calculating the Fobs.

114

Table 6. 2:Average of MSE Results of neural network implemented with SCG and RP

Number of
Neurons

SCG RP

Initial Final Initial Final

80 0.003246 3.246 0.003422 3.422

90 0.002148 2.148 0.00284 2.84

100 0.002469 2.469 0.003496 3.496

110 0.00239 2.39 0.003528 3.528

120 0.002812 2.812 0.003168 3.168

Table 6. 3:ANOVA Table for Average MSE Result for Neural Network l

Source DF SS MS F P

Treatment
Error

1
8

1.1486
1.0608

1.1486
0.1326

8.6621 0.05

Total 9 2.2094

Result from the ANOVA Table show that the Fobs = 8.6621 and since this is greater than Fcrt
(5.32), we reject the null hypothesis and conclude that the average MSE results obtained from
neural network l when the two training algorithms are applied to the network are significantly
different. Furthermore based on the analysis of the MSE in chapter 4, section 6.1, neural
network I had a better performance when SCG training algorithm was applied to the network.

6.3 Statistical Analysis on the Performance of Neural Network II
Also using statistical analysis, the performance of neural network II when SCG and RP training
optimization algorithms were applied to the network was analyzed. The one way analysis of
variance was used to compare the average MSE results obtained from the network. Table 6.4
shows the proposed hypotheses for the analysis.

Table 6. 4:Hypothesis proposed for comparing performance of neural network II

Hypothesis Test Explanation

Ho µ1 = µ2 The mean of MSE results obtained from neural network II when the two
training algorithms are applied are the same

HA µ1 ≠ µ2 The mean of MSE results are different

The average results of the MSE obtained from neural network II was also processed in a similar
way to section 2.4 by multiplying each value by 1000 to make it easier for the statistical
calculation to be computed. Table 6.5 shows the initial and final data after it was processed. Fcrt
value of 5.32 with 1 and 8 DF at 0.05 confidence level interval was used as the decision rule for
either accepting or rejecting the null hypothesis. Therefore if Fobs < Fcrt, then the null hypothesis
Ho, is accepted. Otherwise it is rejected in favour of HA. Table 6.6 is the ANOVA Table used in
calculating the Fobs.

115

Table 6. 5:Average of MSE Results of Neural Network II implemented with SCG and RP

Number of
Neurons

SCG RP

Initial Final Initial final

80 0.00282 2.82 0.001183 1.183

90 0.003124 3.124 0.001055 1.055

100 0.001838 1.838 0.001694 1.694

110 0.002776 2.776 0.002286 2.286

120 0.002086 2.086 0.00117 1.17

Table 6. 6:ANOVA Table for Average MSE Result for Neural Network II

Source DF SS MS F P

Treatment
Error

1
8

2.7626
2.2337

2.7626
0.2792

8.1385 0.05

Total 9 4.9963

Since Fobs > Fcrt , the null hypothesis is rejected in favour of HA and conclude that the average
MSE results obtained from neural network II when the two training algorithms are applied to
the network are significantly different. By comparing the average MSE results obtained from
the network, it can be established that neural network II had a better performance when RP
training algorithm was applied to the network.

6.4. Validation Study
In the validation study, the test data from the data collected was used to test the performance
of the neural networks after they had been trained. The expected and actual output of the
network and then compared and analyzed.

6.4.1 Neural Network I
For neural network I, a total of 52 data samples were used to test the network. Since neural
network I involve two networks, the test data was divided into two data sets each consisting of
26 data samples corresponding to each neural network (See Table 4.6, chapter 4 section 5).
Table 6.1 shows the result of the actual output of the neural network I and its expected output.

Table 6. 7: Actual and expected output of Neural Network I
s\n Attack Pattern Investigated Actual Output Expected Output

Results from Network 1

1 Attack Pattern 1 0.9970 1

2 Attack Pattern 2 1.5821 2

3 Attack Pattern 3 3.0000 3

4 Attack Pattern 4 3.9991 4

5 Attack Pattern 5 4.9913 5

6 Attack Pattern 6 6.0000 6

7 Attack Pattern 7 6.9998 7

8 Attack Pattern 8 7.9995 8

9 Attack Pattern 9 8.9972 9

10 Attack Pattern 10 9.9189 10

116

11 Attack Pattern 11 10.9999 11

12 Attack Pattern 12 11.9989 12

13 Attack Pattern 13 12.9206 13

14 Attack Pattern 14 13.9877 14

15 Attack Pattern 15 14.9986 15

16 Attack Pattern 16 16.0000 16

17 Attack Pattern 17 16.6118 17

18 Attack Pattern 19 18.9989 19

19 Attack Pattern 20 19.9997 20

20 Attack Pattern 21 21.0000 21

21 Attack Pattern 22 22.0000 22

22 Attack Pattern 23 22.5392 23

23 Attack Pattern 24 23.9999 24

24 Attack Pattern 25 25.0000 25

25 Attack Pattern 26 25.9996 26

26 Attack Pattern 27 26.9935 27

Results from Network 2

27 Attack Pattern 28 27.9970 28

28 Attack Pattern 29 28.9943 29

29 Attack Pattern 30 30.0000 30

30 Attack Pattern 31 31.0000 31

31 Attack Pattern 32 31.9999 32

32 Attack Pattern 33 32.6139 33

33 Attack Pattern 34 34.0000 34

34 Attack Pattern 35 34.9684 35

35 Attack Pattern 36 36.0000 36

36 Attack Pattern 37 37.0000 37

37 Attack Pattern 38 38.0000 38

38 Attack Pattern 39 39.0000 39

39 Attack Pattern 40 39.9916 40

40 Attack Pattern 41 41.5488 41

41 Attack Pattern 42 42.0000 42

42 Attack Pattern 43 43.0000 43

43 Attack Pattern 44 43.9998 44

44 Attack Pattern 45 44.9992 45

45 Attack Pattern 46 46.0000 46

46 Attack Pattern 47 47.0000 47

47 Attack Pattern 48 47.9992 48

48 Attack Pattern 49 49.0000 49

49 Attack Pattern 50 49.9751 50

50 Attack Pattern 51 50.8999 51

51 Attack Pattern 52 51.5942 52

52 Attack Pattern 53 52.6986 53

117

Figure 6. 1: Actual vs. Expected output of Network 1 of NN I

Figure 6. 2: Actual vs. Expected output of Network 2 of NN I

In comparing the actual output of neural network I to its expected output it would be seen that
the neural networks have been able to match the correct attack patterns as close as possible in
the expected output. Results from the actual output show that while the network was able to
match some the attack pattern investigated exactly (i.e. identification of the exact attack
pattern ID), the result also showed many attack patterns were identified by approximating their
IDs. Of the 52 data sample that was used to test neural network I, 16 of the actual output result
were exact match of expected output while the remaining 36 result were approximation of the
attack pattern IDs. The approximated results are accepted in the validation study as this
showed that the network was able to identify the possible attack pattern from the test data
presented to it.

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 19 20 21 22 23 24 25 26 27

A
ct

u
al

 O
u

tp
u

t

Expected Output

Expected vs Output result of Network 1 of NN I

Expected

Actual

0

10

20

30

40

50

60

28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53

A
ct

u
al

 O
u

tp
u

t

Expected Output

Expected vs Output result of Network 2 of NN I

Expected

Actual

118

Analysis of the result of the actual output showed that the attack pattern that were exactly
matched from the test data were attacks in which the attackers had manipulated the user input
in order to stage buffer overflow attacks or denial of service attacks. This is no surprise as most
of the attacks patterns involve the attacker manipulating the user input. However, for the
outputs in which the network gave a result which matched the expected output after
approximation (i.e. -0.5 <X> 0.5: where X is attack pattern ID), were mostly attacks causing DoS.

Michael Geigick and Laurie Williams conducted a feasibility study by using undergraduate
students playing the role of software developers who are not experienced in security to match
20 of their attack patterns to the system design of a hypothetical banking system (see Appendix
IV) using their SAFE-T approach. The result of the feasibility study showed that 91% of attack
patterns were correctly identified by the students. Using design scenarios from the same
system design, neural network I was also tested in a similar way to identify attack patterns that
can be matched to the design scenarios. Table 6.8 shows the expected regularly expressed
attack patterns for the system design and the actual output of the network for the attack
patterns matched to each design scenario. The result showed that neural network I was able to
match the possible attack pattern to each design scenario with an output which was close as
much as the expected output. Comparing this result with the result of the neural network, it
could be seen that the neural network gave a better performance by identifying all the attack
patterns relating to the design correctly. Therefore, given the accuracy of the neural networks,
it shows that neural networks can be used to evaluate software from its design

Table 6. 8:Actual and expected output of Neural Network I with input from design scenario

s\n Design Scenarios Actual Output Expected Output

1 Scenario 1 0.9423 1

2 Scenario 2 1.9956 2

3 Scenario 3 2.9986 3

4 Scenario 4 3.9959 4

5 Scenario 5 4.9592 5

6 Scenario 6 5.7081 6

7 Scenario 7 6.9989 7

8 Scenario 8 7.9999 8

9 Scenario 9 8.8304 9

10 Scenario 10 9.9949 10

11 Scenario 11 10.9985 11

12 Scenario 12 11.9961 12

13 Scenario 13 12.9963 13

14 Scenario 14 13.9968 14

15 Scenario 15 14.9992 15

16 Scenario 16 16.9996 17

17 Scenario 17 19.9969 20

18 Scenario 18 20.9988 21

19 Scenario 19 22.5392 23

119

20 Scenario 20 23.9941 24

Figure 6. 3: Actual vs. Expected output result of design Scenarios evaluated by NNI

6.4.2 Neural Network II
The performance of neural network II was also tested using the test data in chapter 5 section 5.
Table 6.9 shows the actual and expected output of neural network II. By comparing the
expected and actual output, it would be seen that the network was able to match most the
attack patterns to correct the group that will provide mitigation to vulnerabilities in the attack
pattern. In a similar way to neural network I, the output of neural network II matched the
expected output after approximation (i.e. -0.5 <X> 0.5: where X is group ID) There were two
instances in which the network failed to match the attack patterns to the correct group. This
was when the network was used to evaluate test data sample 10 and 17. For test data sample
10, the network produce an output of 2.6441 when the expected output is 6 and for test data
17, the network produced an output of 6 when the expected output is 2. By looking at the data
used in training the network for matching the attack patterns to their corresponding security
pattern, it was seen that for these attack patterns, the attacker had multiple ways in which the
attack could be carried out. This explains why the network failed to match the attack patterns.
With a larger data sample for training the neural network, a better performance can be
achieved. Figure 6.4 is a graph showing the difference between the actual and expected output

Table 6. 9: Actual and expected output of Neural Network II

s\n Test Data Sample Actual Output Expected Output

1 Sample 1 6.0000 6

2 Sample 2 5.9999 6

0

5

10

15

20

25

30

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20M
at

tc
h

e
d

 A
tt

ac
p

 P
at

te
rn

Design Scenarios

Expected vs. Actual Output Result of Design
Scenarios Evaluated by NN I

Expected Output

Actual Output

120

3 Sample 3 5.0000 5

4 Sample 4 4.9998 5

5 Sample 5 5.0000 5

6 Sample 6 5.0000 5

7 Sample 7 5.9999 6

8 Sample 8 6.0000 6

9 Sample 9 5.0000 5

10 Sample 10 2.6441 6

11 Sample 11 5.0000 5

12 Sample 12 5.0000 5

13 Sample 13 6.0000 6

14 Sample 14 4.9183 5

15 Sample 15 6.0000 6

16 Sample 16 5.0000 5

17 Sample 17 6.0000 2

18 Sample 18 1.7707 2

19 Sample 19 5.6890 6

20 Sample 20 4.0000 4

Figure 6. 4: Actual vs. Expected output of NN II

6.5. Case Study
The design for the online shopping portal by Mohan et.al (2009) is adopted in this research to
illustrate how the proposed neural network tool can be used to evaluate software design for
security flaws. In the design scenario, a customer visits the portal to either view or buy
products. The customer searches for the product by selecting the appropriate category and
brand. To purchase the product, the customer adds the product to the shopping cart which he
can also edit by deleting already added product and adding new product. Once the customer

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

A
ct

u
al

 v
s.

 E
xp

ec
te

d
 O

u
tp

u
t

Input Test Data Sample

Actual vs. Expected Output result of NN II

Expected

Actual

121

has completed his shopping, he checks out and he is prompted to sign in if he is an existing
customer or to register if he is not. After signing in, customer is directed to the secure payment
section where he confirms the delivery address, and also provides his payment details. At the
last stage of the order, a confirmation page is displayed to confirm shipment ID and delivery of
product with 15 days. From the design, three scenarios were evaluated. The identified attack
patterns for each scenario by neural network I and the group of security patterns that can
provide mitigation identified by neural network II is presented below. Figure 6.5 is the class
diagram for the design of the online shopping portal.

+Add_Category() : void
+Update_Brands() : string
+Update_Total_Brands() : void

-#Categoryid : int
-Nos_of_Brands : int
-Category_Name : string

Category

+Add_Segment() : void
+Update_Category() : string
+Update_Total_Segment() : void

-#Segementid : int
-SegementName : string
-Nos_of_Category : int

Segment

+Add_Brand() : void
+Update_Product() : string
+Update_Total_Product() : void

-#Brandid : int
-BrandName : string
-Nos_of_Products : int

Brand

+Add_Product() : void

-#Productid : int
-Product_Name : string

Product

+Calculate_Cost() : float
+Verify_Productid() : bool
+Verify_Cartid() : bool

-#CartItemid : int
-Productid : int
-Quantity : int
-TotalCost : float

CartItems

+Calculate_Cost() : float
+Verify_Custid() : bool

-#Cartid : int
-Custid : int
-Total_Cost : float
-CartItemid : int

Cart

+Verify_Cardid() : bool
+Verify_Custid() : byte
+Verify_Cartid() : bool

-#Paymentid : int
-Cartid : int
-Cardid : int
-Payment_Amount : float
-Custid : int

Payment

+Add_Customer() : void
+Update_Details() : bool

-Custid : int
-Cust_Details : string
-Userid : string
-Password : string

Customer

+Verify_Cardid() : bool
+Verify_Custid() : bool
+Verify_Paymentid() : bool

-#Cardid : int
-CardNo : int
-Card_Details : string

CardDetails

-has

1..* 1..*

-has

0..*

*

-has0..*

1..*

-Made of

1

1..*

-Consist of

0..1

1..*

1
..

*
*

-Supports

1 1

Figure 6. 5: Class diagram of online shopping portal

6.5.1 Scenario 1: Product Selection
In this design scenario, the customer visiting the portal searches the portal by selecting the
product category and then the brand to view different products. Product selected by the

122

customer is described as the cart item when it is added to the cart in the class diagram in Figure
6.5. The system returns a cart id for each cart item added to the cart. Figure 6.6 is the sequence
diagram for this scenario. Looking at the scenario, information stored by the cart could be
chosen by the attacker as the target of attack. By manipulating this information, it is possible
for the attacker to reduce the price to be paid for the products that have been added to the
cart. Figure 6.7 shows that the data is stored in a backend database. Based on the attack
attributes in Table 4.1 in chapter 4 section 3, the data capturing the design scenario on Table
6.10 is generated.

Table 6. 10: Attack attributes for scenario 1

S\n Attributes Observable value

1 Attacker No access 0

2 Source of Attack External 1

3 Target of Attack Information 54

4 Attack Vector Query String 77

5 Attack Type Confidentiality 9

6 Input validation No Validation 3

7 Dependencies Input validation and access control 6

8 Output encoding Escaping supplied user input (lacking) 3

9 Authentication None 0

10 Access Control Function access 4

11 HTTP Security Input validation 3

12 Error handling and Logging None 0

Customer CartItem Cart

Selects a product

Add to Cart

Cartid

Cartid

Figure 6. 6: Sequence diagram for product selection

By using the corresponding values of the attributes in Table 6.4 as the input for neural network

I, the network produced an output of 25.9976 which corresponds to regularly expressed

attack pattern 26. In this attack, an attacker can use directory traversal or shell characters as

input in a crafted URL in order to view sensitive information (See Table 3.2 in Chapter 3 section

5 for more discussion). An example of this attack is recorded by security focus under BID 3308

123

and in CVE details database under CVE 2001-0985. In order to match the identified attack

pattern to the corresponding group of security patterns that can provide mitigation, the

attributes of the attack patterns listed in Table 5.5 in chapter 5 section 3 is used to generate the

input for neural network II (See Table 6.11). With this input, neural network II produced an

output of 3.9615. This corresponds to group 4 of the security patterns in Table 5.15 in chapter

5 section 3. This group of security pattern provides mitigation for information disclosure

attacks.

Table 6. 11:Attributes of identified attack pattern in scenario 1

S\n Attributes Observable Value

1 Attack ID Attack ID 26

2 Resource Attacked Information 54

3 Attack Vector Query String 77

4 Attack type Confidentiality 3

6.5.2 Scenario 2: Cart Submission
In this scenario, the customer checks out after adding products he decides to buy to the
shopping cart. The cart checks out each cart item by requesting the cart item class to calculate
the cost. Following this, data on the cart is stored on the database which generates a cart id for
the cart. In this design scenario, the attacker can choose the data stored in database as his
target of attack by manipulating the data on the database. Figure 6.7 shows the sequence
diagram of this scenario. The data capturing the design scenario using the attack attributes is
shown in Table 6.12

Table 6. 12:Attributes for scenario 2

S\n Attributes Observable Value

1 Attacker No Access 0

2 Source of Attack External 1

3 Target of Attack Data 20

4 Attack Vector SQL Input 90

5 Attack Type Privacy 9

6 Input validation No validation 3

7 Dependencies Validation and access Control 6

8 Output encoding None 0

9 Authentication None 0

10 Access Control Service access 3

11 HTTP Security Input Validation 3

12 Error handling and Logging None 0

124

Customer Cart CartItem

Submit a Cart

CartitemCost

Cartid

Checkout Cart

for each cartitem

Calculate cost per cartitem

Database

Save Cart

Cartid
Cart Submitted

Figure 6. 7: Sequence diagram for shopping cart submission

Neural network I produced an output of 8.9988 when the value of the attributes on Table 6.12

was used as its input. This corresponds to the regularly attack pattern 9 in which the attacker

injects SQL into the URL in order to query backend databases. An example of this attack is

recorded by security focus under BID 9967 and in CVE details database under CVE 2004-2412.

Table 6.13 shows the attributes for the identified attack pattern and their corresponding values

which are used as input for neural network II. The network produced an output of 1.9999

which indicates that the security design patterns in group 2 as shown on Table 5.13 in chapter 5

section 3 can provide mitigation for data tampering attacks.

Table 6. 13:Attributes of identified attack pattern in scenario 2

S\n Attributes Observable Value

1 Attack ID Attack ID 9

2 Resource Attacked Data 20

3 Attack Vector SQL Input 91

4 Attack type Integrity 2

6.5.3 Scenario 3: Log in
In the log in design scenario, the customer is prompted to log into his account by supplying his log in
credentials. The log credentials are then validated by checking the details of the user on the database. If
the credentials supplied by the user are valid, the user is granted access to his account. Figure 6.8 shows
the sequence diagram for this scenario. A point of interest for an attacker in this particular design
scenario is gaining access into various accounts in the shopping portal. The data capturing the design
scenario using the attack attributes is shown in Table 6.14

125

User Login Screen ValidateUser Database

Clicks on Login

Validate User (userid, password)

CheckUserDetails

UserDetails

ValidateUser

Result

ShowMessage

Figure 6. 8: Sequence diagram for customer login

Table 6. 14:Attributes for scenario 3

S\n Attributes Observable Value

1 Attacker No access 0

2 Source of Attack External 1

3 Target of Attack Authentication Routine 5

4 Attack Vector Username Entry 101

5 Attack Type Confidentiality 9

6 Input validation No Validation 3

7 Dependencies Validation 3

8 Output encoding None 0

9 Authentication None 0

10 Access Control Service access 3

11 HTTP Security Input Validation 3

12 Error handling and Logging None 0

Using the values on Table 6.14 as input for neural network I, the network produced an output
of 7.9786 which corresponds to regularly expressed attack pattern 8. In this attack, the

attacker submits a long string of character for the username. This causes a buffer overflow that
enables the attacker to escalate his privileges. An example of this attack is recorded by security
focus under BID 9672 and in CVE details database under CVE 2004-0286. Table 6.15 shows the
attributes for the identified attack pattern and their corresponding values which are used as

126

input for neural network II. The network produced an output of 6.0000 which indicates that

the security design patterns in group 6 as shown on Table 5.17 in chapter 5 section 3 can
provide mitigation for privilege escalation attacks.

Table 6. 15: Attributes of identified attack pattern in scenario 3
S\n Attributes Observable Value

1 Attack ID Attack ID 8

2 Resource Attacked Authentication Routine 5

3 Attack Vector Username Entry 101

4 Attack type Confidentiality 3

6.6 Comparison of the neural network approach with current approaches
In comparing the proposed neural network tool with the current approaches used in integrating

security into software design during SDLC, the following can be observed:

In a similar way to architectural risk analysis and threat modelling, it is necessary to decompose

the software architecture so as to identify the features of the software design (such as assets

and source of attack) that needs to be analysed when using the proposed neural network tool.

For example, in the case study in above, each of the design scenarios represent a functional

part of the software design which is analysed using the attack attributes to abstract the data

needed by the neural network for analysing the software design.

Furthermore, the proposed neural network tool is based on the abstract and match technique

through which software flaws in a software design can be identified when an attack pattern is

matched to the design. Hence, using well known approaches such as DFD and sequence

diagrams familiar to software developers, they are able to abstract information about their

software designs needed by the Neural Network tool for matching possible attack patterns

(Adebiyi et.al, 2012).

However, to conduct architectural risk analysis and threat modelling may be daunting task for

software developers who are not necessarily experts in security. Therefore, the need to involve

security experts to analyse the software design for security flaws is inevitable. The proposed

neural overcome this challenge by helping software developers to think of the defences to be

put in place when possible attack patterns are matched to their software design.

Also, as discussed in chapter 2 section 11, current security tools used during software design

such as SDL Threat Modelling Tool is limited by the knowledge of the software developer

creating the threat Model. As the proposed neural network tool aids software developers who

are non-security experts, this problem is addressed as the developer only needs to abstract the

information needed from their designs to be analysed. This eliminates the need for software

developers to think like the attacker when conducting threat modelling or when drawing attack

127

trees. All the developers need to focus on is the software design and abstracting the correct

information from the design scenarios. Moreover, the interpretation of results generated from

current security tools depends largely on the understanding of the developer on security risks.

In contrast, the attack pattern matched to a software design and the security design patterns

identified as solution to flaws in the software design using the proposed neural network tool

can be are easily understood by software developers.

While the use of formal methods helps to eliminate software flaws in software during SDLC, as

discussed in chapter 2 section 8, it is not widely used by software developers. Apart from this its

adoption by software developers may require a significant deviation from their software

development methodology. However, the proposed neural network tool can be used during the

design phase of current software development methodologies without a significant deviation

from software development process.

6.7. Summary of Chapter 6
The statistical analysis conducted on the performance of the networks in this chapter showed
that there were significant differences in their performance when SCG and RP training
optimization algorithms were applied to the networks. From the results on the performance of
the neural networks in the validation study, it was observed that that neural network I was able
to match the test data sample to the excepted attack patterns as close as possible. Neural
network II was also able match most of the test data sample to the expected group of security
design patterns. In the two instances the network failed in identifying the correct group, it was
observed that attack patterns had multiple ways in which the attack could be carried out. This
explains why the network has not been to match the test data sample for these attack patterns
to the correct group. In the case study, three design scenarios from the online shopping portal
were evaluated. Using the attack attributes, data needed from the scenarios were abstracted
and were used as input for the neural network. The result of the evaluation show that the
neural network I was able to match possible attack patterns to the design of the shopping
portal and neural network II was able to match the identified attack patterns to the group of
security design patterns that can provide mitigation for the attacks. Based on this information,
a software developer can make informed decision on what to do in order to integrity security
into his software design. A comparison between the proposed neural network approach and
current approaches was also discussed in this chapter. In chapter 7, the conclusion to this
research is presented and the future direction is discussed.

128

Chapter 7. Conclusion

Securing software products no doubt will continue to be an on-going challenge because of the

nature of software produced today. As consumers continue to demand the addition of new

features to various software applications and the software developers aim at meeting the time

to market the software applications, malicious hackers will continue to explore new forms of

vulnerability which they can exploit. As a result, there is no time when new forms of attacks and

vulnerabilities will not be discovered. It must be noted that network security cannot guarantee

the security of software applications within a network because software base attacks are

designed to follow the normal path of a software functionality which already provides an

acceptable means of access through a network and its security control.

It cannot be overstated that the cost of fixing security flaws in software applications is very

costly after they are deployed. The cost could be 30 times more than the cost of finding and

fixing the problem early in the SDLC. Therefore, integrating security into a software design will

help tremendously in saving time and money during software development and when the

software is deployed. For instance, it is less expensive and less disruptive to discover design-

level vulnerabilities during the design, than during implementation or testing, forcing a costly

redesign of pieces of the application.

Therefore, software developers must begin to work towards building more secured software

products by making security a top priority during SDLC. In this regard, software development

team should be aware of the security issues affecting the software under development and

must be properly trained to ensure that these issues are properly addressed during SDLC. The

use of tools capable of helping developers to do a better job and software development

process that integrates security throughout SDLC also plays a very important role in producing

secure software. Base on this fact, this research work proposed the use of neural network as a

tool to enable software developers to evaluate their software design for security flaws and also

suggest possible solutions

Chapter 1 gives the background to this research work and in chapter 2 a literature review on

the current approaches used in securing software applications was conducted. Based on the

information gathered on two of the current approaches, the neural network tool in this

research was proposed. Chapter 3 discussed the proposed neural network tool while chapter 4

and 5 demonstrated the implementation of the first and second neural network respectively.

Chapter 6 presented the results and discussion on the performance of the neural network. In

this chapter, the discussion on the contribution on this research work to knowledge, the

limitation of the proposed neural network model and a comparison of the proposed neural

network approach with some of the current approaches used in integrating security into

129

software design are presented. This chapter concludes with the future direction of this research

work.

7.1 Contribution to Knowledge

The major contributions of this research work to knowledge are as follows:

1. Matching attack patterns to software design. By using of neural network as a tool for

matching attack patterns to software design during design phase of SDLC, the security

flaws in the software design can be identified. The identification of the security flaw in

the software design by the neural network tool will enable software developers to take

the necessary steps in mitigating the threat identified in the security flaw before coding

begins.

2. Matching attack patterns to security design patterns. The use of security design pattern

to resolve security problems is currently a challenge to software developers. Building on

the existing approach in literature to match security design patterns to attack patterns,

the proposed neural network tool matches identified attack patterns in a software

design to the corresponding security patterns that can provide mitigation.

3. Aids towards bridging the gap between software developers and security professionals.

When attack patterns are matched against software design by the neural network tool,

software developers become more aware on the security aspect of their software

design and security expertise solutions to threat in the attack. In this way, the software

developers can benefit from security expertise of the security professionals.

Therefore, based on the above, the success of this research in using neural networks to

evaluate software design for security flaws will consolidate the efforts of software designers

evaluating their software as they identify areas of security weakness in their software design.

This will enhance the development of secured software applications in the software industry

especially as software designers often lack the required security expertise. Thus, neural

networks given the right information for its training will also contribute in equipping software

developers to develop software more securely especially in the area of software design.

7.2 Limitation

One of the significant limitations to this research is the difficulty of obtaining information from

software developers in the industry on software designs that can be used in this research work.

As this information is private to the software developers, limited information was obtained.

Another difficulty encountered during the course of this research work is the representation of

the software design to neural network. As there is no previous work related to using neural

network as a tool during software design stage of SDLC, no information could be obtained from

130

previous research papers. However, after looking through the resources on neural network

repository online and speaking to some to software developers in various conferences

attended, this problem was resolved. One of the valuable lesson learnt during this research

work, is to constantly seek professional training relevant to my area of research as this

contributes significantly to the research work. For instance, it was after going some series of

training on Mat lab that the skill needed for training the neural network in this research work

was acquired.

The regularly expressed attack pattern used in training the neural network is a generic

classification of attack patterns. Therefore, any unknown attack introduced to the neural

network will be classified to the closet regularly expressed attack pattern. However, the success

of the neural network in evaluating software design for security flaws largely depends on the

input data capturing the attributes of the software design introduced to it.

7.3 Future Work

Various security tools have been developed to aid software developers in integrating security

into software applications during SDLC. However, most of these tools are used in the late phase

of SDLC. As the focus of this research work is integrating security during the early phase of SDLC

especially during the design phase, it is our intention to carry out a comparative study in which

the neural network tool would be compared to security tools currently used in integrating

security during the design phase of SDLC. Result of this comparative analysis should include

how effective it is in identifying security flaws and its performance based on security

background of the user using the tools.

Furthermore, information from attack patterns which capture security flaws in software designs

from other authors and from CAPEC (Common Attack Pattern Enumeration Classification)

would be used in training the neural network. This would subsequently improve the

performance of the network and increase its scope in matching design scenarios to attack

patterns not covered in the regularly expressed attack patterns. Also, the neural network tool

needs to be trained to match attack patterns to other security design patterns proposed by

other authors. It is also our intention to look further into improving the output result of the

neural network tool by using other suggested classification of security patterns when defining

the expected output of the neural network II.

Further testing of the neural network tool is also required before it can gain acceptance as a

tool for matching attack patterns to software designs and matching attack patterns to security

patterns. This test would include finding out whether the attack described in an attack pattern

matched to a design by the neural network tool is feasible. And if this is feasible, another test

131

should be conducted to explore how effective is the solution that has been suggested in

preventing the attack

For the neural network tool to be used by developers, it could be deployed as a plugin in an

existing software design suite E.g. IBM Rational Rose. The neural network tool will work within

the same design suite and provide feedback to developers. Also, it would be of great benefit if

the tool could connect to online vulnerability database and CAPEC to help developers get

detailed information on threat that has been identified. Alternatively, it could be deployed as

an independent security tool. However, for the neural network tool used successfully, it must

be able to read files created from software design suite and must be able to synchronize it

feedback to such tools. This is because most software design suite encourage collaboration

among all the stakeholders in a software project and feedback from the neural network tool

needs to accessible to the relevant stakeholders

Lastly, it is desirable to also find out the impact of the neural network tool on the training and

security awareness of software developers and on other security techniques used in integrating

in software during software development lifecycle. This could be investigated by measuring

how the feedbacks from the neural network tool add to the knowledge of software developers

on the security of their software application and how it complements other security

techniques.

132

References
Adebiyi, A. et.al., (2012), ‘Evaluation of Software Design using Neural Network’, In the proceedings of
the 8th International Conference on Web Information Systems and Technologies (WEBIST), Porto,
Portugal

Adebiyi, A. et.al., (2012), ‘Matching Attack pattern to Security Pattern using Neural Network’, Paper
accepted for the European Conference on Information Warfare and Security (ECIW-2012), Paris, France

Adebiyi, A., Lee S.W, Mouratidis, H. and Imafidon C.,(2012), ‘Applicability of Neural Network to Software
Security’. Abstract accepted at the ACT 2012 conference, London, United Kingdom

Adebiyi A., et.al., (2012), ‘Applicability of Neural Network to Software Security’ In proceedings of the
UKSim 14th International Conference on Computer Modelling and Simulation ,Cambridge, United
Kingdom, pp19-24

Amey, P. (2006) Correctness by Construction, Build Security In, Available at: https://buildsecurityin.us-
cert.gov/bsi/articles/knowledge/sdlc/613-BSI.html(Last Accessed: December 2011)

Agarwal, A. (2006), ‘How to Integrate Security into your SDLC’,SearcAppSecurity.com, Available at:
http://searchsoftwarequality.techtarget.com/tip/0,289483,sid92_gci1174897,00.html (Last Accessed:
October 2011)

Ahmad, I. Swati, S.U. and Mohsin, S. (2007), ‘Intrusion Detection Mechanism by Resilient Back
Propagation (RPROP)’, European Journal of Scientific Research, Vol. 17(4), pp523-530

Barnum, S. and Gegick, M. (2005) ‘Design Principles, Build Security In’, Available at:
https://buildsecurityin.us-cert.gov/bsi/articles/knowledge/principles/358-BSI.html (Last Accessed:
December 2011)

Beale, M. H., Hagan, M. T. and Demuth, H. B. (2010),’Neural Network Toolbox 7 User Guide,
Mathworks’, Available at: http://www.mathworks.com/help/pdf_doc/nnet/nnet.pdf. (Last Accessed
March 2012)

Berg, B. (2010), ‘SDL: Threat Modelling tools vs. Threat Analysis tool’, Available at:
http://www.dib0.nl/code/166-sdl-threat-modeling-tool-vs-threat-analysis-tool (Last Accessed:
November 2011)

Berg, R. (2007), ‘Secure at the Source: Implementing Source Code Vulnerability Testing in the
Software Development Lifecycle’ Ounce Lab Inc., Waltham, MA. Available at:
http://www.paramountassure.com/pdf/Source_code_vulnerability_testing_in_SDLC.pdf (Last
Acessed March 2013)

Bivens et.al. (2002), ‘Network Based Intrusion Detection Using Neural Network’, In Proceedings
of Artificial Neural Networks In Engineering (ANNIE) Conference 2002, St. Louis, Missouri pp10-
13

133

Blackley, B. et.al (2004) ‘Technical Guide Security Design Patterns’, The Open Group, Available at:
http://users.uom.gr/~achat/articles/sec_patterns.pdf (Last Accessed: December 2011)

Bunke, M., et.al, (2011) ‘Application-Domain Classification of Security Patterns, In: The Third
International Conferences on Pervasive Patterns and Applications, Rome, Italy, pp 138-143

Cannady, J. (1998), ‘Artificial Neural Networks for Misuse Detection’, In Proceedings of the 21st National
Information Systems Security Conference, Virginia, USA, pp368-381

Connolly, T. and Begg, C. (2005), ‘Database Systems : A Practical Approach to Design,
Implementation and Management’, 4th Ed, Addison-Wesley, USA

Chickowski, E. (2010),’Lessons Learned from Five Big Database Breaches in 2010’, Dark Reading,
Available at: http://www.darkreading.com/database-security/167901020/security/attacks-
breaches/228900094/lessons-learned-from-five-big-database-breaches-in-2010.html (Last Accessed:
December 2011)

Croxford, M. (2005), ‘The challenge of low defect, secure software- too difficult and too expensive’,
Secure Software Engineering, Available at: http://journal.thedacs.com/issue/2/33 (Last Accessed:
February, 2012)

Croxford, M and Chapman, R. (2005), Correctness by Construction: A Manifesto for High Software, The
Journal of Defence Software Engineering, Available at: http://www.crosstalkonline.org/storage/issue-
archives/2005/200512/200512-Croxford.pdf

CWE (2013), ‘CWE-285: Improper Authorization’, Common Weakness Enumeration, Available at:
http://cwe.mitre.org/data/definitions/285.html, (Last Accessed: March 2012)

Davis, N. (2005), ‘Developing Secure Software’, Secure Software Engineering, Available at:
http://softwaretechnews.com/stn8-2/noopur.php (Last Accessed: November 2011)

Dong J. et al (2009), ‘Automated verification of security pattern compositions’, Information and Software
Technology, Vol. 52 (3), p274- p29

Edward, R. J. (2008), ‘Neural Networks’ Role in Predictive Analytics’ Information Management, Available
at: http://www.information-management.com/specialreports/2008_61/-10000704-1.html (Last
Accessed March 2013)

Erbshloe, M. (2002), ‘Economic Impact of Network Security Threats’, Cisco Systems Inc, Available
at:http://www.cisco.com/warp/public/cc/so/neso/sqso/roi1_wp.pdf (Last Accessed: March 2011)

Fernandez, E.B et.al, (2007) ‘Security patterns for Voice over IP’ Journal of Software, Vol.2(2), 19-29.

Gavin, H. (2011), ‘The Levenberg-Marquardt method for nonlinear least squares curve-fitting problems’
Available at: http://www.duke.edu/~hpgavin/ce281/lm.pdf (Last Accessed: March 2012)

Gegick, M. and Williams, L. (2007), ‘On the design of more secure software-intensive systems by use of
attack patterns’, Information and Software Technology, Vol. 49, pp 381-397

134

Gregory L. S.,(2011), ‘Glossary’, Texas State Library and Archive Commission, Available at:
https://www.tsl.state.tx.us/ld/pubs/compsecurity/glossary.html, (Last Accessed: March 2012)

Greenberg, A.(2008), ‘A tax on buggy software’, Forbes.com, Available at:
http://www.forbes.com/technology/2008/06/26/rice-cyber-security-tech-security-cx_ag_0626rice.html
(Last Accessed: August 2011)

Goertzel, K.M. et.al.(2006) ‘Security in the Software Life Cycle: Making Software Development

Processes—and the Software Produced by Them—More Secure', Draft Version 1.2, Department of
Homeland Security (DHS), US

Hafiz, M. and Johnson, E.(2006) ‘Security Patterns and their Classification Schemes’ Technical Report for
Microsoft's Patterns and Practices Group, Available at:
http://munawarhafiz.com/research/patterns/secpatclassify.pdf (Last Accessed: December, 2011)

Hall, A and Chapman, R, (2004), ‘Software Engineering, Correctness by Construction’, Available at:
http://www.anthonyhall.org/Correctness_by_Construction.pdf

Halkidis, S.T. et.al (2006), ‘A qualitative analysis of Software security patterns’, Computer & Security, Vol.
25, p379-p392

Hinchey, M et al, (2008), ‘Software Engineering and Formal Methods’, Communications of the ACM,
Vol.51(9), pp54-59

Hoglund, G.(2002), ‘Bad Software’, Cenzic, Inc, Available at:
http://www.blackhat.com/presentations/bh-usa-02/bh-us-02-hoglund-software.ppt (Last Accessed:
January, 2011)

Hoglund, G and McGraw G. (2004), ‘Exploiting Software: The Achilles’ Heel of CyberDefense’,
CyberDefense Magazine, Available at: http://citigal.com/papers/download/cd-Exploiting_Software.pdf
(Last Accessed: June 2011)

Hoglund, G and McGraw G. (2004),’Exploiting Software: How to Break Code’, Addison Wesley, Boston,
USA

Hoglund, G. and McGraw G (2007), ‘Online Games and Security’, IEEE Computer Society, Available at:
http://www.cigital.com/papers/download/attack-trends-EOG.pdf (Last Accessed: January 2011)

Howe (2005), ‘Crisis, What Crisis?’, IEEE Review, Vol. 51(2), p39

Hope, P.; Lavenhar, S. and Peterson, G.(2008), ‘Architectural Risk Analysis’, The Build Security In (BSI)
Portal, Version 28, Available at: https://buildsecurityin.us-cert.gov/daisy/bsi/articles/best-
practices/architecture/10-BSI.html (Last Accessed: August 2011)

Ho, S. L.; Xie, M. and Goh, T. N. (2003), ‘A Study of the Connectionist Model for Software Reliability’
Computer and Mathematics with Applications, Vol. 46, 1037 -1045

135

Humphrey W. S.(2004), ‘Defective Software Works, Carnegie Mellon’, Software Engineering Institute,
Available at: http://www.sei.cmu.edu/news-at-sei/columns/watts_new/2004/1/watts-new-2004-1.htm
(Last Accessed: December 2011)

Hu, V.C., Ferraiolo, D. F. and Kuhn, D. R. (2006), ‘Assessment of Access Control Systems’ National
Institute of Standards and Technology’ Available at: http://csrc.nist.gov/publications/nistir/7316/NISTIR-
7316.pdf (Last Accessed: February 2013)

Jackson, D, (2006), ‘Dependable Software System by Design’, Scientific American, Inc., Available at:
http://www.cs.virginia.edu/~robins/Dependable_Software_by_Design.pdf

Jaspreet (2012), ‘Security Breaches are on the Increase but Preventable’, Druva, Available at:
http://www.druva.com/blog/2012/08/15/security-breaches-are-on-the-rise-but-preventable/ (Last
Accessed: April 2013)

James, D. (2011), ‘Top 10 Information Security Breaches’, Ascentor, Available at:
http://www.ascentor.co.uk/2011/10/top-10-information-security-breaches/ (Last Accessed: April 2013)

Jones, A. (2010), Better: Invalidation or Output Encoding? Available at:
http://msmvps.com/blogs/alunj/archive/2010/05/31/1771098.aspx (Last Accessed: November 2011)

Joseph, A., Bong, D.B.L. and Mat, D. A. A.(2009), ‘Application of Neural Network in user Authentication
for Smart Home Systems’, World Academy science, Engineering and Technology, Vol. 53, pp1293-1300

Karras, D.A. and Zorkadis, V. (2003), ‘On neural network techniques in the secure management of
communication systems through improving and quality assessing pseudorandom stream generators’,
Neural Networks, Vol. 16, pp899 – 905.

Kenneth R. Van, W. and McGraw, G. (2006), ‘Bridging the Gap between Software Development and
Information Security’, IEEE Computer Society, Available at:
http://www.cigital.com/papers/download/bsi10-ops.pdf (Last Accessed: December 2011)

Kienzle, D. M and Elder, M. C. (2002) ‘Final Technical Report: Security Patterns for Web Application
Development’, Available at http://www.scrypt.net/~celer/securitypatterns/final%20report.pdf, (Last
Accessed: January 2012)

Kiiski, L (2007) ‘Security Patterns in Web Applications’, Publications in Telecommunications Software and
Multimedia Laboratory, Available at: http://www.tml.tkk.fi/Publications/C/25/papers/Kiiski_final.pdf
(Last Accessed: November 2011)

Kim T. et al., (2000),’ Software Architecture Analysis: A Dynamic Slicing Approach’, ACIS International
Journal of Computer & Information Science, Vol. 1 (2), pp91-p103

Koskinen, J.(2003), ‘Software Maintenance Costs’, Information Technology Research Institute, Available
at: http://users.jyu.fi/~koskinen/smcosts.htm (Last Accessed: January 2012)

Laverdiere M.A. et.al (2006), ‘Security Design Patterns: Survey and Evaluation’, IEEE CCECE/CCGEI,
Ottawa

136

Lian, S. (2008), ‘A block cipher based on chaotic neural networks’, Neurocomputing, doi:10.1016/
j.neucom.2008.11.005 (Last Accessed: January 2012)

Lin. I.; Ou, H. and Hwang, M (2005), ‘A user authentication system using back-propagation network’,
Neural Computer and Application, Vol. 14, 243-249

Lourakis, I.A. (2005), ‘A brief Description of the Levenberg Marquardt Algorithm Implemened by levmar’,
Matrix, Vol. 3, p2, Available at: http://www.ics.forth.gr/~lourakis/levmar/levmar.pdf (Last Accessed:
March 2011)

Malaiya Y. K, et al. (1992), ‘Using Neutal Networks in Reliability prediction’, IEEE Software, pp53-59
Mahmoud, Q. (2000) ‘Security Policy: A Design Pattern for Mobile Java Code’ In: Proceedings of the
Seventh Conference on Pattern Languages of Programming (PLoP’ 00), Illinois, USA.

MathWorks, (2011) Neural Netwook Toolbox, Available at:
http://www.mathworks.com/products/neuralnet/description3.html (Last Accessed: January 2012)

McAvinney, A. and Turner, B. (2005), ‘Building a Neural Network for Misuse Detection’, Proceedings of
the Class of 2006 Senior Conference, pp27-33

McGraw, G and Viega, J. (2001), ‘Introduction to Software Security’, Inform IT Network, Available at:
https://www.informit.com/articles/article.aspx?p=23950&seqNum=11 (Last Accessed: January 2012)

McGraw, G. (2002), ‘Building Secure Software: Better that Protecting Bad Software’, IEEE Software, Vol.

19(6), p57.

McGraw, G. (2003), ‘Building Secure Software: A difficult but critical step in protecting your business’,

Citigal, Inc, Available at: http://www.cigital.com/whitepapers/dl/Building_Secure_Software.pdf(Last

Accessed: November 2011)

McGraw, G.(2004), ‘Software Security’, The IEEE Computer Society, pp80-83

McGraw, G. (2004), ‘Who should do Security? Network Magazine’, Vol.19(19), p72.

McGraw, G. (2006)’The Role of Architectural Risk in Software’, Inform IT Network, Available at:
http://www.informit.com/articles/article.aspx?p=446451(Last Accessed: November 2011)

McGraw, G.(2008), ‘Software (In)security: Paying for Secure Software’, Inform IT Network, Available at:
http://www.informit.com/articles/article.aspx?p=1189519 (Last Accessed: August 2011)

McGraw, G. (2008), ‘Software (In)security: Securing Web 3.0’, Inform IT Network, Available at:
http://www.informit.com/articles/article.aspx?p=1217101 (Last Accessed: August 2011)

Meier, J. D.; Mackman, A. and Wastell, B. (2005), ‘Threat Modelling Web Applications’, Microsoft
Corporation, Available at: http://msdn.microsoft.com/en-us/library/ms978516.aspx (Last Accessed:
October 2011)

137

Miller, M. (2008), ‘Modelling the Trust Boundaries Created by Securable Objects ‘, In: Proceedings of the

2nd USENIX Workshop on Offensive Technologies, San Jose, CA.

Mockel C and Abdallah, A.E (2011) ‘Threat Modelling Approaches and Tools for Securing Architectural

Designs of E-Banking Application’, Journal of Information Assurance and Security, Vol. 6(5), pp 346-356

Mouratidis, H. and Giorgini, P. and Schumacher, M. (2003), ‘Security Patterns for Agent System’, In:
Proceedings of the 8th European Conference on Pattern Languages of Programs 2003, Irsee- Germany,
ppC4-1 –C4-16

Mouratidis, H. and Giorgini, P (2007), ‘Security Attack Testing (SAT)- testing the security of information
systems at design time’, Information Systems, Vol. 32, p1166- p1183

Oates, B. J. (2006), Researching Information Systems and Computing, Sage Publications, London

Over, J. W.(2002), ‘Team Software Process for Secure System Development’, Carnegie Mellon, Software
Engineering Institute, Available at: http://www.sei.cmu.edu/tsp/publications/tsp-secure.pdf (Last
Accessed: August 2011)

OWASP. (2008), ‘Threat Risk Modelling’, OWASP,

Available at: http://www.owasp.org/index.php/Threat_Risk_Modeling

OWASP (2010) ‘OWASP Top 10 – 2010 The Ten Most Critical Web Application Security Risk’, The OWASP

Foundation, Available at: https://www.owasp.org/index.php/Top_10_2010

Paul, M (2011), ‘Software Security, Being Secure in an Insecure World’ Software Community (ISC)2

Whitepapers, Available at:

https://www.isc2.org/uploadedFiles/%28ISC%292_Public_Content/Certification_Programs/CSSLP/CSSLP

_WhitePaper_3B.pdf (Last Accessed: March 2012)

Pemmaraju, K., Lord, E. and McGraw, G., (2000), ‘Software Risk Management: The importance of

building quality and reliability into the full development lifecycle’, Citigal, Inc., Available at:

www.cigital.com/whitepapers/dl/wp-qandr.pdf

Piessens, F. (2002), ‘A taxonomy of causes of software vulnerabilities in internet software’,

Supplementary Proceedings of the 13th International Symposium on Software Reliability Engineering,

pp47-52

Pomraning, M. J(2005), ‘Injection Flaws: Stop Validating Your Input’, Black Hat 2005, USA, Available at:

http://www.blackhat.com/presentations/bh-usa-05/bh-us-05-pomraning-update.pdf (Last Accessed

March 2012)

138

Ralston, P.A.S; Graham, J.H. and Hieb, J. L. (2007), ‘Cyber security risk assessment for SCADA and DCS

networks’, ISA Transaction, Vol.46(4), pp583-594

Redwine, S. T. Jr and Davis, N.; et al, (2004), ‘Process To Produce Secure Software: Towards more Secure

Software’, National Cyber Security Summit, Vol. 1

Ricard, R. (2011), ‘ISO 1799 Risk Analysis Toolkit’, Available at:

http://sourceforge.net/projects/ratiso17799 (Last Accessed: July 2011)

Richardson, R. (2007), ‘CSI Survey 2007, the 12th Annual Computer Crime and Security Survey’,
Computer Security Institute, Available at:
http://gocsi.com/sites/default/files/uploads/2007_CSI_Survey_full-color_no%20marks.indd_.pdf (Last
Accessed: April 2013)

Ryan, J., Lin, M., and Mikkulainen, R., (1998), ‘Intrusion Detection with Neural Networks,’
Advances in Neural Information Processing Systems, vol. 10, MIT Press, pp943-949

Schumacher, et.al, (2006) ‘Security Patterns: Integrating Security and System Engineering’ John Wiley &
Sons, Ltd, Chichester UK

Shulman, A. (2006), ‘Top Ten Database Security Threats: How to Mitigate the Most Significant Database
Vulnerabilities’ Available at: http://www.schell.com/Top_Ten_Database_Threats.pdf (Last Accessed:
March 2012)

Smith, L. (2003) An Introduction to Neural Networks, Centre for Cognitive and Computational
Neuroscience, http://www.cs.stir.ac.uk/~lss/NNIntro/InvSlides.html (Last Accessed: May 2011)

Spampinato, D. G. (2008), ‘SeaMonster: Providing Tool Support for Security Modelling’, NISK

Conference, Available at: http://www.shieldsproject.eu/files/docs/seamonster_nisk2008.pdf (Last

Accessed: November 2011)

Srinivasa, K.D. and Sattipalli, A. R, (2009) Hand Written Character Recognition using Back Propagation

Network, Journal of Theoretical and Applied Information Technology, Vol. 5(3), pp 257-269

Steel, C., et.al (2005) ‘Core Security Patterns: Best Practices and Strategies for J2EE, Web Services and

Identity Management’ Pearson Education, Inc., Massachusetts, USA.

Stephens, M., (2003) The Case Against Extreme Programming, Software reality, January 2003,

http://www.softwarereality.com/lifecycle/xp/case_against_xp.jsp (Last Accessed: March 2012)

Stergiou, C. and Siganos, D. (1997) Neural Network, Surprise 96 Journal, Vol.4

139

Swigart, S and Campell, S. (2008), ‘Threat Modelling at Microsoft’, Available at:

http://download.microsoft.com/download/6/9/B/69BCB7C6-D158-4073-AD3E-

F849E8ACBCE0/SDL_Series_-_4.pdf (Last Accessed: November 2011)

Telang, R. and Wattal, S.(2004), ‘Impact of Software Vulnerability Announcement on Market Value of
Software Vendors- an Empirical Investigation’, Workshop on Information Systems and Economics (WISE),
Available at:http://infosecon.net/workshop/pdf/telang_wattal.pdf (Last Accessed: June 2011)

Tessey, G. (2002), ‘The Economic Impacts of Inadequate Infrastructure for software Testing’, National
Institute of Standards and Technology (NIST), Available at: http://www.nist.gov/director/prog-
ofc/report02-3.pdf (Last Accessed: August 2011)

Turchin, V. F., (1977) ‘The Phenomenon of Science, a Cybernetic Approach to Human

Evoluation’ Columbia University Press, New York

Vaishnavi, V. and Kuechler, B. (2009), ‘Design Research in Information Systems’, Association for

Information Systems Available at: http://home.aisnet.org/displaycommon.cfm?an=1&subarticlenbr=279

(Last Accessed: March 2012)

Viega, J. and McGraw, G. (2002),’Building Secure Software’, Addison-Wesley, USA

Wiesauer A. and Sametinger J. A (2009), ‘Security Design Pattern Taxonomy Based On Attack Patterns:

Findings of a Systematic Literature Review’, Proceedings of the International Conference on Security and

Cryptography

Wiseman, S. (2006), Software Security and the Software Development Lifecycle, Booz Allen

Hamilton, Available at: http://www.issa-

nova.org/Documents/ArchivePresentations/Presentation-5.2006-Wisseman.ppt (Last access

date: May 2009)

Yu, E. et.al (2007) A Social Ontology for integrating security and software engineer In Integrating Security

Software Engineering: Advances and Visions, Idea Group Publishing, UK, pp70-105

Zachman, J.A. (1987) ‘A Framework for Information System Architecture’ IBM System Journal, Vol.26 (3),

pp276-292

140

Appendix

Appendix I

Security Pattern by Blakely et.al (2004)
Available System Security Pattern

Pattern Name Description

Checkpoint System
pattern

 Used to recover and restore a system to a known valid state in case a
component fails

 Offers protection from loss or corruption of state information
Standby Pattern

 Used to resume service provided by one component from another component

 Offers backup when a component fails and cannot be recovered. An similar or
identical component is used to provide continues services

Comparator-Check
Fault Tolerant
System pattern

 Used to design a system so that can detect an independent failure of one
component quickly and not cause a system-wide failure.

Replication System
pattern

 Used to create multiple points of presence and recovery in the case of the
failure of one or more components or links.

 Provide a means for load balancing and redirection to decrease the chance of
non-availability

Error
Detection\Correction
pattern

 Used to add redundancy to data to facilitate later detection and recovery of
error

 Offers protection against data corruption by deducing errors and possibly
correcting them in order to ensure correct information exchange or stored.

Protected System Security Pattern

Pattern Name Description

Protected System
pattern

 Used to provide structure through which all access by clients is mediated by a
guard which must be by-passed.

 Enforces security policy by controlling access to resources according to
predefined policy

Policy Pattern Used to isolate policy enforcement to a discrete component.

 Ensures that policy enforcement are performed in the proper sequence

 “An authenticated user owns a security context (e.g. a role) that is passed to
the guard of resource. The guard checks inside the policy whether the context
of this user and the rules match and provides or denies access to the resource”

Authenticator
pattern

 Used to perform authentication of a requesting process before deciding access
to distributed object

Subject Descriptor
patter

 Used to provide access to security attributes of an entity on whose behalf
operations are to be performed.

 Used to control the conditions under which authorization is to be performed.

 Used to represent authorization subjects as sets of predicates or assertions on
attributes and property values

Secure
Communication
pattern

 Used to secure the communication of two parties in the presence of threats.

 It us used to ensure that the mutual security objectives are met

141

Security Context
pattern

 Provides container for security attributes and data relating to execution
context, process, operation or action.

Security Association
pattern

 Defines a structure which provides each participant in a secure communication
with the information it will use to protect messages to be transmitted to the
other party.

 Also provide participant with information needed to understand and verify the
protection applied from the other party.

Secure Proxy pattern Defines the relationship between the guards of two instances of protected
system in the case when one instance is entirely contained within the other.

 Can be used to provide defence in depth

Appendix II

Security pattern by Steel et.al (2005)
Web Tier Security Patterns

Pattern Name Description

Authentication

Enforcer

This pattern shows how a browser client should authenticate with the server. It

creates a base Action class to handle authentication of HTTP requests.

Authorization

Enforcer

This pattern creates a base Action class to handle authorization of HTTP

requests.

Intercepting

Validator

This pattern refers to secure mechanisms for validating parameters before

invoking a transaction. Unchecked parameters may lead to buffer overrun,

arbitrary command execution, and SQL injection attacks. The validation of

application-specific parameters includes validating business data and

characteristics such as data type (string, integer), format, length, range, null-

value handling, and verifying for character-set, locale, patterns, context, and

legal values.

Secure Base

Action

The secure base action is a pattern for centralizing and coordinating security-

related tasks within the Presentation Tier. It serves as the primary entry point

into the Presentation Tier and should be extended, or used by a Front

Controller. It coordinates use of the Authentication Enforcer, Authorization

Enforcer, Secure Session Manager, Intercepting Validator, and Secure Logger

to ensure cohesive security architecture throughout the Web Tier.

Secure Logger This pattern defines how to capture the application-specific events and

exceptions in a secure and reliable manner to support security auditing. It

accommodates the different behavioral nature of HTTP servlets, EJBs, SOAP

messages, and other middleware events.

Secure Pipe This pattern shows how to secure the connection between the client and the

server, or between servers when connecting between trading partners. In a

complex distributed application environment, there will be a mixture of

security requirements and constraints between clients, servers, and any

intermediaries. Standardizing the connection between external parties using

142

Pattern Name Description

the same platform and security protection mechanism may not be viable.

It adds value by requiring mutual authentication and establishing

confidentiality or non-repudiation between trading partners. This is

particularly critical for B2B integration using Web services.

Secure Service

Proxy

This pattern is intended to secure and control access to J2EE components

exposed as Web services endpoints. It acts as a security proxy by providing a

common interface to the underlying service provider components (for

example, session EJBs, servlets, and so forth) and restricting direct access to

the actual Web services provider components. The Secure Service Proxy

pattern can be implemented as a Servlet or RPC handler for basic

authentication of Web services components that do not use message-level

security.

Secure Session

Manager

This pattern defines how to create a secure session by capturing session

information. Use this in conjunction with Secure Pipe. This pattern describes

the actions required to build a secure session between the client and the server,

or between the servers. It includes the creation of session information in the

HTTP or stateful EJB sessions and how to protect the sensitive business

transaction information during the session.

The Session pattern is different from the Secure Session Manager pattern in

that the former is generic for creating HTTP session information. The latter is

much broader in scope and covers EJB sessions as well as server-to-server

session information.

Intercepting

Web Agent

This pattern helps protect Web applications through a Web Agent that

intercepts requests at the Web Server and provides authentication,

authorization, encryption, and auditing capabilities.

Business Tier Security Patterns

Pattern Name Description

Audit

Interceptor

The Secure Logger pattern provides instrumentation of the logging aspects in

the front, and the Audit Interceptor pattern enables the administration and

manages the logging and audit in the back-end.

Container

Managed

Security

This pattern describes how to declare security-related information for EJBs in

a deployment descriptor.

Dynamic

Service

Management

This pattern provides dynamically adjustable instrumentation of security

components for monitoring and active management of business objects.

Obfuscated This pattern describes ways of protecting business data represented in transfer

143

Pattern Name Description

Transfer Object objects and passed within and between logical tiers.

Policy Delegate This pattern creates, manages, and administers security management policies

governing how EJB tier objects are accessed and routed.

Secure Service

Façade

This pattern provides a session façade that can contain and centralize complex

interactions between business components under a secure session. It provides

dynamic and declarative security to back-end business objects in the service

façade. It shields off foreign entities from performing illegal or unauthorized

service invocation directly under a secure session.

Session information can be also captured and tracked in conjunction with the

Secure Logger pattern.

Secure Session

Object

This pattern defines ways to secure session information in EJBs facilitating

distributed access and seamless propagation of security context.

Web Services Tier Security Patterns

Pattern

Name
Description

Message

Inspector

This pattern checks for and verifies the quality of XML message-level security

mechanisms, such as XML Signature and XML Encryption in conjunction with

a security token. The Message Inspector pattern also helps in verifying and

validating applied security mechanisms in a SOAP message when processed by

multiple intermediaries (actors). It supports a variety of signature formats and

encryption technologies used by these intermediaries.

Message

Interceptor

Gateway

This pattern provides a single entry point and allows centralization of security

enforcement for incoming and outgoing messages. The security tasks include

creating, modifying, and administering security policies for sending and

receiving SOAP messages. It helps to apply transport-level and message-level

security mechanisms required for securely communicating with a Web services

endpoint.

Secure

Message

Router

This pattern facilitates secure XML communication with multiple partner

endpoints that adopt message-level security and identity-federation mechanisms.

It acts as a security intermediary component that applies message-level security

mechanisms to deliver messages to multiple recipients where the intended

recipient would be able to access only the required portion of the message and

remaining message fragments are made confidential.

144

Security Patterns for Identity Management and Service Provisioning

Pattern Name Description

Assertion Builder This pattern defines how an identity assertion (for example,

authentication assertion or authorization assertion) can be built.

Credential Tokenizer This pattern describes how a principal's security token can be

encapsulated, embedded in a SOAP message, routed, and processed.

Single Sign-on (SSO)

Delegator

This pattern describes how to construct a delegator agent for handling a

legacy system for single sign-on (SSO).

Password

Synchronizer

This pattern describes how to securely synchronize principals across

multiple applications using service provisioning.

Appendix III
Security Design Patterns by Kinezle and Elder (2003)
Structural Patterns

Pattern Name Description

Account Lockout Passwords are the only approach to remote user authentication that has

gained widespread user acceptance. However, password guessing

attacks have proven to be very successful at discovering poorly chosen,

weak passwords. Worse, the Web environment lends itself to high-

speed, anonymous guessing attacks. Account lockout protects customer

accounts from automated password security guessing attacks, by

implementing a limit on incorrect password attempts before further

attempts are disallowed.
Authenticated Session An authenticated session allows a Web user to access multiple access-

restricted pages on a Web site without having to re-authenticate on every

page request. Most Web application development environments provide

basic session mechanisms. This pattern incorporates user authentication

into the basic session model.

Client Data Storage It is often desirable or even necessary for a Web application to rely on

data stored on the client, using mechanisms such as cookies, hidden

fields, or URL parameters. In all cases, the client cannot be trusted not to

tamper with this data. The Client Data Storage pattern uses encryption

to allow sensitive or otherwise security-critical data to be securely stored

on the client.

Client Input Filters Client input filters protect the application from data tampering

performed on untrusted clients. Developers tend to assume that the

components executing on the client system will behave as they were

originally programmed. This pattern protects against subverted clients

that might cause the application to behave in an unexpected and insecure

fashion.

Directed Session The Directed Session pattern ensures that users will not be able to skip

around within a series of Web pages. The system will not expose

145

multiple URLs but instead will maintain the current page on the server.

By guaranteeing the order in which pages are visited, the developer can

have confidence that users will not undermine or circumvent security

checkpoints.
Hidden Implementation The Hidden Implementation pattern limits an attacker’s ability to discern

the internal workings of an application—information that might later be

used to compromise the application. It does not replace other defenses,

but it supplements them by making an attacker's job more difficult.
Encrypted Storage The Encrypted Storage pattern provides a second line of defense against

the theft of data on system servers. Although server data is typically

protected by a firewall and other server defenses, there are numerous

publicized examples of hackers stealing databases containing sensitive

user information. The Encrypted Storage pattern ensures that even if it is

stolen, the most sensitive data will remain safe from prying eyes.
Minefield The Minefield pattern will trick, detect, and block attackers during a

break-in attempt. Attackers often know more than the developers about

the security aspects of standard components. This pattern aggressively

introduces variations that will counter this advantage and aid in

detection of an attacker.

Network Address
blacklist

A network address blacklist is used to keep track of network addresses

(IP addresses) that are the sources of hacking attempts and other

mischief. Any requests originating from an address on the blacklist are

simply ignored. Ideally, breaking attempts should be investigated and

prosecuted, but there are simply too many such events to address them

all. The Network Address Blacklist pattern represents a pragmatic

alternative.
Partitioned Application The Partitioned Application pattern splits a large, complex application

into two or more simpler components. Any dangerous privilege is

restricted to a single, small component. Each component has tractable

security concerns that are more easily verified than in a monolithic

application.

Password
Authentication

Passwords are the only approach to remote user authentication that has

gained widespread user acceptance. Any site that needs to reliably

identify its users will almost certainly use passwords. The Password

Authentication pattern protects against weak passwords, automated

password-guessing attacks, and mishandling of passwords.
Password Propagation Many Web applications rely on a single database account to store and

manage all user data. If such an application is compromised, the attacker

might have complete access to every user’s data. The Password

Propagation pattern provides an alternative by requiring that an

individual user’s authentication credentials be verified by the database

before access is provided to that user’s data.

Secure Assertion The Secure Assertion pattern sprinkles application-specific sanity checks

throughout the system. These take the form of assertions – a popular

technique for checking programmer assumptions about the environment

and proper program behavior. A secure assert maps conventional

146

assertions to a system-wide intrusion detection system (IDS). This

allows the IDS to detect and correlate application-level problems that

often reveal attempts to misuse the system.

Server Sandbox Many site defacements and major security breaches occur when a new

vulnerability is discovered in the Web server software. Yet most Web

servers run with far greater privileges than are necessary. The Server

Sandbox pattern builds a wall around the Web server in order to contain

the damage that could result from an undiscovered bug in the server

software.

Trusted Proxy A trusted proxy acts on behalf of the user to perform specific actions

requiring more privileges than the user possesses. It provides a safe

interface by constraining access to the protected resources, limiting the

operations that can be performed, or limiting the user’s view to a subset

of the data.
Validated Transaction The Validated Transaction pattern puts all of the security-relevant

validation for a specific transaction into one page request. A developer

can create any number of supporting pages without having to worry

about attackers using them to circumvent security. And users can

navigate freely among the pages, filling in different sections in whatever

order they choose. The transaction itself will ensure the integrity of all

information submitted.

147

Appendix IV
System Design of a hypothetical banking syste

148

Appendix V
Screenshots of Neural Network I (first Network)

Screenshots of Neural Network I (Second Network)

149

150

Screen Shot of Neural Network II

151

Appendix VI
Neural Network 1 (First Network: Weight to layer 3)

[-0.16874 0.46912 -0.17275 0.93263 0.22674 0.33647 0.82078 -1.2175 -0.30718 0.1619 0.60244 -

0.84596 0.35917 -0.58197 -0.1355 0.78296 -0.14891 -0.63678 0.58449 0.60938 0.74851 -0.75645 -

0.50426 -0.86166 -0.27702 0.10394 0.49177 -0.1605 1.0453 -0.012048 0.19877 0.67603 -0.11851 -

0.043609 -0.89364;

 -0.37075 0.60491 0.36731 2.1922 -0.6221 0.12072 1.0724 0.35546 -2.0527 -0.53752 -1.4685 -0.022488

0.64421 0.83976 -0.50733 0.27778 0.17341 -1.0992 0.81255 0.39671 0.70053 -0.081449 -0.59588 -

0.28674 -0.24363 0.46533 0.21334 -0.21313 1.7439 0.49439 -0.040434 -0.42118 -0.82257 0.98078 -

0.45328;

 -0.1083 0.40013 0.75861 0.43049 -1.2952 -0.56643 -0.061328 -0.54782 1.2521 0.12715 -2.1861

0.47863 -0.053031 -0.78504 -0.43256 0.43859 1.068 -0.46446 -2.2287 0.88026 0.65504 0.95359 -

0.84473 -1.0891 -0.68932 0.65899 0.2167 -1.5766 -0.18785 0.34162 -0.91247 -0.042785 -0.35586 -

0.58015 -0.47937;

 -0.45063 0.50104 -0.28596 0.40768 -0.91112 1.7644 0.10891 -0.26777 -1.981 1.2315 0.13444 0.1784

0.69268 -1.3179 -0.48735 1.0694 2.0058 -0.55395 -0.55371 0.91008 1.0734 0.10779 -0.58433 -0.78402

0.23368 -0.41306 0.8539 -0.53076 1.2675 -2.2481 -0.63883 0.33174 0.46121 0.5084 0.9367;

 0.91631 0.07302 -1.2417 -0.41323 1.3863 -0.023949 -1.3495 0.89421 0.95998 -0.11751 -0.99684

1.3973 0.59484 1.5423 -0.28783 0.86094 -0.089169 -0.85489 2.4052 0.56013 0.52985 1.7752 -0.4175 -

0.35226 1.2106 0.23597 0.37343 0.98609 -0.23339 0.43199 -0.39431 0.19539 -1.2496 1.6346 -0.50527;

152

 0.60016 0.29291 -0.44971 0.78497 -0.48747 -0.29152 -0.30941 0.48076 -0.10347 -0.0019005 0.14059

0.53035 0.58725 -0.074515 -0.52416 0.045644 -0.01699 -0.4462 1.1127 0.024181 -0.06964 -0.51163

0.10999 0.012175 0.37395 1.3187 0.0046624 -0.67747 -0.94985 -0.44251 -1.0815 -0.057936 0.21611 -

0.037913 -0.673;

 -0.93018 0.3447 -0.30622 0.8012 -0.84328 -0.63199 0.29164 -0.63001 -0.3383 0.31774 0.012506 -1.536

0.89533 -0.12367 -1.0244 0.54619 0.57499 -0.2583 -0.99891 0.28656 0.65137 1.0307 -0.69852 -0.27886

1.0703 -0.431 0.19843 -0.68107 -0.78461 -1.2297 -0.28078 -0.021021 0.30103 0.035136 -3.2589;

 2.3712 -0.020569 1.0805 0.061385 0.47081 2.9245 0.12073 0.116 -1.2281 0.11631 -0.015111 0.18819

0.075333 1.3236 -0.42198 0.1665 0.13483 -0.80836 -0.40835 0.62561 0.56523 -1.016 0.088189 -

0.098191 1.3194 1.0351 0.040431 -0.20273 0.55845 -0.84564 0.036098 0.54485 -0.17828 0.39558

0.011753;

 -0.83361 0.037664 -1.7883 0.97998 1.6225 -1.9614 -0.60463 -0.79921 -0.44931 -1.5775 -0.064096 -

1.2352 0.37646 -0.89299 -0.5847 1.0306 -0.43719 -1.1248 -0.33434 0.7354 0.88145 0.80174 0.41088 -

0.96219 0.43431 0.47466 0.45816 -0.40462 1.2164 -1.7696 -0.98476 0.95398 0.19492 0.66361 0.18371;

 1.9634 -0.3596 -0.48624 0.52468 -1.5157 -1.5481 -0.75522 -0.60929 0.21619 -0.84161 -0.44918 -1.3449

0.58941 1.9428 -0.57106 0.9087 -0.59144 -0.25726 -0.11953 0.27224 0.35514 1.3963 -0.19481 -0.75189

-0.66517 -0.65553 0.45938 -0.81879 -0.57675 -1.1529 -0.71389 0.39541 0.6605 0.38264 -0.20745;

 1.3363 -0.095471 -0.44977 0.68648 1.1049 -0.18412 -0.50327 0.35878 -0.51511 -0.66366 -1.3242

0.56085 0.33476 -0.83207 -0.41446 0.7586 -0.28156 -0.25522 -0.8105 0.41925 0.2915 0.25792 -0.279 -

0.38436 0.40188 0.61716 -0.075181 -0.71581 0.22185 0.71126 -0.46072 0.46842 1.5155 0.31407 -

0.25532;

 0.005081 -0.020256 -0.12506 -0.137 -0.60889 -0.066088 0.781 -0.20534 0.77267 -0.47274 0.37117 -

0.20639 -0.12378 -0.29893 0.013001 0.3097 0.010454 -0.16373 -1.0239 0.51806 0.35029 -0.093545

0.15633 -0.62207 1.0679 0.53538 1.2272 -0.43737 -0.40301 -0.15853 0.081084 1.5515 0.85398

0.067091 -0.30354;

 -0.27075 0.5451 -2.0196 -1.3172 -1.1419 -1.517 -0.93752 -1.2761 -1.8635 0.95251 1.5891 0.0037349

0.39957 1.1789 -0.54893 1.0023 0.48079 -0.32365 -0.90432 0.98014 0.99491 -0.19345 -0.82439 -0.1963

0.09139 0.17318 0.423 -0.63343 0.53891 2.6909 -0.3045 0.15552 -0.49413 0.12658 0.0019409;

 0.57914 2.1806 -0.11365 0.19539 0.27843 -0.55773 -0.0019489 -0.5663 -0.10024 -0.42955 -0.077741 -

0.36 0.14317 -0.28479 -0.51904 0.32154 0.084153 0.082452 -0.63545 -0.050958 0.19833 -0.72762 -

1.5764 -0.52302 0.46164 0.39028 -0.06375 -0.61024 -0.38948 -0.36031 0.15571 -0.16362 -0.21822 -

0.052815 -0.067036;

 0.26184 0.64629 0.20241 -1.8688 0.55728 0.33182 -0.5613 -1.499 0.53433 0.329 -1.0948 0.099771

0.94483 -1.2848 -0.57714 0.6661 -0.10247 -0.20858 0.58051 0.40007 0.41128 0.10002 -0.44536 -0.8396

-0.15608 -0.043278 1.2195 0.048752 -0.33135 0.067516 -0.1272 -0.3257 0.87144 -0.17051 -0.14156;

153

 1.0996 0.37021 0.45179 0.39903 -0.51302 0.13948 1.4701 -0.9589 0.43698 0.62273 -0.99534 0.13125

0.52355 1.0193 -0.36298 0.86183 -0.98225 -0.52502 0.20888 0.25955 0.3902 -0.53294 -0.26033 -

0.90482 1.8221 0.1055 0.01444 -0.62337 0.021385 -0.27247 0.21679 -0.44207 0.88962 0.70243 -

0.036662;

 -0.29616 0.67145 0.18642 0.22566 1.129 -0.020646 0.69462 -0.024119 -0.29747 0.73282 0.11451 -

0.55373 0.68005 0.077157 -0.16139 0.28083 -0.83718 -0.27889 -0.64558 0.72196 0.059226 0.41305 -

0.42 -0.4984 1.271 0.28179 0.47993 -2.0659 0.22861 0.72645 -0.28891 -0.024572 -0.57331 0.10878 -

0.14352;

 -1.0713 0.47274 -0.16907 -2.6718 0.79298 1.8399 -0.25943 0.082362 0.0053939 -1.0884 -0.24043

0.7413 0.30837 -0.63532 -0.92624 0.30116 -0.37611 -0.84821 -1.078 0.71424 0.12971 0.085605 -

0.26007 -0.9068 0.43572 -0.22903 0.33892 -0.73762 0.24666 -1.6835 -0.67711 -0.35032 -0.47052 -

0.35499 -0.41858;

 -0.39696 0.39997 0.26203 0.50923 1.21 -0.28958 0.39347 0.014213 2.6689 -1.8635 1.2526 0.71566

0.48233 1.8037 -0.34577 0.66118 1.4289 -0.7266 -2.0338 0.91744 1.0442 -0.080937 -0.79409 -0.97551

0.094203 0.91673 0.20046 -0.21624 -0.4189 1.3897 -0.40207 0.19589 -0.68227 0.12572 -0.72807;

 -0.41681 -0.41505 -1.5604 -1.2439 0.93151 -0.2496 1.4941 0.16361 0.28889 0.12021 0.1022 -0.86283

0.30597 1.2326 -0.16369 0.091447 -0.48314 -0.40747 0.86488 0.41102 0.27273 -1.0703 -0.92711 -

0.80791 0.31456 0.61888 0.18815 -0.47133 -1.3027 -1.0286 0.21561 -0.25669 -0.23219 -0.14272 -

0.18964;

 -0.34271 0.32036 -2.1063 1.0928 1.0386 3.1617 0.080611 -0.23116 1.8746 0.82869 0.29223 1.5338

0.42698 -0.64105 -0.2654 0.69486 -0.94791 -0.55473 -0.49423 0.10671 0.79908 0.28972 -0.46165 -

0.30679 0.13562 -0.091318 0.21584 -0.13459 -0.35401 1.2973 -0.41617 0.75114 0.063945 0.33344 -

0.77448;

 -0.16133 0.3878 0.062173 -1.1818 0.41922 0.075442 0.93286 -0.19557 -0.67739 0.071846 -0.57973

0.49595 0.40671 0.23613 -0.90741 0.33997 -0.32956 -0.82821 0.40086 -0.044961 0.11563 -0.0084878 -

0.3041 -0.16512 -0.11949 0.40711 -0.45734 -0.82926 0.32667 0.11749 -1.6161 1.2322 1.0187 0.61073 -

0.92963;

 -0.089573 0.20997 0.49355 -0.83159 1.1258 1.5587 -0.0066089 -0.026393 1.3047 0.31986 2.01 -2.148

0.22348 -0.14294 -0.71449 0.74849 1.6712 -0.61445 2.545 0.39031 0.6314 -0.083588 -0.61346 -0.14176

0.37991 -0.18981 0.10641 -0.83907 0.30997 1.0725 -0.16124 0.31785 0.058244 -0.28293 -0.5086;

 1.0678 0.2165 0.47577 -1.6904 -0.13782 0.15952 1.9122 0.13399 0.47221 -0.91265 -1.0237 -0.67731

0.67053 0.026892 -0.21008 0.80735 0.41187 -0.12929 0.35055 0.3811 0.79882 1.283 -0.59784 -0.64256

0.30512 -0.27308 0.46733 -0.69773 -2.236 1.1542 -0.46544 0.023994 -0.33677 1.3884 0.057178;

 -0.80474 0.49505 0.40314 -1.4483 -0.77715 0.11736 -1.2416 -0.28978 0.24278 0.4233 0.05443 -0.5929

0.48019 0.32133 -0.95371 0.37852 -0.19461 -0.75764 -1.1751 0.59947 0.040578 0.7144 -0.2238 -

154

0.67192 -0.12821 1.8456 0.025829 -0.87076 -1.2135 -0.81434 -0.51651 0.74512 0.48069 1.1549 -

0.097741;

 -0.87395 0.02663 -1.9877 1.168 1.1627 1.9248 -0.49736 -2.0415 -1.379 -1.5317 0.60118 -0.96778

0.21748 1.8683 -0.65136 0.40536 2.6187 -0.30935 1.6731 0.28783 0.56594 -1.2267 -0.16659 -0.71195 -

0.36162 0.26234 0.2141 0.24062 -0.10049 0.4772 -0.20505 0.4144 2.646 0.4699 -0.61364]

Neural Network I (Second Network: weight to layer 3)

[0.00027829 -0.61828 0.73982 -0.40325 -0.28699 0.089942 -0.26725 -0.048234 -0.29411 -0.57788

0.37841 -0.57048 0.59433 0.0094232 1.4085 0.82056 0.80302 -0.1766 -0.54572 0.65269 0.91527 -

0.44104 0.44588 -0.033723 0.27357 0.63858 -0.093854 -0.070888 -0.55713 -0.328 0.25231 0.55114 -

0.95603 -0.62083 -0.29803;

 0.069377 -0.54301 -1.0676 -0.33555 -0.37548 0.020985 0.12136 0.24337 0.080117 -0.24181 0.31416 -

0.85271 0.88078 -0.92719 -1.2092 -0.15579 0.20331 -1.1349 0.5568 0.00089946 0.26062 -0.10447

0.66929 -0.86826 0.13782 0.089057 -0.55251 0.031708 0.22604 -0.36976 0.16308 0.40124 -1.2889 -

0.46932 -0.67402;

 -0.772 -0.74579 -0.55708 -0.11964 -0.41502 -1.2333 -0.10064 -0.59397 -0.30849 -0.09555 0.42258 -

0.76372 0.48766 0.32933 0.11672 0.29361 -1.3662 0.82167 0.50149 0.51635 0.14896 0.42495 0.85338 -

0.54342 0.30342 0.20106 -1.1115 -0.29523 -0.37487 1.1887 -0.42638 0.3735 0.13716 -0.28454 -

0.90382;

 -0.042158 -0.70406 -0.27203 0.12494 -0.59092 1.0419 -0.49495 -0.085801 -0.36588 -0.056737 0.6553 -

0.2243 0.96982 -0.51594 -1.6151 0.15789 -0.21724 0.9266 0.13196 0.29904 0.16845 0.39745 -0.049178

-0.45508 -0.00062244 -1.6337 0.12764 0.26033 0.5166 -0.10963 -0.44981 0.20918 -1.0314 -0.31119 -

0.42226;

 -0.29248 -0.79441 0.20935 -0.22569 -0.62937 0.41342 -0.042484 -0.26192 -1.2337 -0.19639 0.13909

0.03175 -0.68431 -0.79355 0.41636 0.32003 0.01192 0.7439 0.45249 0.11059 0.15618 0.17267 -0.74136

0.020536 0.22543 -0.45403 0.21755 -0.076817 -0.61225 -0.29869 -0.057344 0.18794 0.6706 0.060744 -

0.12071;

 0.23764 -0.58026 1.946 0.14825 -0.49704 -0.22677 -0.58459 -0.60264 -0.5686 0.057248 0.037745 -

0.37985 0.45205 0.28124 -1.1667 0.93059 0.98203 -0.076015 -0.4089 0.80834 0.52765 -0.083223 -

0.10655 -0.086983 0.45008 0.15332 0.3953 -0.15956 -0.53378 0.40659 -1.2172 0.20758 0.27337 -

0.77231 -0.16307;

 -0.04335 -0.33719 -0.2474 0.07895 -0.57564 0.60017 -0.29364 -0.48244 -0.20828 -0.17485 0.15358

0.84556 0.53709 1.0001 -0.57952 0.39579 -0.52672 -0.33391 0.11712 0.65041 -0.53551 -0.37578 -

0.89508 -0.54239 0.3291 0.58018 0.18767 0.015882 -0.55264 1.1173 0.091167 0.56552 -0.46362 -

0.20206 -0.34357;

155

 -0.077813 -0.58706 -0.72498 -0.41533 -0.026086 -1.3767 -0.2494 -0.21149 -0.27717 -0.75952 0.62801

0.49059 0.35203 -1.2625 -0.39778 0.30806 -1.595 1.1816 0.14263 0.49358 -0.25288 0.043795 -0.78796

-0.39474 0.66069 0.5375 0.2377 0.27158 -1.0209 -0.76241 0.40351 0.011313 0.0095843 -0.55385 -

0.31926;

 -1.3688 -0.52692 -0.21074 0.40208 -0.49653 -0.23046 -0.036601 -0.034666 -0.39005 -0.58429 0.55206 -

0.3455 -0.29986 0.86999 -0.45262 -1.4591 0.17064 -0.99505 -0.04477 0.2822 0.5848 0.32942 0.36773

0.14258 0.63582 0.27326 0.46517 0.63749 0.079932 -0.12417 -0.5309 -0.63212 -0.57209 -0.63712 -

0.67117;

 0.067794 -0.45955 1.1004 -0.19537 -0.46618 0.76897 -0.29954 -0.81603 0.1069 -0.18783 0.6097

0.99482 -1.3654 0.51394 0.18744 0.5299 -1.2854 0.27815 0.15498 0.49157 0.44353 0.30748 0.56847 -

0.7709 -0.09634 -0.90435 -1.657 0.1487 -0.41868 0.068575 -0.37555 0.43382 0.47103 -0.55086 -0.1408;

 -0.67012 -0.22183 0.17053 -0.66708 -0.20122 0.32058 0.26367 -0.35742 -0.37191 -0.07881 0.51379 -

0.34766 -0.37487 0.11681 -0.85251 -0.18141 0.47924 0.51668 -0.18332 0.29349 -0.42823 0.38375 -

0.42223 -0.21017 0.20165 -0.22613 -0.20027 -0.76302 0.27343 0.16861 0.30941 0.66949 0.26353 -

0.35203 -0.83811;

 -0.30079 -0.45244 -0.36959 -0.38978 -0.23582 -0.02067 0.28523 -0.84013 0.28226 -0.60085 0.53508

1.1112 -1.1861 0.34301 -0.063788 0.63513 -0.15234 -0.93268 0.46464 0.10315 -1.1959 0.94362 0.83562

-0.5205 0.4551 1.1142 -0.98524 -0.078618 -0.40158 -0.61546 -0.26731 0.099991 -0.35746 -0.56976 -

0.17526;

 -0.66101 -0.018699 -0.56883 -0.0012508 -0.55096 -0.33889 0.14019 -0.36607 0.17236 -0.29313

0.025477 0.64751 -0.58474 -0.34733 0.52438 0.46734 0.30871 0.72455 0.62809 0.77604 -0.56914

0.46147 0.034382 -0.73263 0.31404 -0.91629 -0.055692 -1.3777 0.019151 0.86271 -0.58024 0.35584

0.38625 -0.76758 -0.078903;

 0.51843 -0.2787 0.62731 -0.27979 -0.74681 -0.79144 0.23654 0.23535 -0.28814 -0.3767 0.55501 -

0.16908 -0.531 0.21491 0.21846 1.0959 -1.0659 0.47586 -0.48653 0.66045 0.058875 -0.27149 -0.56728

-0.62132 0.38313 0.68826 0.14781 -0.34041 -0.14872 0.2342 -0.71345 0.34813 -1.1532 -0.78146

0.45557;

 -0.14556 0.035575 0.16672 0.75258 -0.45042 0.11183 0.65317 0.012577 -0.39317 -0.12007 0.49021

0.29203 0.68971 0.21316 -0.68572 0.18562 -0.049189 -0.35021 -0.56222 0.36438 0.3429 0.62996

1.3277 -0.70936 -0.10541 0.26723 0.061138 0.071135 -0.51577 -0.012361 0.1055 1.2352 0.39954 -

0.39893 0.15798;

 -0.64604 -0.47498 0.72673 -0.03053 -0.41029 0.22052 -0.35207 0.31955 -1.1631 -0.55511 0.48285

1.1915 0.20717 -0.76187 0.14621 0.028162 0.68518 -0.74801 0.45711 -0.017228 -0.22761 -0.18376

0.65665 0.085489 0.50181 -1.0884 0.036299 0.27281 -0.06702 0.31095 -0.20077 0.063445 -0.46803 -

0.70287 0.11671;

156

 -0.63072 -0.72747 0.82577 -0.17257 -0.6292 -0.76144 1.2819 0.34797 0.21417 -0.25439 0.068862

0.048425 0.76377 -0.38199 -0.15612 -0.4449 0.082724 1.2789 0.96198 0.20213 -0.28874 -0.20415

0.4288 -0.37692 0.80417 -0.46659 -0.17325 -0.71745 -1.2611 -0.1396 -0.17267 0.047271 -0.8112 -

0.23361 0.66804;

 -0.032531 -0.51265 -0.84962 -0.022925 -0.71711 -0.3469 0.3259 0.49526 -0.6043 -0.43689 0.39368

0.52137 -0.65181 0.0016131 -0.33833 -0.69996 -0.090013 0.84502 -0.04866 0.55146 0.27733 -0.22216 -

0.54231 -0.74236 0.4064 -0.76426 0.21947 0.26436 -0.0082227 -0.25626 -1.4444 0.91716 0.22058 -

0.20923 0.16794;

 0.27077 -0.13475 0.36233 0.00070036 -0.63846 -0.59954 -0.31189 -0.72961 -0.53541 -0.63251 0.81766

0.78618 0.64993 0.36273 0.58305 -0.60392 0.11345 -0.78706 -0.82571 0.87904 -0.70411 -0.31088 -

0.44788 -0.30857 0.49811 0.29983 -0.42049 -0.83441 -0.61932 0.4457 -0.35668 0.37259 0.0095759 -

0.36843 0.075976;

 -0.046177 -0.65591 -0.78917 -1.282 -0.22137 0.47174 -0.70709 -0.1985 -0.77975 -1.4153 0.87461 -

1.014 0.96835 0.41824 0.51466 -0.54134 -0.6506 0.28421 -0.69889 0.1293 -1.0086 0.24437 1.0033 -

0.78658 0.64594 -0.7705 0.075496 -0.20028 0.2632 -0.21563 0.015409 -0.31215 0.23701 -0.92992 -

0.2783;

 -0.66066 -0.40275 -0.871 -0.39093 -0.61749 -0.30408 0.077377 0.84304 0.024565 -0.54618 0.62791

0.13264 -0.36256 -1.129 -0.53815 1.0532 0.80494 -0.73136 0.43335 0.12625 -0.32452 0.49003 -0.86872

-0.59636 -0.099799 0.50785 -0.6051 0.6242 0.16915 0.79516 -1.214 0.27295 0.83352 -0.44227

0.076523;

 -0.18227 -0.60278 0.031406 -0.083375 -0.57549 0.36288 0.82774 -0.31386 0.026657 -0.11086 0.32521

-0.25676 0.55848 -1.0784 0.58173 0.61674 -0.20252 -0.37306 -0.67015 0.57362 -0.13422 0.15712 -

0.57902 -0.067274 0.43864 0.33628 -0.89326 0.12463 0.19942 0.52269 0.27112 0.080844 -0.097539

0.16523 -0.46618;

 -0.010304 -0.43788 -0.19397 0.27319 -0.42338 0.45441 0.33639 0.18383 -0.52026 -0.1667 0.34489

0.83955 -0.094048 0.070629 0.37573 -0.22091 -0.87595 0.41503 -0.71809 0.64468 -0.020614 0.89486 -

0.1702 -0.54084 0.52514 -0.38192 -0.24907 0.1759 -0.033523 0.64493 0.25924 0.10936 -0.83066 -

0.2541 -1.8277;

 -0.4687 -0.84897 -1.2442 0.038577 -0.1589 -2.8048 -1.7591 1.1397 -0.60626 -0.16105 0.90036 -0.27709

0.93857 -1.9632 0.34945 -0.81848 -0.18411 -1.5029 -0.31678 0.25668 0.70859 1.6561 -0.072868 -

0.81981 0.64868 0.48771 0.054691 -2.2841 -1.6095 -0.34523 -0.15382 0.30716 0.024501 -0.38105 -

0.80389;

 -0.83169 -0.38409 0.9496 -0.66819 -1.1389 2.8259 2.7076 0.3195 -0.92501 -0.87612 0.28017 -0.42328

0.60949 1.5791 0.40449 0.38076 1.2243 1.5092 -0.18739 0.91793 2.2285 0.57156 -1.4124 -0.53684

0.89181 -1.4472 -0.036904 0.33293 -1.9015 0.26894 0.31814 -0.12805 0.37712 -0.80256 0.18135;

157

 -0.23672 -0.56884 -0.21291 0.13882 -0.46784 0.98582 -0.19035 -0.46205 0.098452 0.05451 -0.091528 -

0.54824 0.5623 0.55934 -0.035081 -1.115 1.0395 0.19568 0.13382 0.19897 0.91299 -0.22714 0.35969 -

0.37996 0.63541 -0.69843 -0.88876 -0.68729 0.031976 1.1844 -0.080089 0.35838 -0.25347 -0.38321

0.058399]

Neural Network II

[-1.8963 -0.28861 0.14693 0.52188 0.0021163 0.45367 -0.013661 1.0718 0.79166 0.12273 -1.8375 -

0.59678 0.28752 -1.3048 -0.47042 -0.05793 -0.95272 0.015503 -0.91325 1.3127 -0.27367 0.37804

0.10196 0.70541 0.14261 -0.6733 0.87104 0.77295 0.53057 -2.6086 -0.16872 0.42282 -0.68744

0.070333 -0.11818 -0.26445 1.035 0.71876 0.52489 -0.3909;

 -0.6103 1.4528 0.46415 0.19778 -0.038254 0.78971 1.9252 0.94018 -1.231 -1.161 -0.25352 -0.66053 -

2.79 -0.17144 -0.20007 0.74797 -1.8342 -1.4451 -1.2396 1.7816 0.84104 -1.2499 1.0152 -1.4108

0.016862 -1.0039 2.0336 -0.17936 1.7454 -0.27762 1.1661 0.21102 -0.68995 -2.4038 0.93152 0.77447

0.99105 0.095405 0.93143 -0.5318;

 -1.5563 0.24193 -0.40451 -0.63966 -0.55912 0.65793 -1.8159 0.22194 -0.56065 1.9859 -1.2999 -

0.96695 1.1348 -1.8683 -2.2907 1.1997 1.249 -1.4883 -1.4148 -0.094304 1.3466 1.373 0.42275 0.60905

0.73467 -1.0269 0.71054 -0.34894 -1.3968 -0.71592 2.6769 1.0763 -0.15124 0.018598 -0.51099 0.71413

1.1453 0.70292 1.4196 -0.34193;

 -2.2961 -3.2184 -2.3318 -0.42701 -3.3586 0.41123 -1.4978 0.89366 1.7587 -4.8844 0.17496 0.099853 -

3.0581 -1.3049 1.3843 1.8752 0.24377 0.036169 -1.0718 2.1406 -2.4268 -0.51735 0.2829 1.411 -2.0611 -

0.48511 0.28103 1.1041 0.37915 -2.1335 -1.47 -0.32884 -1.4898 0.9789 -0.55056 -1.2076 0.24605 -

0.038974 0.3144 -1.5631;

 4.1161 0.33019 1.4321 1.7449 2.4248 0.67933 2.0447 0.68722 -0.38552 2.4549 -0.30611 1.7623 3.2181

2.4129 0.34921 -2.7354 0.68459 0.81391 2.3231 -3.3254 -1.3536 1.3529 -1.3844 -0.20604 1.9518 -

0.48443 -2.2806 -0.15088 0.74373 3.1507 -1.8506 0.17068 0.46448 2.2644 -1.1119 1.2558 0.017139

0.63045 0.26262 2.0037]

Appendix VII

Date

Published

Reported Vulnerabilities from Security Focus Butraq

ID

Aug 06 2002 Microsoft Windows Window Message Subsystem Design Error

Vulnerability

5408

May 25 2005 DavFS2 Failure To Enforce UNIX Filesystem Permissions Design Error

Vulnerability

13770

Apr 14 2005 Opera SSL Security Feature Design Error Vulnerability 13176

158

Jul 01 2005 RaXnet Cacti Config.PHP Design Error Vulnerability

14130

Jan 11 2005 Bottomline Technologies WebSeries Design Error Vulnerabilities

12231

Dec 23 2004 Linux Security Modules Process Capabilities Design Error

Vulnerability

12093

Jul 29 2002 Multiple Browser Vendor Same Origin Policy Design Error

Vulnerability

5346

May 03 2005 PostgreSQL TSearch2 Design Error Vulnerability 13475

Oct 03 2006 IBM Client Security Password Manager Design Error Vulnerability

20308

Aug 23 2004 SUPHP Design Flaw Local Privilege Escalation Weakness 112020

Apr 30 2004 Web Wiz Forum Multiple Vulnerabilities

10255

Apr 20 2003 Microsoft Windows NTFS Failure To Initialize File Block Vulnerability

7386

Mar 08 2002 Check Point FW-1 SecuClient/SecuRemote Client Design Vulnerability

4253

May 10 2001 NetProwler Password Facilities Weak Design Vulnerability 2727

Mar 02 2005 PHP Glob Function Local Information Disclosure Vulnerability 12701

Mar 22 2004 PHP-Nuke MS-Analysis Module Multiple Remote Path Disclosure

Vulnerabilities

9946

Feb 20 2003 Multiple Vendor ATM Hardware Security Module PIN

Generation/Verification Vulnerability

6901

Sep 06 2005 MAXdev MD-Pro Arbitrary Remote File Upload 14750

Dec 06 2001 Multiple Personal Firewall Vendor Outbound Packet Bypass

Vulnerability

3647

Nov 01 2005 IOFTPD Username Enumeration Vulnerability

15253

159

Aug 27 2004 MeindlSOFT Cute PHP Library cphplib Input Validation Vulnerabilities

11062

Aug 05 2004 Libpng Graphics Library Unspecified Remote Buffer Overflow

Vulnerability

10872

Jun 14 2004 Linux Kernel Floating Point Exception Handler Local Denial Of Service

Vulnerability

10538

Apr 23 2004 Zonet Wireless Router NAT Implementation Design Flaw Vulnerability

10225

Jul 12 2001 ArGoSoft FTP Server Weak Password Encryption Vulnerability 3029

Nov 28 2005 Microsoft Windows SynAttackProtect Predictable Hash Remote Denial

of Service Vulnerability

15613

Aug 29 2005 BFCommand & Control Server Manager Multiple Remote

Vulnerabilities

14690

Feb 18 2005 Tarantella Enterprise/Secure Global Desktop Remote Information

Disclosure Vulnerability

12591

Dec 15 2004 Roxio Toast TDIXSupport Local Privilege Escalation Vulnerability

11940

Nov 08 2004 Sun Java Runtime Environment InitialDirContext Remote Denial Of

Service Vulnerability

11619

Nov 01 2004 Linux Kernel IPTables Initialization Failure Vulnerability 11570

Dec 20 2002 Multiple Temporary File Monitoring Utility Vendor Stopped Process

Vulnerabilities

6451

Feb 18 2002 Cigital ITS4 Software Security Tool Weakness 4120

Aug 30 2000 Stalkerlab's Mailers 1.1.2 CGI Mail Spoofing Vulnerability

1623

Nov 16 2005 Multiple Vendor lpCommandLine Application Path Vulnerability

15448

Nov 16 2005 Counterpane Password Safe Insecure Encryption Vulnerability

15455

Nov 03 2005 F-Prot Antivirus ZIP Attachment Version Scan Evasion Vulnerability

15293

160

Oct 19 2005 Yiff-Server File Permission Bypass Weakness 14150

Sep 05 2005 Microsoft Windows Keyboard Event Privilege Escalation Weakness

14743

Jul 29 2005 Gopher Insecure Temporary File Creation Vulnerability

14420

Jul 26 2005 IBM Lotus Domino Password Encryption Weakness

14389

Jul 23 2005 RealChat User Impersonation Vulnerability

14358

Jul 18 2005 MRV Communications In-Reach Console Servers Access Control

Bypass Vulnerability

14300

Jun 06 2005 LutelWall Multiple Insecure File Creation Vulnerabilities

13863

May 25 2005 GNU SHTool Insecure Temporary File Deletion Vulnerability

13767

May 25 2005 xMySQLadmin Insecure Temporary File Creation Vulnerability

13913

May 04 2005 NetWin DMail DList Remote Authentication Bypass Vulnerability 13497

Apr 29 2005 RedHat Enterprise Linux Native POSIX Threading Library Local

Information Disclosure Vulnerability

13444

Apr 28 2005 MyPHP Forum Post.PHP Username Spoofing Vulnerability 13429

Apr 28 2005 MyPHP Forum Privmsg.PHP Username Spoofing Vulnerability

13430

Apr 12 2005 FreeBSD PortUpgrade Local Insecure Temporary File Handling

Vulnerability

13106

Apr 07 2005 Macromedia ColdFusion MX Updater Remote File Disclosure

Vulnerability

13060

Apr 06 2005 Vixie Cron Crontab File Disclosure Vulnerability

13024

Mar 30 2005 Kerio Personal Firewall Local Network Access Restriction Bypass

Vulnerability

12946

161

Mar 16 2005 Woodstone Servers Alive Local Privilege Escalation Vulnerability 12822

Mar 14 2005 Wine Local Insecure File Creation Vulnerability

12791

Mar 09 2005 KDE Konqueror Remote Download Dialog Box Source URI Spoofing

Vulnerability

12769

Feb 28 2005 Mitel 3300 Integrated Communications Platform Web Interface

Authentication Bypass Vulnerability

12682

Feb 21 2005 Sun Solaris KCMS_Configure Arbitrary File Corruption Vulnerability

12605

Jan 25 2005 Bribble Unspecified Remote Authentication Bypass Vulnerability

12361

Jan 25 2005 Libdbi-perl Unspecified Insecure Temporary File Creation

Vulnerability

12360

Jan 21 2005 Ghostscript Multiple Local Insecure Temporary File Creation

Vulnerabilities

12327

Jan 14 2005 SGI InPerson Local Privilege Escalation Vulnerability 12259

Dec 23 2004 LPRNG LPRNG_CERTS.SH Local Insecure Temporary File Creation

Vulnerability

12088

Dec 23 2004 Docbook-To-Man Insecure Temporary File Creation Vulnerability

12087

Dec 21 2004 Rosiello Security RPF Multiple Remote And Local Vulnerabilities 12073

Dec 14 2004 Sun Java System Web And Application Server Remote Session

Disclosure Vulnerability

11918

Dec 11 2004 Opera Web Browser Download Dialogue Box File Name Spoofing

Vulnerability

11883

Dec 02 2004 FreeBSD Linux ProcFS Local Kernel Denial Of Service And

Information Disclosure Vulnerability

11789

Nov 22 2004 Citrix MetaFrame Presentation Server Client Debugging Utility

Information Disclosure Vulnerability

11720

Nov 20 2004 Computer Associates eTrust EZAntivirus User Interface Local

Authentication Bypass Vulnerability

11717

162

Nov 19 2004 Opera Web Browser Java Implementation Multiple Remote

Vulnerabilities

11712

Nov 15 2004 Fcron FCronTab/FCronSighUp Multiple Local Vulnerabilities

11684

Nov 12 2004 OpenSkat Weak Encryption Key Generation Vulnerability 11667

Nov 03 2004 TIPS MailPost Remote Debug Mode Information Disclosure

Vulnerability

11595

Nov 02 2004 Minihttp Forum Web Server Plain Text Password Storage

Vulnerability

11585

Oct 19 2004 Sun Solaris LDAP RBAC Local Privilege Escalation Vulnerability

11459

Oct 18 2004 Proland Software Protector Plus AntiVirus MS-DOS Name Scan

Evasion Vulnerability

11451

Oct 18 2004 Gnofract 4D Remote Script Code Execution Vulnerability 11445

Oct 18 2004 FIL Security Laboratory Twister Anti-TrojanVirus MS-DOS Name

Scan Evasion Vulnerability

11453

Oct 12 2004 Microsoft Window Management API Local Privilege Escalation

Vulnerability

11378

Oct 12 2004 Adobe Acrobat Reader Remote Access Validation 11386

Sep 15 2004 McAfee VirusScan System Scan Local Privilege Escalation

Vulnerability

11181

Sep 28 2004 Vignette Application Portal Remote Information Disclosure

Vulnerability

11284

Sep 16 2004 Microsoft Internet Explorer User Security Confirmation Bypass

Vulnerability

11200

Sep 15 2004 McAfee VirusScan System Scan Local Privilege Escalation

Vulnerability

11181

Sep 13 2004 Lexar JumpDrive Secure USB Flash Drive Insecure Password

Storage Vulnerability

11162

Aug 31 2004 D-Link Securicam Network DCS-900 Internet Camera Remote

Configuration Vulnerability

11072

163

Aug 26 2004 Webroot Software Window Washer Data Exposure Vulnerability 11054

Aug 04 2004 DGen Emulator Symbolic Link Vulnerability

10855

Aug 04 2004 YaST2 Utility Library File Verification Shell Code Injection

Vulnerability

10867

Jun 24 2004 ZaireWeb Solutions Newsletter ZWS Administrative Interface

Authentication Bypass Vulnerability

10605

Jun 16 2004 Check Point Firewall-1 Internet Key Exchange Information

Disclosure Vulnerability

10558

Jun 14 2004 Immunix StackGuard Canary Corruption Handler Evasion

Vulnerability

10535

Jun 09 2004 Symantec Gateway Security 360R Wireless VPN Bypass Weakness 10502

 Jun 08 2004 U.S. Robotics Broadband Router 8003 Administration Web Interface

Insecure Password Vulnerability

10490

May 27 2004 PHP Input/Output Wrapper Remote Include Function Command

Execution Weakness

10427

May 17 2004 Microsoft Outlook 2003 Media File Script Execution Vulnerability

10369

May 13 2004 Multiple Vendor IEEE 802.11 Protocol Remote Denial Of Service

Vulnerability

10342

May 12 2004 Linux Kernel Serial Driver Proc File Information Disclosure

Vulnerability

10330

May 04 2004 IPMenu Log File Symbolic Link Vulnerability 10269

Apr 20 2004 Cisco Internet Operating System SNMP Message Processing Denial Of

Service Vulnerability

10186

Apr 19 2004 SSMTP Mail Transfer Agent Symbolic Link Vulnerability 10171

Apr 15 2004 Linux Kernel EXT3 File System Information Leakage Vulnerability 10152

Apr 13 2004 Microsoft Windows Object Identity Network Communication

Vulnerability

10121

164

Apr 13 2004 BEA WebLogic Local Password Disclosure Vulnerability 10133

Apr 07 2004 Intel LAN Management Server Setup Utilities Configuration

Vulnerability

10068

Apr 02 2004 Macromedia Dreamweaver Remote User Database Access

Vulnerability

10036

Mar 26 2004 AIX Invscoutd Symbolic Link Vulnerability

9982

Mar 17 2004 Belchior Foundry VCard Authentication Bypass Vulnerability 9910

Mar 15 2004 VocalTec VGW4/8 Telephony Gateway Remote Authentication Bypass

Vulnerability

9876

Mar 09 2004 IBM AIX RC.BOOT Local Insecure Temporary File Creation

Vulnerability

12992

Feb 25 2004 Mozilla Browser Zombie Document Cross-Site Scripting Vulnerability

9747

May 24 2002 LocalWEB2000 File Disclosure Vulnerability 4820

Jan 11 2001 Microsoft Web Client Extender NTLM Authentication Vulnerability 2199

Nov 18 2000 NetcPlus SmartServer3 Weak Encryption 1962

Nov 18 2000 NetcPlus BrowseGate Weak Encryption Vulnerability 1964

Sep 01 2000 QNX Voyager Webserver Multiple Vulnerabilities

1648

Aug 19 2000 Gnome-Lokkit Firewall Package Port Visibility Vulnerability 1590

Apr 15 2000 QNX crypt() Vulnerability

1114

Mar 22 2000 Multiple Linux Vendor gpm Setgid Vulnerability 1069

Feb 28 2000 OpenSSL Unseeded Random Number Generator Vulnerability 3187

165

Nov 25 2004 Sun Java Applet Invocation Version Specification Weakness 11757

Jul 20 2000 Microsoft Outlook Express Persistent Mail-Browser Link Vulnerability

1502

Dec 23 2005 SCPOnly Multiple Local Vulnerabilities 16051

Dec 20 2005 MetaDot Portal Server Site_Mgr Group Privilege Escalation

Vulnerability

15975

Nov 15 2005 Apple iTunes 6 For Windows Arbitrary Local Code Execution

Vulnerability

15446

Sep 29 2005 Macromedia Breeze Plaintext Password Storage Weakness 14975

Sep 26 2005 SecureW2 Insecure Pre-Master Secret Generation Vulnerability

14945

Sep 14 2005 LineControl Java Client Local Password Disclosure Vulnerability 14830

Sep 12 2005 Mark D. Roth PAM_Per_User Authentication Bypass Vulnerability 14813

Sep 07 2005 CSystems WebArchiveX ActiveX Component Arbitrary File Read and

Write Vulnerabilities

14760

Jul 20 2005 Greasemonkey Multiple Remote Information Disclosure

Vulnerabilities

14336

Jul 18 2005 EKG Insecure Temporary File Creation Vulnerability 14307

Jun 20 2005 Cisco VPN Concentrator Groupname Enumeration Weakness 13992

May 26 2005 Gentoo Webapp-Config Insecure File Creation Vulnerability 13780

May 23 2005 Gibraltar Firewall Antivirus Scan Evasion Vulnerability 13713

May 17 2005 MySQL mysql_install_db Insecure Temporary File Creation

Vulnerability

13360

May 02 2005 Apple Mac OS X Default Pseudo-Terminal Permission Vulnerability

13467

166

May 02 2005 ARPUS Ce/Ceterm Insecure Temporary File Creation Vulnerability

13465

Apr 26 2005 Rootkit Hunter Local Insecure Temporary File Creation Vulnerability

13399

Apr 16 2005 Webmin And Usermin Configuration File Unauthorized Access

Vulnerability

13205

Apr 11 2005 RSnapshot Local File Permission Manipulation Vulnerability

13095

Apr 04 2005 GNU Sharutils Unshar Local Insecure Temporary File Creation

Vulnerability

12981

Apr 04 2005 Remstats Local Insecure Temporary File Creation Vulnerability

12979

Mar 23 2005 Mathopd Dump Files Local Insecure File Creation Vulnerability

12882

Mar 11 2005 Xerox WorkCentre Multiple Page Fax Information Disclosure

Vulnerability

12787

Feb 18 2005 Yahoo! Messenger Download Dialogue Box File Name Spoofing

Vulnerability

12587

Feb 14 2005 Debian Toolchain-Source Multiple Insecure Temporary File Creation

Vulnerabilities

12540

Feb 11 2005 OpenPGP Cipher Feedback Mode Chosen-Ciphertext Partial Plaintext

Retrieval Vulnerability

12529

Jan 27 2005 F2C Multiple Local Insecure Temporary File Creation Vulnerabilities

12380

Jan 26 2005 Apple Mail EMail Message ID Header Information Disclosure

Vulnerability

12366

Dec 31 2004 ArGoSoft FTP Server Remote User Enumeration Vulnerability 12139

Dec 23 2004 Debian Tetex-Bin Xdvizilla Insecure Temporary File Creation

Vulnerability

12100

Dec 22 2004 Debian Debmake Local Insecure Temporary File Creation

Vulnerability

12078

Dec 21 2004 Webroot Software Spy Sweeper Enterprise Local Privilege Escalation

Vulnerability

12065

167

Dec 21 2004 Webroot Software My Firewall Plus Local Privilege Escalation

Vulnerability

12064

Dec 20 2004 GNU Troff (Groff) Insecure Temporary File Creation Vulnerabilities

12058

Dec 15 2004 MoniWiki Remote Server-Side Script Execution Vulnerability 11951

Dec 10 2004 Kerio WinRoute Firewall Multiple Unspecified Remote Vulnerabilities

11870

Dec 07 2004 Gentoo MirrorSelect Local Insecure File Creation Vulnerability 11835

Nov 23 2004 Van Dyke SecureCRT Remote Command Execution Vulnerability

11731

Nov 17 2004 Cscope Insecure Temporary File Creation Vulnerabilities 11697

Nov 12 2004 GratiSoft Sudo Restricted Command Execution Bypass Vulnerability

11668

Nov 11 2004 Davfs2 Insecure Temporary File Creation Vulnerability 11661

Nov 10 2004 Mozilla Firefox Download Dialogue Box File Name Spoofing

Vulnerability

11643

Nov 02 2004 Haserl Local Environment Variable Manipulation Vulnerability 11579

Oct 27 2004 Apple Remote Desktop Administrator Privilege Escalation

Vulnerability

11554

Oct 18 2004 H+BEDV AntiVir MS-DOS Name Scan Evasion Vulnerability 11444

Oct 05 2004 Symantec Norton AntiVirus MS-DOS Name Scan Evasion

Vulnerability

11328

Sep 30 2004 Perl Unspecified Insecure Temporary File Creation Vulnerability 11294

Sep 30 2004 OpenSSL DER_CHOP Insecure Temporary File Creation Vulnerability

11293

Sep 30 2004 NetaTalk Unspecified Insecure Temporary File Creation Vulnerability

11292

168

Sep 30 2004 MySQL Unspecified Insecure Temporary File Creation Vulnerability

11291

Sep 30 2004 Trustix LVM Utilities Unspecified Insecure Temporary File Creation

Vulnerability

11290

Sep 30 2004 MIT Kerberos 5 SEND-PR.SH Insecure Temporary File Creation

Vulnerability

11289

Sep 30 2004 GNU GZip Unspecified Insecure Temporary File Creation Vulnerability

11288

Sep 30 2004 GNU Troff (Groff) Groffer Script Insecure Temporary File Creation

Vulnerability

11287

Sep 30 2004 GNU GLibC Insecure Temporary File Creation Vulnerability 11286

Sep 30 2004 GhostScript Insecure Temporary File Creation Vulnerability 11285

Sep 30 2004 GNU GetText Unspecified Insecure Temporary File Creation

Vulnerability

11282

Sep 30 2004 PostgreSQL Insecure Temporary File Creation Vulnerability 11295

Sep 23 2004 Motorola WR850G Wireless Router Remote Authentication Bypass

Vulnerability

11241

Sep 22 2004 Sophos Anti-Virus Reserved MS-DOS Name Scan Evasion

Vulnerability

11236

Sep 21 2004 Symantec ON Command CCM Remote Database Default Password

Vulnerability

11225

Sep 15 2004 Multiple Browser Cross-Domain Cookie Injection Vulnerability 11186

Aug 17 2004 Gallery Remote Server-Side Script Execution Vulnerability

10968

Aug 05 2004 Mozilla Browser Non-FQDN SSL Certificate Spoofing Vulnerability

10876

Aug 04 2004 LILO gfxboot Plaintext Password Display Vulnerability 10866

Aug 04 2004 Linux Kernel File 64-Bit Offset Pointer Handling Kernel Memory

Disclosure Vulnerability

10852

169

Aug 02 2004 Gnu Transport Layer Security Library X.509 Certificate Verification

Denial Of Service Vulnerability

10839

Jul 21 2004 Serena TeamTrack Remote Authentication Bypass Vulnerability 10770

Jul 20 2004 Sysinternals PsTools Remote Unauthorized Access Vulnerability

10759

Jul 13 2004 4D WebStar Symbolic Link Vulnerability

10714

Jun 17 2004 Sun Solaris Patches 112908-12 And 115168-03 Clear Text Password

Logging Vulnerability

10606

Apr 22 2004 Xine And Xine-Lib Multiple Remote File Overwrite Vulnerabilities 10193

Apr 21 2004 BEA WebLogic Server And WebLogic Express Configuration Log Files

Plain Text Password

10188

Apr 19 2004 Softwin BitDefender AvxScanOnlineCtrl COM Object Information

Disclosure Vulnerability

10175

Apr 19 2004 Softwin BitDefender AvxScanOnlineCtrl COM Object Remote File

Upload And Execution Vulnerability

10174

Mar 30 2004 LinBit Technologies LinBox Plain Text Password Storage Weakness

10011

Mar 23 2004 Mythic Entertainment Dark Age of Camelot Encryption Key Signing

Vulnerability

9960

Mar 19 2004 Samba SMBPrint Sample Script Insecure Temporary File Handling

Symbolic Link Vulnerability

9926

Mar 12 2004 Macromedia Studio MX 2004 /Contribute 2 Local Privilege Escalation

Vulnerability

9862

Mar 12 2004 XInterceptTalk XITalk Privilege Escalation Vulnerability

9851

Mar 09 2004 F-Secure SSH Server Password Authentication Policy Evasion

Vulnerability

9824

Feb 25 2004 MTools MFormat Privilege Escalation Vulnerability 9746

Sep 07 2003 Microsoft ISA Server HTTP Authentication Scheme Vulnerability 10481

170

Mar 05 2003 CatDoc XLSView Local Insecure Temporary File Creation Vulnerability

11560

Oct 09 2002 Microsoft Windows NetDDE Privilege Escalation Vulnerability 5927

Dec 28 2002 ShadowJAAS Command Line Password Disclosure Vulnerability 6498

Feb 14 2002 Microsoft Visual C++ 7/Visual C++.Net Buffer Overflow Protection

Weakness

4108

Feb 09 2002 Adobe PhotoDeluxe Java Execution Vulnerability

4106

Dec 18 2001 GTK Shared Memory Permissions Vulnerability

3705

Dec 01 2000 Microsoft Internet Explorer 'INPUT TYPE=FILE' Vulnerability

2045

Jan 16 2006 Albatross Remote Arbitrary Code Execution Vulnerability

16252

Sep 01 2005 PolyGen Local Denial of Service Vulnerability

14722

Mar 30 2005 GDK-Pixbuf BMP Image Processing Double Free Remote Denial of

Service Vulnerability

12950

Jul 26 2002 T. Hauck Jana Server FTP Server PASV Mode Port Exhaustion Denial

Of Service Vulnerability

5325

Jan 19 2006 Ecartis PantoMIME Arbitrary Attachment Upload Vulnerability

16317

Jan 12 2006 Microsoft Visual Studio UserControl Remote Code Execution

Vulnerability

16225

Dec 23 2005 RSSH RSSH_CHROOT_HELPER Local Privilege Escalation Vulnerability

16050

Dec 22 2005 WebWasher Malicious Script Filter Bypass Vulnerability 16047

Dec 21 2005 Cisco Downloadable RADIUS Policies Information Disclosure

Vulnerability

16025

Dec 20 2005 Clearswift MIMEsweeper For Web Executable File Bypass

Vulnerability

15982

171

Dec 13 2005 Microsoft Internet Explorer COM Object Instantiation Memory

Corruption Vulnerability

15827

Dec 13 2005 Opera Web Browser Download Dialog Manipulation File Execution

Vulnerability

15835

Dec 08 2005 PGP Desktop Wipe Free Space Assistant Improper Disk Wipe

Vulnerability

15784

Dec 06 2005 Sun Java System Application Server Reverse SSL Proxy Plug-in Man

In The Middle Vulnerability

15728

Nov 21 2005 IBM WebSphere Application Server for z/OS Double Free Denial of

Service Vulnerability

15522

Nov 07 2005 Zone Labs Zone Alarm Advance Program Control Bypass Weakness

15347

Oct 29 2005 PHP Advanced Transfer Manager Remote Unauthorized Access

Vulnerability

15237

Oct 28 2005 Rockliffe MailSite Express Arbitrary Script File Upload Vulnerability 15230

Oct 19 2005 HP-UX FTP Server Directory Listing Vulnerability 15138

Oct 10 2005 SGI IRIX Runpriv Local Privilege Escalation Vulnerability

15055

Oct 06 2005 Planet Technology FGSW-2402RS Switch Backdoor Password Reset

Vulnerability

15014

Oct 04 2005 Microsoft Windows Wireless Zero Configuration Service Information

Disclosure Vulnerability

15008

Sep 22 2005 Linux Kernel 64-Bit SMP Routing_ioctl() Local Denial of Service

Vulnerability

14902

Sep 17 2005 Py2Play Object Unpickling Remote Python Code Execution

Vulnerability

14864

Sep 17 2005 Tofu Object Unpickling Remote Python Code Execution Vulnerability

14865

Sep 13 2005 Linksys WRT54G Wireless Router Multiple Remote Vulnerabilities

14822

Sep 13 2005 Apple Mac OS X Untrusted Java Applet Privilege Escalation

Vulnerability

14826

172

Sep 02 2005 FileZilla FTP Client Hard-Coded Cipher Key Vulnerability 14730

Aug 31 2005 Symantec LiveUpdate Client Local Information Disclosure

Vulnerability

14708

Aug 30 2005 Maildrop Lockmail Local Privilege Escalation Vulnerability 14696

Aug 22 2005 RunCMS Arbitrary Variable Overwrite Vulnerability 14634

Aug 03 2005 Symantec Norton GoBack Local Authentication Bypass Vulnerability

14461

Aug 02 2005 nCipher CHIL Random Cache Leakage Vulnerability 14452

Jul 27 2005 Linux Kernel SYS_GET_THREAD_AREA Information Disclosure

Vulnerability

15527

Jul 26 2005 Linux Kernel NAT Handling Memory Corruption Denial of Service

Vulnerability

15531

Jul 26 2005 IBM Lotus Domino WebMail Information Disclosure Vulnerability 14388

Jul 20 2005 Oray PeanutHull Local Privilege Escalation Vulnerability

14330

Jul 19 2005 Multiple Browser Weak Authentication Mechanism Vulnerability 14325

Jul 06 2005 eRoom Plug-In Insecure File Download Handling Vulnerability

14176

Jul 01 2005 OpenLDAP TLS Plaintext Password Vulnerability

14125

Jul 01 2005 PADL Software PAM_LDAP TLS Plaintext Password Vulnerability

14126

May 28 2005 Invision Power Board Privilege Escalation Vulnerability 13797

Apr 24 2005 ACS Blog Administrative Access Authentication Bypass Vulnerability

13346

Mar 17 2005 ThePoolClub IPool/ISnooker Insecure Local Credential Storage

Vulnerability

12830

173

Mar 10 2005 Multiple Vendor Antivirus Products Malformed ZIP Attachment Scan

Evasion Vulnerability

12771

Feb 24 2005 Cyclades AlterPath Manager Multiple Remote Vulnerabilities 12649

Dec 21 2004 PHPAuction Administrative Interface Authentication Bypass

Vulnerability

12069

Dec 14 2004 Multiple Kerio Products Universal Secret Key Storage Vulnerability

11930

Nov 12 2004 Alcatel Speed Touch Pro With Firewall ADSL Router DNS Poisoning

Vulnerability

11664

Oct 18 2004 Best Software SalesLogix Multiple Remote Vulnerabilities

11450

Oct 08 2004 Nathaniel Bray Yeemp File Transfer Public Key Verification Bypass

Vulnerability

11353

Aug 10 2004 Sygate Secure Enterprise Enforcer Unauthenticated Broadcast

Request Bypass Vulnerability

10908

May 26 2004 FreeBSD Msync(2) System Call Buffer Cache Implementation

Vulnerability

10416

Oct 02 2003 Microsoft Windows PostThreadMessage() Arbitrary Process Killing

Vulnerability

8747

Sep 10 2003 CacheFlow CacheOS HTTP HOST Proxy Vulnerability 8584

Aug 11 2003 FreeBSD Ptrace/SPIgot Insufficient Signal Verification Denial of

Service Vulnerability

8387

Jun 19 2003 Power Server FTP Addon Failure To Authenticate Vulnerability 7986

Jun 13 2003 Cistron RADIUS Remote Signed NAS-Port Number Expansion

Memory Corruption Vulnerability

7892

Apr 30 2003 ScriptLogic RunAdmin Service Administrative Access Vulnerability 7477

Mar 17 2003 Multiple Cryptographic Weaknesses in Kerberos 4 Protocol 7113

Dec 26 2002 Microsoft Windows File Protection Code-Signing Verification

Weakness

6482

174

Nov 15 2002 TightVNC Server Authentication Cookie Predictability Vulnerability 6905

Oct 21 2002 Multiple Firewall Vendor Packet Flood State Table Filling Vulnerability 6023

Aug 17 2002 Microsoft Internet Explorer XML Datasource Applet File Disclosure

Vulnerability

5490

Jul 03 2002 Sun SunPCi II VNC Software Password Disclosure Vulnerability 5146

May 17 2002 GRSecurity Linux Kernel Memory Protection Weakness 4762

Apr 24 2002 Multiple Stack Protection Scheme Function Argument Overwrite

Weakness

4586

Apr 16 2002 Pipermail/Mailman Insecure Archives Permissions Vulnerability 4538

Feb 18 2002 Compaq Tru64 SNMP Agent Denial Of Service Vulnerability 4140

Feb 14 2002 W3C CSS :visited Pseudo-Class Information Disclosure Vulnerability 4136

Jan 21 2002 GNU Enscript Insecure Temporary File Creation Vulnerability 3920

Jan 06 2002 Linksys DSL Router SNMP Trap System Arbitrary Sending

Vulnerability

3795

Dec 17 2001 Microsoft Windows XP Unauthorized Hotkey Program Execution

Vulnerability

3703

Dec 07 2001 Microsoft Windows File Locking DoS Vulnerability 3654

Aug 02 2001 Identix BioLogon Client Biometric Authentication Bypass Vulnerability 3140

May 15 2001 Logitech Wireless Peripheral Device Man in the Middle Vulnerability 2738

Apr 02 2001 Lucent Orinoco Closed Network Unauthorized Access Vulnerability

2538

Mar 20 2001 OpenPGP Private Key Attack Vulnerability

2673

175

Sep 02 1999 IEEE 802.1q Unauthorized VLAN Traversal Weakness

615

Jan 17 2006 Mozilla Thunderbird File Attachment Spoofing Vulnerability

16271

Jan 03 2006 Gentoo Pinentry Local Privilege Escalation Vulnerability 16120

Dec 30 2005 Gentoo Linux XnView Insecure RPATH Vulnerability 16087

Dec 22 2005 MediaWiki Inline Style Attribute Security Check Bypass Vulnerability 16032

Dec 15 2005 Multiple Vendor Wireless Access Points Static WEP Key

Authentication Bypass Vulnerability

16068

Dec 07 2005 Sun Solaris Sun Update Connection Web Proxy Password Disclosure
Vulnerability

15772

Nov 15 2005 Macromedia Contribute Publishing Server Insecure Shared

Connection Key Encryption Weakness

15438

Oct 07 2005 SuSE YaST Package Repositories Insecure Permissions Vulnerability

15026

Oct 07 2005 Oracle HTML DB Plaintext Password Storage Vulnerability 15033

Sep 19 2005 Sybari Antigen for Exchange/SMTP Attachment Rule Bypass

Vulnerability

14875

Sep 06 2005 Gentoo Net-SNMP Local Privilege Escalation Vulnerability

14845

Jul 29 2005 Novell eDirectory NMAS Authentication Bypass Vulnerability 14419

Jul 28 2005 Opera Web Browser Content-Disposition Header Download Dialog

File Extension Spoofing Vulnerability

14402

Jul 27 2005 BSD IPsec Session AES-XCBC-MAC Authentication Constant Key

Usage Vulnerability

14394

Jul 19 2005 Apple Mac OS X AirPort Card Automatic Network Association

Vulnerability

14321

Jul 15 2005 Macromedia JRun Unauthorized Session Access Vulnerability 14271

176

Jul 14 2005 BitDefender Antivirus & Antispam for Linux and FreeBSD Mail

Servers Scan Evasion

14262

Jul 11 2005 Backup Manager Insecure Temporary File Creation Vulnerability

14210

Jul 07 2005 PHPSlash Arbitrary Account Privilege Escalation Vulnerability

14189

Jun 29 2005 FreeBSD TCP Stack Established Connection Denial of Service

Vulnerability

14104

Jun 27 2005 Adobe Acrobat/Adobe Reader Safari Frameworks Folder Permission

Escalation Vulnerability

14075

Jun 01 2005 I-Man File Attachments Remote Arbitrary PHP Script Execution

Vulnerability

13831

May 17 2005 IgnitionServer Entry Deletion Access Validation Checking

Vulnerability

13654

Mar 29 2005 Linux Kernel EXT2 File System Information Leak Vulnerability

12932

Feb 14 2005 Microsoft Internet Explorer Mouse Event URI Status Bar Obfuscation

Weakness

12541

Feb 04 2005 Postfix IPv6 Unauthorized Mail Relay Vulnerability

12445

Jan 28 2005 WebWasher Classic HTTP CONNECT Unauthorized Access Weakness

12394

Jan 27 2005 Ingate Firewall Persistent PPTP Tunnel Vulnerability

12383

Dec 07 2004 MD5 Message Digest Algorithm Hash Collision Weakness

11849

Oct 01 2004 Sun Solaris Gzip File Permission Modification Vulnerability

11318

Sep 17 2004 Apple iChat Remote Link Application Execution Vulnerability 11207

May 13 2004 Opera Web Browser Address Bar Spoofing Weakness 10337

Apr 30 2004 Sun Solaris Patch Information Disclosure Vulnerability 10261

177

Mar 12 2004 Sun Solaris Patch Unexpected Security Weakness

9852

Nov 05 2003 Microsoft Internet Explorer Double Slash Cache Zone Bypass

Vulnerability

8980

Jun 11 2003 Ethereal TVB_GET_NSTRINGZ0() Memory Handling Vulnerability 7883

May 14 2003 Linux Kernel Route Cache Entry Remote Denial Of Service

Vulnerability

7601

May 05 2003 Mod_Survey SYSBASE Disk Resource Consumption Denial of Service

Vulnerability

7498

Apr 29 2003 Microsoft Log Sink Class ActiveX Control Arbitrary File Creation

Vulnerability

12646

Apr 10 2003 Apple MacOS X DropBox Folder Information Disclosure Vulnerability 7324

Dec 05 2002 Akfingerd Remote Denial Of Service Vulnerability

6323

Sep 19 2002 Microsoft Virtual Machine Multiple JDBC Vulnerabilities

5478

Sep 11 2002 KDE Konqueror Sub-Frames Script Execution Vulnerability 5689

Jun 17 2002 Mozilla Netscape Navigator Plug-In Path Disclosure Vulnerability 5741

May 29 2002 Core APM File Upload Execution Vulnerability 4922

May 15 2002 Swatch Throttled Event Reporting Vulnerability 4746

Apr 08 2002 Microsoft Office Web Components Local File Read Vulnerability

4453

Jan 31 2002 Microsoft Site Server LDAP Plain Text Password Storage Vulnerability 4000

Dec 12 2001 Util-Linux Script Command Arbitrary File Overwrite Vulnerability

16280

Nov 01 2001 LibDB SNPrintF Buffer Overflow Vulnerability 3497

178

Oct 05 2001 Symantec Norton Antivirus LiveUpdate Host Verification Vulnerability 3403

Aug 14 2001 Dell Latitude C800 Bios Suspended Session Bypassing Vulnerability 3180

Apr 07 1999 NetworkAppliance NetCache SNMP Default Community String

Vulnerability

2807

Sep 30 1996 IETF RADIUS Dictionary Attack Vulnerability 3532

Apr 28 2009 Multiple Symantec Products Alert Management System Console

Arbitrary Code Execution Vulnerability

34675

Apr 02 2008 Symantec AutoFix Tool ActiveX Control Remote Share

'launchProcess()' Insecure Method Vulnerability

28509

Mar 23 2007 Sun Java System Directory Server Uninitialized Pointer Remote

Memory Corruption Vulnerability

23117

Mar 27 2009 IBM Tivoli Storage Manager Multiple Vulnerabilities 34285

Mar 25 2009 Cisco IOS Secure Copy Remote Privilege Escalation Vulnerability

34247

Dec 29 2003 Microsoft IIS Failure To Log Undocumented TRACK Requests

Vulnerability

9313

Dec 17 2008 Mozilla Firefox/Thunderbird/SeaMonkey Multiple Remote

Vulnerabilities

32882

Oct 11 2008 Debian chm2pdf Insecure Temporary File Creation Vulnerability

31735

Date

Published
www.cigital.com/whitepapers/dl/wp-qandr.pdf Secunia: ID

Jul 03 2008 Drupal Outline Designer Security Bypass 30936

May 29 2009 SonicWALL Global Security Client Privilege Escalation Vulnerability 35220

Apr 29 2009 Symantec Products Alert Management System 2 Multiple Vulnerabilities 34856

Mar 03 2009 Cisco Unified Communications Manager IP Phone PAB Information

Disclosure

34238

Nov 26 2008 Crossday Discuz! Board Multiple Vulnerabilities 32731

Oct 21 2008 Symantec Altiris Deployment Solution Privilege Escalation 31773

Oct 08 2008 Adobe Flash Player "Clickjacking" Security Bypass Vulnerability 32163

Jul 25 2008 RealNetworks RealPlayer Multiple Vulnerabilities 27620

Jun 04 2008 Sun Java System Active Server Pages Multiple Vulnerabilities 30523

179

Feb 20 2008 Opera Multiple Vulnerabilities 29029

Feb 08 2008 Mozilla Firefox Multiple Vulnerabilities 28758

Nov 15 2007 IBM DB2 Multiple Vulnerabilities and Security Issue 27667

Aug 01 2007 Mac OS X Security Update Fixes Multiple Vulnerabilities 26235

Jul 20 2007 Citrix Access Gateway Multiple Vulnerabilities 26143

Jul 12 2007 Apple QuickTime Multiple Vulnerabilities 26034

Jul 02 2007 Firefox "OnKeyDown" Event Focus Weakness 25904

May 30 2007 Apple QuickTime Java Extension Two Vulnerabilities 25130

May 11 2007 Sun SRS Proxy Core "srsexec" Information Disclosure 25194

May 10 2007 Symantec Products NAVOpts.dll ActiveX Control Security Bypass

Vulnerability

25172

May 01 2007 VMware Products Multiple Vulnerabilities 25079

Feb 22 2007 Cisco Secure Services Client Multiple Vulnerabilities 24258

Feb 22 2007 Trend Micro ServerProtect for Linux Web Interface Authentication

Bypass

24264

Feb 22 2007 Cisco Unified IP Conference Station / IP Phone Default Accounts 24262

Jan 29 2007 smb4K Multiple Vulnerabilities 23937

Oct 20 2006 Kaspersky Labs Anti-Virus IOCTL Privilege Escalation 22478

Aug 01 2006 MySQL MERGE Table Privilege Revoke Bypass 21259

Jul 10 2006 Flash Player Unspecified Vulnerability and "addRequestHeader()" Bypass 20971

Jun 06 2006 Firefox File Upload Form Keystroke Event Cancel Vulnerability 20442

Apr 25 2006 iOpus Secure Email Attachments Password Usage Security Issue 19771

Apr 24 2006 Symantec Scan Engine Multiple Vulnerabilities 19734

Mar 02 2006 NCP Secure Entry/Enterprise Client Two Vulnerabilities 19082

Feb 20 2006 PHP-Nuke CAPTCHA Bypass Weakness 18936

Jan 23 2006 Tor Hidden Service Disclosure Weakness 18576

Jan 19 2006 Ecartis "pantomime" Functionality Attachment Handling Security Issue 18524

Jan 18 2006 Oracle Products Multiple Vulnerabilities and Security Issues 18493

Jan 11 2006 Symantec Norton SystemWorks Protected Recycle Bin Weakness 18402

Jan03 2006 Cisco Secure Access Control Server Downloadable IP Access Control List

Vulnerability

18141

Dec 23 2005 scponly Privilege Escalation and Security Bypass Vulnerabilities 18223

Dec 23 2005 rssh "chroot" Directory Privilege Escalation Vulnerability 18224

Dec 22 2005 Sygate Protection Agent Protection Bypass Vulnerability 18175

Dec 13 2005 Microsoft Internet Explorer Multiple Vulnerabilities 15368

Dec 12 2005 Blackboard Learning and Community Portal Systems Multiple

Vulnerabilities

17991

Dec 05 2005 e107 "rate.php" Redirection and Multiple Rating Weakness 17890

Nov 16 2005 PEAR Installer Arbitrary Code Execution Vulnerability 17563

Sep 21 2005 Antigen for Exchange "Antigen forwarded attachment" Filter Bypass 16759

