
CEEM: A Practical Methodology for Cloud Services Evaluation

Zheng Li

School of Computer Science
ANU and NICTA

Canberra, Australia
Zheng.Li@nicta.com.au

Liam O’Brien

ICT Innovation and Services
Geoscience Australia
Canberra, Australia

liamob99@hotmail.com

He Zhang

School of Arch. Comp. and Eng.
University of East London

London, UK
dr.hezhang@gmail.com

Abstract—Given an increasing number of Cloud services
available in the market, evaluating candidate Cloud services
is crucial and beneficial for both service customers (e.g. cost-
benefit analysis) and providers (e.g. direction of improvement).
When it comes to performing any evaluation, a suitable
methodology is inevitably required to direct experimental
implementations. Nevertheless, there is still a lack of a sound
methodology to guide the evaluation of Cloud services. By
borrowing the lessons from evaluation of traditional computing
systems, referring to the guidelines for Design of Experiments
(DOE), and summarizing the existing experiences of real
experimental studies, we proposed a generic Cloud Evaluation
Experiment Methodology (CEEM) for Cloud services evalu-
ation. Furthermore, we have established a pre-experimental
knowledge base and specified corresponding suggestions to
make this methodology more practical in the Cloud Computing
domain. Through evaluating the Google AppEngine Python
runtime as a preliminary validation, we show that Cloud
evaluators may achieve more rational and convincing exper-
imental results and conclusions following such an evaluation
methodology.

Keywords-Cloud Computing; Cloud Services Evaluation;
Evaluation Experiences; Evaluation Methodology; Design of
Experiments (DOE)

I. INTRODUCTION

Cloud services evaluation is crucial and beneficial for both

service customers (e.g. cost-benefit analysis) and providers

(e.g. direction of improvement) [18]. As one of the most

promising computing paradigms [5], Cloud Computing has

been increasingly accepted in industry. More and more

commercial Cloud services offered by an increasing number

of providers are available in the market [18], [22]. Given

the diversity of Cloud services and price models, service

selection would require deep understanding of how the

different candidates may (or may not) match particular

demands [6]. Unfortunately, on the one hand, customers

have little knowledge and control over the precise nature of

Cloud services even in the “locked down” environment [25];

on the other hand, the given indicators often lack providing

comprehensive information about the overall performance of

a service regarding specific tasks [14]. Consequently, service

evaluation would be one of the prerequisites of employing

Cloud Computing.

When it comes to evaluation implementations, a suitable

methodology essentially plays a strategic role in directing

evaluation activities [27]. However, according to our sys-

tematic literature review [19], there is a lack of a sound

methodology to guide the practice of Cloud services eval-

uation. Although any of the existing studies must have (at

least intuitively) followed a particular approach, not many

evaluators are strictly concerned with or specified their

evaluation methodologies. Different evaluation approaches

described in different reports vary, and some of them may

even have flawed considerations (cf. Section II).

Therefore, we proposed a generic and practical Cloud

Evaluation Experiment Methodology (CEEM) for Cloud

services evaluation. Our effort into proposing CEEM mainly

involved three aspects. Firstly, we borrowed the existing

lessons from evaluating traditional computing systems [11],

[13], [21]. Since Cloud Computing is an emerging comput-

ing paradigm [5], individual Cloud services can be viewed

as concrete computing systems within such a paradigm.

Thus, the traditional evaluation lessons would be also useful

for evaluating Cloud services. Secondly, we referred to the

guidelines for performing Design of Experiments (DOE)

[20]. Although DOE is normally applied to agriculture,

chemical, and process industries, considering the natural

relationship between experiment and evaluation, we believe

that the various DOE techniques of experimental design and

statistical analysis can also benefit Cloud services evaluation.

Thirdly, we summarized others’ and our own experiences of

evaluating Cloud services. Based on the existing evaluation

experiences, we are able to supply more specific and prac-

tical suggestions in particular steps, for example pre-listing

experimental factors and metrics [16], [17].

This paper introduces the proposed CEEM by briefly ex-

plaining its ten steps ranging from Requirement Recognition
to Conclusion and Reporting. To preliminarily validate this

proposed methodology, we replicated a study of performance

evaluation of the Google AppEngine Python runtime, and

then compared our study with the original one. The compari-

son shows that CEEM can lead to a systematic and complete

approach to evaluating Cloud services. The contribution of

our work is threefold. First, the generic steps of implement-

ing Cloud services evaluation are summarized. Second, to

2013 IEEE Ninth World Congress on Services

978-0-7695-5024-4/13 $26.00 © 2013 IEEE

DOI 10.1109/SERVICES.2013.73

44

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219373186?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

the best of our knowledge, this is the first time DOE has been

used in Cloud services evaluation. Third, by putting a series

of efforts on gathering evaluation experiences, we finally

make this proposed evaluation methodology more practical.

The remainder of this paper is organized as follows.

Section II summarizes the existing work related to method-

ologies for Cloud services evaluation. Section III specifies

the evaluation activities involved in CEEM one by one.

A real case of evaluating Google AppEngine is replicated

and compared with the original study in Section IV to

preliminarily validate the proposed CEEM. Conclusions and

some future work are discussed in Section V.

II. RELATED WORK

It has been recognized that Cloud services evaluation

belongs to the field of experimental computer science [27],

which requires suitable evaluation methodology as a strate-

gic role in directing experimental studies [3]. An evaluation

methodology instructs complete evaluation implementations

that may cover various aspects, for instance workload selec-

tion, experimental design, and result analysis [3]. Therefore,

a concrete methodology adopted in Cloud services evalua-

tion should have distinguished between detailed steps [18],

[24], [28]. In particular, the study [27] extended the ASTAR

method [26] and specifically suggested a five-step method-

ology (Identify benchmark, Identify configuration, Run tests,

Analyze, and Recommend) for evaluating Cloud services.

A more detailed evaluation methodology was specified in

[14], which used the business process modeling notation

to describe the general steps of developing, executing, and

evaluating a Cloud benchmark suite.

However, according to our systematic literature review

[19], most evaluators did not strictly define or specify their

evaluation steps, not to mention using a sound methodology

to guide Cloud services evaluation. Although the existing

evaluation implementations must have followed particular

approaches, different approaches described in different eval-

uation reports vary, and even with flawed considerations.

For example, evaluation methodology has been treated as

experimental setup and/or preparation of experimental en-

vironment [7]; some authors only focused on metrics [10],

while some others only highlighted benchmarks [2] when

specifying their evaluation approach; and an inappropriate

concern was to separate evaluation metrics and experimental

implementation from the corresponding methodology [12].

Furthermore, even in the studies with concrete Cloud ser-

vices evaluation methodologies [14], [27], some important

steps like the selection of metrics and experimental factors

were missed out.

III. CEEM: THE METHODOLOGY FOR CLOUD SERVICES

EVALUATION

As mentioned previously, by borrowing the lessons from

evaluating traditional computing systems, referring to the

1) Requirement Recognition: Recognize the problem, and state the
purpose of a proposed evaluation.

2) Service Feature Identification: Identify Cloud services and their
features to be evaluated.

3) Metrics and Benchmarks Listing: List all the metrics and bench-
marks that may be used for the proposed evaluation.

4) Metrics and Benchmarks Selection: Select suitable metrics and
benchmarks for the proposed evaluation.

5) Experimental Factors Listing: List all the factors that may be
involved in the evaluation experiments.

6) Experimental Factors Selection: Select limited factors to study, and
also choose levels/ranges of these factors.

7) Experimental Design: Design experiments based on the above work.
Pilot experiments may also be done in advance to facilitate the
experimental design.

8) Experimental Implementation: Prepare experimental environment
and perform the designed experiments.

9) Experimental Analysis: Statistically analyze and interpret the exper-
imental results.

10) Conclusion and Reporting: Draw conclusions and report the overall
evaluation procudure and results.

Figure 1. The Cloud Evaluation Experiment Methodology (CEEM) for
Cloud services evaluation.

guidelines for conducting DOE, and summarizing the exist-

ing experiences of evaluating Cloud services, we proposed

a ten-step methodology for Cloud services evaluation, as

illustrated in Figure 1. Note that here we only concern

ourselves with experiment as the evaluation technique rather

than other techniques like simulation or modeling. The indi-

vidual evaluation steps are briefly explained in the following

subsections.

A. Requirement Recognition

The recognition of an evaluation requirement is not only

to understand a problem related to Cloud service evaluation,

but also to achieve a clear statement of the evaluation

purpose, which is an obvious while nontrivial task [20].

A clearly understood evaluation requirement can facilitate

driving the remaining steps properly in an implementation of

Cloud services evaluation. To help recognize a requirement,

it has been suggested to prepare a set of specific questions

to be addressed by potential evaluation experiments [20].

Moreover, it is normally helpful to replace one comprehen-

sive question with a list of separated and easily answerable

questions, so that we can conveniently define specific evalu-

ation objectives, and then employ the strategy of sequential

experiments to satisfy the overall evaluation requirement.

B. Service Feature Identification

Given the recognized evaluation requirement, evaluators

can identify the relevant Cloud services and their features

to be evaluated. Although it is hard to outline the scope

of Cloud Computing [29], and various Cloud services are

increasingly available in the market [18], it is still possible

to list a suite of general service features in advance. By

exploring the existing practices of Cloud services evaluation

45

[19], we show that three service features have been mainly

of concern, namely Performance, Economics, and Security.

In particular, the elements of the Performance feature can be

divided into Physical Properties and Capacities [15], while

the Economics feature covers Cost and Elasticity of using

Cloud services. Although the Security feature has not been

well evaluated yet [19], it may comprise numerous security

concerns ranging from access control to prosecution [4], [8].

Thus, in most cases, we may conveniently identify relevant

service features in the general feature list.

C. Metrics and Benchmarks Listing

It is natural that the choice of right metrics depends on

the identified Cloud service features to be evaluated [11].

However, one service feature may be measured by different

metrics with different benchmarks [17], and the selection

of particular metrics and benchmarks may also have other

constraints or tradeoffs (cf. Subsection III-D). To facilitate

the metric/benchmark selection, it is helpful to first list all

the candidate metrics and benchmarks for a proposed Cloud

services evaluation. By using different Cloud service features

as the retrieval keys, we have established a lookup capability

for metrics and benchmarks when evaluating Cloud services

[17].

D. Metrics and Benchmarks Selection

According to the rich research in the evaluation of tradi-

tional computer systems, the selection of metrics plays an es-

sential role in evaluation implementations [21]. Furthermore,

a suitable metric would play a Response Variable role [20]

in applying DOE to Cloud services evaluation. Although

traditional evaluation lessons treat metrics selection as one of

the prerequisites of benchmark selection [11], we found that

there were always tradeoffs between metrics and benchmarks

selection when evaluating Cloud services. For example, only

two metrics (Benchmark Runtime and Benchmark FLOP
Rate) are available to respectively measure computation

latency and transaction speed if adopting NAS Parallel

Benchmarks to evaluate Cloud services [1]. Therefore, we

suggest that metrics and benchmarks could be determined

together within one step.

E. Experimental Factors Listing

Before evaluating a Cloud service feature, knowing all

factors (also called parameters or variables) that affect the

service feature is a tedious but necessary task [13]. Although

listing a complete scope of experimental factors may not

be easily achieved, at all times evaluators should keep the

factor list as comprehensive as possible, for further analysis

and decision making about the factor selection and data

collection [11]. Similar to the effort described in Subsection

III-C, we have proposed a framework to capture the state-

of-the-practice of experimental factors that people currently

take into account when evaluating Cloud services [16]. This

factor framework can in turn help facilitate identifying suit-

able factors for designing evaluation experiments. Moreover,

the factor framework offers a concrete and rational base for

further discussion and factor listing by expert judgements.

F. Experimental Factors Selection

When applying DOE techniques, the determination of fac-

tors and their levels/ranges is the prerequisite of factor-based

experimental design [20]. For an evaluation experiment, it

is better to start with limited design factors distinguished

from nuisance ones and those that are not of interest, and

the factors that are expected to have high impacts should

be preferably selected [11]. As mentioned above, we may

refer to the existing evaluation experiences (the proposed

factor framework [16]) to quickly lookup and identify design

factors. Note that we suggest using the factor framework

to supplement, but not replace, the expert judgement for

experimental factor selection, which would be particularly

helpful for Cloud services evaluation when there is a lack

of experts.

G. Experimental Design

Given the selected input-process variables (experimental

factors) and output-process responses (metrics), we can de-

sign Cloud service evaluation experiments by using suitable

DOE techniques. In particular, three basic principles, namely

Randomization, Replication, and Blocking [20], should

be taken into account no matter what DOE technique is

employed. Moreover, a small scale of pilot experiments

can often benefit the relevant experimental design. For

example, the trial runs of an evaluation experiment may help

evaluators get familiar with the experimental environment,

optimize the experimental sequence, and even decide the

sample size – number of replicates (cf. the demonstration in

Section IV).

H. Experimental Implementation

Implementing an experiment is to carry out a series of

experimental actions ranging from preparing environment to

running benchmarks. Since any error in the experimental

procedure may spoil the validity of the experimental results,

the implementation process should be monitored carefully to

ensure every step of the experiments follows the design [20].

Note that we regard pilot experimental runs as the activities

in Experimental Design instead of in this stage.

I. Experimental Analysis

In DOE, statistical methods are strongly suggested for

experimental analysis [20]. Although such methods do not

directly prove any factor’s effect, the statistical analysis adds

objectivity to drawing evaluation conclusions and potential

decision-making process. Moreover, it has been particularly

pointed out that visualizing experimental results by using

various graphical tools may significantly facilitate data anal-

ysis and interpretation. According to our own experiences,

46

in addition to those statistical techniques, we found that

machine learning techniques like mining association rules

are also useful for experimental analysis in some circum-

stances, for example the evaluation results involving many

experimental factors.

J. Conclusion and Reporting

Drawing practical conclusions is significant after analyz-

ing the experimental results [20]. In addition, it is worth

paying more attention to reporting the whole Cloud ser-

vices evaluation work. In fact, not only conclusions but

also complete evaluation reports would be vital for other

people to learn from or replicate/confirm previous evaluation

practices. However, the quality of the existing Cloud services

evaluation reports varies [19], which implies that there is

also a lack of evaluation reporting guidelines. Therefore, we

first suggest using these ten evaluation steps as a natural

documentation structure. The validation work described in

Section IV can be viewed as a sample of such a case.

Considering the close relationship between Cloud services

evaluation and experimental computer science [27], more-

over, we can adapt the well-proposed structure for reporting

generic experiments or case studies [23] to reporting Cloud

services evaluation studies. The adaption suggestions are out

of the scope of this paper, and they will be elaborated in our

future work.

IV. PRELIMINARY VALIDATION

To preliminarily validate CEEM, we decided to replicate

a straightforward study of evaluating Google AppEngine

service [9], and then compare our practice with the original

one. Here we report the detailed evaluation activities.

1) Requirement Recognition:
The overall objective of the original study is to evaluate

the computation performance of the Google AppEngine

Python runtime. We correspondingly started with three spe-

cific questions for the evaluation requirement recognition, as

listed below.

• How fast does Google AppEngine run a particular

computation task in the Python runtime environment?

• How variable is the computation performance of

Google AppEngine during a particular period of time?

• Can we expect a stable mean of the computation

performance of Google AppEngine at different time?

Given the recognized evaluation requirement, we tried to

simulate the original study in the pre-experimental-design

steps (Step 2) to 6) in Figure 1), to make two studies

comparable as much as possible.

2) Service Feature Identification:
It is clear that the service feature to be evaluated in this

case is performance. When it comes to the performance

evaluation of Cloud services, our previous taxonomy work

[15] can be used to facilitate exploring available performance

Capacity Part Physical
Property Part

Computation

Communication

Storage

Memory
(Cache)

Availability

Latency (Time)

Data Throughput
(Bandwidth)

Transaction
Speed

Reliability

Variability

Scalability

Figure 2. Performance properties for Cloud services evaluation (cf. [15]).

properties. Following the original study, we directly identi-

fied the combination of the related performance properties

as Computation Latency and also Variability of Computation
Latency, as shown in Figure 2.

3) Metrics and Benchmarks Listing:
Candidate metrics and benchmarks can be conveniently

listed by looking up a metrics catalogue [17], and the

retrieval key is the pre-identified service feature. In this case,

Computation Latency brings the only metric Benchmark
Runtime and a set of benchmarks ranging from Compiling
Linux Kernel to NAS Parallel Benchmarks (NPB).

4) Metrics and Benchmarks Selection:
Naturally, we chose the metric Benchmark Runtime to

measure the service feature Computation Latency. With

regard to the benchmark, we decided to code a Python

program to recursively calculate the 27th Fibonacci number.

The function of Fibonacci calculation is shown below.

def fibo(n):
if 1==n or 2==n:

return 1
else:

return fibo(n-1) + fibo(n-2)

5) Experimental Factors Listing:
As explained in Subsection III-E, here we directly em-

ployed the experimental factor framework [16] to screen

experimental factors. In large-scale cases of Cloud services

evaluation, expert judgement may further be included to

discuss candidate experimental factors.

6) Experimental Factors Selection:
Based on the experimental factor framework, we identified

the only factor concerned in the original evaluation work,

namely Timing (cf. Figure 3). As mentioned previously,

although there are other potentially useful factors like Work-
load Size, we deliberately ignored them to make our study

47

Computing Resource −

Memory (Cache) −

Physical Location

Storage −

Geographical Location

Type (Queue/Table/Blob)

VM Instance −

Geographical Location
Number
OS Brand
Physical Location
VM Type

Communication −

Size

Level (IP vs. MPI message)
Scope (Intra-Cloud vs. Wide area)

Computation −

Core Number

ECU Number
Thread Number

CPU −
Architecture (32 vs. 64 bit)
Brand

Model

Ethernet I/O Index

Frequency (GHz)

Size

Input Factors and Output Responses for Applying DOE to Cloud Services Evaluation

Workload −

Terminal −

Activity −

Duration

Frequency

Number

Object −

Number

Size/Complexity

Geographical Location

Number

Type (Client vs. VM Instance)

Arrangement −

Direction (Input vs. Output)

Sequence (Sequential vs. Parallel)

Timing

Capacity −

Data Throughput −

A set of available metrics +

Latency −

A set of available metrics +

Transaction Speed −

A set of available metrics +

Availability −

A set of available metrics +

Reliability −

A set of available metrics +

Scalability −

A set of available metrics +

Variability −

A set of available metrics +

Figure 3. Experimental factor framework for applying DOE to Cloud services evaluation (cf. [16]).

comparable with the original one. Note that the metric

Benchmark Runtime was also located as the response vari-

able in the experimental factor framework [16] for applying

DOE.

7) Experimental Design:
Recall that one of the evaluation questions requires ob-

serving Google AppEngine runtime for a period of time.

There would be far more than two levels of the factor Timing.

Therefore, in Step 7) of the evaluation methodology, we

naturally employed the technique of single-factor experi-

mental design for variance analysis [20]. To simplify the

demonstration of the preliminary validation, we decided to

choose seven consecutive days as the experimental period.

In other words, we treated different dates as different levels

of the factor Timing. Thus, the third evaluation question

can be viewed as testing the equality of seven computation

performance means, as formally hypothesized in Equation

(1), where μi refers to the Fibonacci calculation mean in

the ith day.

H0 : μ1 = μ2 = · · · = μ7

H1 : μi �= μj for at least one pair (i, j)

(i �= j and i, j = 1, 2, · · · 7).
(1)

Since determining sample size is critical in any experi-

mental design problem [20], we performed a set of random

and pilot Fibonacci calculations within Google AppEngine

to estimate its performance standard deviation, and then

used the Operating Characteristic (OC) Curves [20] to find

a suitable number of replicates for everyday. To save space,

here we do not specify the background knowledge and the

detailed determining process. Our final decision was to run

48

Table I
EXPERIMENTAL RESULT OF THE 27TH FIBONACCI CALCULATION

WITHIN GOOGLE APPENGINE PYTHON RUNTIME

Date Average Minimum Maximum Standard Deviation
Sept. 1 197.97ms 152.36ms 329.62ms 35.07ms

Sept. 2 194.65ms 151.65ms 311.38ms 30.43ms

Sept. 3 197.83ms 150.57ms 308.64ms 28.81ms

Sept. 4 199.95ms 151.13ms 329.29ms 34.82ms

Sept. 5 208.44ms 155.14ms 318.45ms 38.38ms

Sept. 6 226.39ms 153.91ms 313.66ms 45.48ms

Sept. 7 220.79ms 148.15ms 366.49ms 44.18ms

Total 206.58ms 148.15ms 366.49ms 38.84ms

0 100 200 300 400 500 600 700 800
100

150

200

250

300

350

400

Th
e

27
th

 F
ib

on
ac

ci
 C

al
cu

la
tio

n
Ti

m
e

(m
s)

Sequential Number of the 123 x 7 Trials in Total

Figure 4. Google AppEngine computation performance during seven days.

123 replicates per day (or replicate once per 720 seconds)

to satisfy a target power of at least 0.9.

8) Experimental Implementation:
Given the experimental design, the evaluation experiments

were correspondingly deployed and implemented. Several

typical indices of the experimental result are shown in

Table I, which can be used to initially answer the first two

evaluation questions.1 Following the suggestions in Step 9)
of the evaluation methodology, we further visualized the

experimental result to better answer those questions and

also facilitate experimental analysis, as shown in Figure. 4.

It can then be intuitively found that Google AppEngine

takes 200±50ms in general to calculate the 27th Fibonacci

number. To be more specific, we used Boxplot (cf. Figure. 5)

to scale different quartiles of the runtime data. Note that the

crosses in Figure. 5 indicate the outlier observations falling

out of the 1.5 interquartile range (IQR). It is clearer that

the computation performance peak of Google AppEngine

is relatively stable (around 150ms for the 27th Fibonacci

calculation) everyday, while the worst-case calculation time

varies largely without considering the outliers.

9) Experimental Analysis:
However, it is still uncertain whether or not we can expect

1The specific experimental result can be found online: http://evaluation-
experiments.appspot.com

150

200

250

300

350

Sept. 1 Sept. 2 Sept. 3 Sept. 4 Sept. 5 Sept. 6 Sept. 7
Date Reference (Sept. 1 ~ Sept. 7)

Th
e

27
th

 F
ib

on
ac

ci
 C

al
cu

la
tio

n
Ti

m
e

(m
s)

Figure 5. Google AppEngine computation performance shown in boxplot.

a stable mean of the computation performance of Google

AppEngine, although the positive answer is suspicious due to

the fluctuation in the last two days’ experimental data. Recall

that this evaluation question equals to the hypothesis testing

of Equation (1). We employed Tukey’s Test [20] to perform

all pair-wise mean comparisons, as shown in Figure 6. It can

be seen that the seven days’ Fibonacci calculation means are

divided into three groups, which statistically confirms that it

is impossible to achieve a stable performance when using

Google AppEngine at different period of time. However,

interestingly, Group B can be viewed as a linkage between

Group A and C. We thus claim that, although not absolutely

stable, the performance mean of Google AppEngine may

fluctuate mildly.

10) Conclusion and Reporting:
As the last step of evaluation activities, the conclusions

are to be drawn to finally satisfy the evaluation requirement.

Since the pre-recognized requirement was clarified into three

questions in this case, we can conveniently respond the eval-

uation requirement by answering those specific questions, as

listed below.

• How fast does Google AppEngine run a particular

computation task in the Python runtime environment?

− The 27th Fibonacci calculation by using Google
AppEngine may take time between 148.15ms and
366.49ms.

• How variable is the computation performance of

Google AppEngine during a particular period of time?

− The 27th Fibonacci calculation by using Google Ap-
pEngine may take 206.58ms averagely with the stan-
dard deviation 38.84ms.

• Can we expect a stable mean of the computation

performance of Google AppEngine at different time?

− The performance mean of Google AppEngine may not
be absolutely stable, while the fluctuation could be
mild.

After finishing the evaluation work, the details of the

evaluation procedure are worth being documented for the

purpose of verification and experience sharing. In addition

49

One-way ANOVA: Runtime versus Date

Source DF SS MS F P
Date 6 114934 19156 13.84 0.000
Error 854 1182327 1384
Total 860 1297261

S = 37.21 R-Sq = 8.86% R-Sq(adj) = 8.22%

Individual 95% CIs For Mean Based on
Pooled StDev

Level N Mean StDev —+———+———+———+——
Sept. 1 123 197.97 35.07 (—–*—-)
Sept. 2 123 194.65 30.43 (—-*—–)
Sept. 3 123 197.83 28.81 (—–*—-)
Sept. 4 123 199.95 34.82 (—–*—-)
Sept. 5 123 208.44 38.38 (—–*—-)
Sept. 6 123 226.39 45.48 (—–*—-)
Sept. 7 123 220.79 44.18 (—-*—-)

—+———+———+———+——
192 204 216 228

Pooled StDev = 37.21

Grouping Information Using Tukey Method

Date N Mean Grouping
Sept. 6 123 226.39 A
Sept. 7 123 220.79 A B
Sept. 5 123 208.44 B C
Sept. 4 123 199.95 C
Sept. 1 123 197.97 C
Sept. 3 123 197.83 C
Sept. 2 123 194.65 C

Means that do not share a letter are significantly different.

Figure 6. Grouping information in Tukey’s analysis result (by Minitab).

to the formal reporting guidelines [23], this proposed

methodology also supplies a documentation structure for

reporting the Cloud services evaluation implementations.

Our practice described in this section can then be viewed

as a sample of the structured evaluation report.

Overall, compared with the original study [9], the pro-

posed methodology led to a systematic and complete ap-

proach to evaluation of Google AppEngine. Given spe-

cific evaluation questions, rigorous experimental design, and

comprehensive data analysis, we can achieve more rational

and convincing experimental results and conclusions. In

fact, although this is a simplified evaluation study, the

demonstration can be regarded as a further pilot experiment

for determining sample size of a whole year’s experiment.

V. CONCLUSIONS AND FUTURE WORK

As Cloud Computing becomes one of the most promising

computing paradigms in industry [5], numerous vendors

have started to supply public Cloud infrastructures and

services [22]. Unfortunately, the Cloud service indicators are

usually insufficient for service selection with regard to spe-

cific application scenarios [14], while customers have little

knowledge and control over public Cloud services except for

those indicators [25]. As such, it would be necessary and

significant to implement appropriate evaluation following

a suitable methodology before employing particular Cloud

services.

Given the lack of a sound methodology for Cloud

services evaluation, we investigated the generic steps of

evaluation implementations mainly through three types of

sources: lessons from evaluating traditional computing sys-

tems, guidelines for performing DOE, and the existing Cloud

services evaluation studies. Then, a ten-step methodology

CEEM was developed and evaluated to guide future Cloud

service evaluation experiments. By delivering generic sug-

gestions and a pre-experimental knowledge base, we further

made CEEM more practical particularly in the Cloud Com-

puting domain. Compared to the existing studies of Cloud

services evaluation, the validation study shows that CEEM

would be able to help evaluators achieve more rational

experimental results and draw more convincing conclusions.

Moreover, we believe that the evaluation activities involved

in CEEM can be conveniently adapted to suit other comput-

ing domains by collocating the domain-specific evaluation

experiences correspondingly.

Our future work will be unfolded along two directions. On

the one hand, CEEM’s knowledge base of evaluating Cloud

services will be continually enriched. For example, we are

conducting a mapping between specific DOE techniques and

detailed evaluation situations, to further facilitate applying

DOE to Cloud services evaluation. On the other hand,

in addition to employing CEEM in our own evaluation

studies, we plan to introduce this work to other Cloud

evaluators, and collect their feedback for further validation

and improvement.

ACKNOWLEDGMENT

This project is supported by the Commonwealth of Aus-

tralia under the Australia-China Science and Research Fund.

NICTA is funded by the Australian Government as rep-

resented by the Department of Broadband, Communications

and the Digital Economy and the Australian Research Coun-

cil through the ICT Centre of Excellence program.

REFERENCES

[1] S. Akioka and Y. Muraoka, “HPC benchmarks on Amazon
EC2,” Proc. 24th Int. IEEE Conf. Advanced Information Net-
working and Applications Workshops (WAINA 2010), IEEE
Computer Society, Apr. 2010, pp. 1029-1034.

[2] M. Alhamad, T. Dillon, C. Wu, and E. Chang, “Response time
for Cloud computing providers,” Proc. 12th Int. Conf. Infor-
mation Integration and Web-based Applications & Services
(iiWAS 2010), ACM Press, Nov. 2010, pp. 603–606.

50

[3] S. M. Blackburn, K. S. McKinley, R. Garner, C. Hoffmann,
A. M. Khan, R. Bentzur, A. Diwan, D. Feinberg, D. Frampton,
S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee,
J. E. B. Moss, A. Phansalkar, D. Stefanović, T. VanDrunen,
D. von Dincklage, and B. Wiedermann, “Wake up and smell
the coffee: Evaluation methodology for the 21st century,”
Commun. ACM, vol. 51, no. 8, Aug. 2008, pp. 83–89.

[4] P. A. Boampong and L.A. Wahsheh, “Different facets of
security in the Cloud,” Proc. 15th Communications and Net-
working Simulation Symp. (CNS 2012), Society for Computer
Simulation International, Mar. 2012, pp. 1–7.

[5] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic,
“Cloud Computing and emerging IT platforms: Vision, hype,
and reality for delivering computing as the 5th utility,” Future
Gener. Comp. Sy., vol. 25, no. 6, Jun. 2009, pp. 599-616.

[6] M. Cunha, N. Mendonça, and A. Sampaio, “Investigating
the impact of development configuration and user demand
on a social network application in the Amazon EC2 Cloud,”
Proc. 3rd Int. Conf. Cloud Computing Technology and Sci-
ence (CloudCom 2011), IEEE Computer Society, Nov. 2011,
pp. 746–751.

[7] J. Dejun, G. Pierre, and C.-H. Chi, “EC2 Performance Anal-
ysis for Resource Provisioning of Service-Oriented Appli-
cations,” Proc. 2009 Int. Conf. Service-Oriented Comput-
ing (ICSOC/ServiceWave 2009), Springer-Verlag, Nov. 2009,
pp. 197–207.

[8] I. Iankoulova and M. Daneva, “Cloud computing security
requirements: A systematic review,” Proc. 6th Int. Conf. Re-
search Challenges in Information Science (RCIS 2012), IEEE
Computer Society, May 2012, pp. 1–7.

[9] A. Iosup, N. Yigitbasi, and D. Epema, “On the performance
variability of production Cloud services,” Delft Univ. Tech-
nol., Netherlands, Tech. Rep. PDS-2010-002, Jan. 2010.

[10] K. R. Jackson, L. Ramakrishnan, K. Muriki, S. Canon,
S. Cholia, J. Shalf, H. J. Wasserman, and N. J. Wright,
“Performance analysis of high performance computing ap-
plications on the Amazon Web services Cloud,” Proc. 2nd
IEEE Int. Conf. Cloud Computing Technology and Science
(CloudCom 2010), IEEE Computer Society, Nov.-Dec. 2010,
pp. 159-168.

[11] R. K. Jain, The Art of Computer Systems Performance
Analysis: Techniques for Experimental Design, Measurement,
Simulation, and Modeling. New York, NY: Wiley Computer
Publishing, John Wiley & Sons, Inc., May 1991.

[12] D. Kossmann, T. Kraska, and S. Loesing, “An evaluation
of alternative architectures for transaction processing in the
Cloud,” Proc. 2010 ACM SIGMOD Int. Conf. Management of
Data (SIGMOD 2010), ACM Press, Jun. 2010, pp. 579-590.

[13] J.-Y. Le Boudec, Performance Evaluation of Computer and
Communication Systems. Lausanne, Switzerland: EFPL Press,
Feb. 2011.

[14] A. Lenk, M. Menzel, J. Lipsky, S. Tai, and P. Offer-
mann, “What are you paying for? Performance bench-
marking for Infrastructure-as-a-Service offerings,” Proc. 4th
Int. Conf. Cloud Computing (IEEE CLOUD 2011), IEEE
Computer Society, Jul. 2011, pp. 484–491.

[15] Z. Li, L. O’Brien, R. Cai, and H. Zhang, “Towards a tax-
onomy of performance evaluation of commercial Cloud ser-
vices,” Proc. 5th Int. Conf. Cloud Computing (IEEE CLOUD

2012), IEEE Computer Society, Jun. 2012, pp. 344–351.

[16] Z. Li, L. O’Brien, H. Zhang, and R. Cai, “A factor frame-
work for experimental design for performance evaluation of
commercial Cloud services,” Proc. 4th IEEE Int. Conf. Cloud
Computing Technology and Science (CloudCom 2012), IEEE
Computer Society, Dec. 2012, pp. 169–176.

[17] Z. Li, L. O’Brien, H. Zhang, and R. Cai, “On a catalogue of
metrics for evaluating commercial Cloud services,” Proc. 13th
ACM/IEEE Int. Conf. Grid Computing (Grid 2012), IEEE
Computer Society, Sept. 2012, pp. 164–173.

[18] A. Li, X. Yang, S. Kandula, and M. Zhang, “Cloud-
Cmp: Comparing public Cloud providers,” Proc. 10th
Annu. Conf. Internet Measurement (IMC 2010), ACM Press,
Nov. 2010 pp. 1–14.

[19] Z. Li, H. Zhang, L. O’Brien, R. Cai, and S. Flint, “On
evaluating commercial Cloud services: A systematic review,”
J. Syst. Software, in press.

[20] D. C. Montgomery, Design and Analysis of Experiments, 7th
ed. Hoboken, NJ: John Wiley & Sons, Inc., Jan. 2009.

[21] M. S. Obaidat and N. A. Boudriga, Fundamentals of Per-
formance Evaluation of Computer and Telecommjnication
Systems. Hoboken, New Jersey: John Wiley & Sons, Inc.,
Jan. 2010.

[22] R. Prodan and S. Ostermann, “A survey and taxonomy of
Infrastructure as a Service and Web hosting Cloud providers,”
Proc. 10th IEEE/ACM Int. Conf. Grid Computing (GRID
2009), IEEE Computer Society, Oct. 2009, pp. 17–25.

[23] P. Runeson, M. Höst, “Guidelines for conducting and report-
ing case study research in software engineering,” Empir. Soft-
ware Eng., vol. 14, no. 2, Apr. 2009, pp. 131-164.

[24] J. Schad, J. Dittrich, and J.-A. Quiané-Ruiz, “Runtime mea-
surements in the Cloud: Observing, analyzing, and reducing
variance,” VLDB Endowment, vol. 3, no. 1-2, Sept. 2010,
pp. 460-471.

[25] W. Sobel, S. Subramanyam, A. Sucharitakul, J. Nguyen,
H. Wong, A. Klepchukov, S. Patil, A. Fox, and D. Patter-
son, “Cloudstone: Multiplatform, multi-language benchmark
and measurement tools for Web 2.0,” Proc. 1st Workshop
on Cloud Computing and Its Applications (CCA 2008),
Oct. 2008, pp. 1–6.

[26] V. Stantchev and C. Schröpfer, “Techniques for service level
enforcement in Web-services based systems,” Proc. 10th
Int. Conf. Information Integration and Web-based Applica-
tions & Services (iiWAS 2008), ACM Press, Nov. 2008, pp. 7–
14.

[27] V. Stantchev, “Performance evaluation of Cloud computing
offerings,” Proc. 3rd Int. Conf. Advanced Engineering Com-
puting and Applications in Sciences (ADVCOMP 2009), IEEE
Computer Society, Oct. 2009, pp. 187–192.

[28] G. Wang and T. S. E. Ng, “The impact of virtualization on
network performance of Amazon EC2 data center,” Proc. 29th
Annu. IEEE Int. Conf. Computer Communications (IEEE
INFOCOM 2010), IEEE Computer Society, Mar. 2010, pp.
1-9.

[29] Q. Zhang, L. Cheng, and R. Boutaba, “Cloud comput-
ing: State-of-the-art and research challenges,” J. Internet
Serv. Appl., vol. 1, no. 1, May 2010, pp. 7-18.

51

