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ABSTRACT 

 

Background: We introduce a method for quickly determining the rate of implicit 

learning.  

Methodology: The task involves making a binary prediction for a probabilistic 

sequence over 10 minutes; from this it is possible to determine the influence of events 

of a different number of trials in the past on the current decision. This profile directly 

reflects the learning rate parameter of a large class of learning algorithms including 

the delta and Rescorla-Wagner rules. To illustrate the use of the method, we compare 

a person with amnesia with normal controls and we compare people with induced 

happy and sad moods. 

Conclusions: Learning on the task is likely both associative and implicit. We argue 

theoretically and demonstrate empirically that both amnesia and also transient 

negative moods can be associated with an especially large learning rate: People with 

amnesia can learn quickly and happy people slowly.   
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INTRODUCTION  

 

The process by which we can incidentally acquire knowledge of the structure 

of the environment without being aware of the knowledge is called implicit learning 

[1,2]. Implicit learning is a fundamental process involved in mastering music, 

languages, social and cultural rules, perceptual-motor skills, and almost any domain 

involving the gradual refinement of judgment or action [3,4]. Implicit learning is 

normally investigated by requiring people to learn complex structures, like finite state 

grammars or complex control systems [5]. Such tasks are ill-suited for determining an 

individual’s effective learning rate, because a neural network or other model will 

typically have an optimal learning rate in the middle of its range with either a very 

high or very low learning rate producing slower learning overall for the  system on 

such complex tasks [6]. Perhaps for this reason, researchers have not systematically 

addressed the question of what factors influence implicit learning rate per se, despite 

the fundamental nature of the question (though cf [7] outside the context of implicit 

learning paradigms). 

 We introduce a task to measure the learning rate of a person quickly and 

simply. A fast or large learning rate means, by definition, that each trial changes 

strength of prediction by a large amount, and thus recent trials will have a large 

influence on the current prediction. Consequently, more distant trials will have a 

relatively smaller influence. Conversely, a small (slow) learning rate means, by 

definition, that each trial introduces a small change to strength of predictions, prior 

knowledge is changed only marginally, and distant trials will have a relatively strong 

influence on current predictions. Thus, for example, on a simple conditioning task, a 

large learning rate corresponds to learning the simple association quickly. 
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 In our task, the participant makes a series of binary predictions, e.g. whether a 

probabilistic stimulus will appear on the left or the right. Our sequences were all in 

fact random. Despite the random nature of the sequence, a learning device will on any 

given trial be influenced by the idiosyncratic pattern of past trials to have an 

expectation of right or left. We correlate what the participant predicts on a trial with 

what happened one trial back, two trials back, etc. The random nature of the sequence 

means each of these correlations is independent. That is, each correlation directly 

indicates the influence of events a given number of steps in the past on current 

predictions regardless of what happened on any other number of steps into the past. If 

a manipulation increases learning rate it will show in the plot of correlations against 

number of trials into the past: Correlations of the current prediction with recent trials 

will increase and correlations of the current prediction with distant trials will 

decrease. The simplicity of the task is what allows it to be a tool for clearly measuring 

learning rate. 

 In the first two experiments we demonstrate relevant properties of our method 

as a measure of implicit learning rate, namely that it involves associative learning 

rather than simply conceptual priming, and it also involves the phenomenology of 

guessing, characteristic of implicit learning. In the second two experiments we 

motivate the method by illustrating its use in particular domains, showing how it 

sheds light on amnesia and also on the way emotional stimuli influence learning. 

Knowing learning rates can allow surprising conclusions in a range of psychological 

domains.  

 

EXPERIMENT 1 
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 Experiment 1 explored whether the learning on the task was associative or 

involved just conceptual priming of “left” or “right”. We tested the associative nature 

of learning on the task by having a distinctive context (a tone) associated with most 

trials, but absent on every fourth trial. In classical conditioning, more salient stimuli 

acquire more associative strength than less salient stimuli, a phenomenon called over-

shadowing [e.g. 8]. Less salient stimuli may acquire very little associative strength 

because of the presence of a salient stimulus.  Thus, if people are learning to associate 

contextual cues with the prediction for left or right, removing salient cues should 

reduce the reliance of the prediction on past trials. That is, if associative learning has 

occurred, then there should be a weaker dependency of predictions on past trials for 

no tone trials than for tone trials.  

 

Methods 

 

Participants. Thirty-four students from the University of Sussex participated. The 

protocol used in this and subsequent experiments was approved by the University of 

Sussex School of Psychology Research Governance Committee following the 

guidelines for human research of the British Psychological Society. Written informed 

consent was obtained from all participants in all experiments. 

 

Procedure.  On each trial the word “ready” was first displayed for 400 ms. On tone 

trials, there was a simultaneous 500 Hz tone; ‘ready’ was displayed in white Sanserif 

Turbopascal size 8 font. By contrast, every fourth trial had no tone (that is, there were 

always three tone trials between every no-tone trial), and ‘ready’ was displayed in 

yellow Gothic size 4 font. Participants were then instructed to press Z or M to predict 
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left or right respectively, which they did in their own time. A square was displayed 

randomly on the left or right for 400 ms; on tone trials it was coloured blue and on no 

tone trials it was yellow. Finally there was a wait of 800 ms to make sure the tone of 

the next trial was heard as a warning for that trial and not a response to the previous 

one. There were 300 trials in total. Each participant experienced a different random 

sequence.  

 

Results and discussion 

 

In experiment 1 participants were presented with a majority of trials involving 

a tone accompanying the ready prompt and in some trials the tone was missing. 

Figures 1 and 2 show the Pearson (i.e. phi) correlation of current prediction with 

where the square actually was from one to ten trials back for experiment 1. For 

example, for one trial back, the correlation shows how strongly what happened on the 

just preceding trial influenced the prediction on the current trial. Note that this is not 

the influence of the subject’s prediction in the previous trial on the current prediction - 

but the influence of where the square actually just was in the previous trial on the 

current prediction. If the learning rate was one, a single trial would result in maximum 

associative strength for whatever just happened, and so prediction would correlate one 

with the event one trial back. With a learning rate of one, if the square had been on the 

right on the previous trial, the subject would predict right 100% of the time on te next 

trial (and the same for left). Thus, of necessity, the correlation with all trials more than 

one trial back would be zero. On the other hand, if the learning rate was less than one, 

the correlation with events one trial back would be less than one, and events further 

back could influence prediction. Thus, the profile of influence over time gives 
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information about learning rate. Further, only with a learning rate of zero would there 

be no influence on any trial; thus a general influence from the trials overall  indicates 

learning occurred. 

Figure 1 shows the data for tone trials and Figure 2 for no tone trials. The 

average correlation of predictions with what happened for trials one to ten back was 

detectably higher for tone trials (.03, SD = .04) than no tone trials (.01, SD = .07), 

t(33) = 2.03,  p = .05, dz = 0.35, supporting the claim that learning in the task is 

associative. On the tone trials, overall the correlations were above chance, t(33) = 

3.77, p = .001, 95% CI [.013, .043], showing that overall people were influenced by 

past trials; conversely,  for the no tone trials the correlations were not on average 

detectably above chance, t(33) = .96,  p = .35, 95% CI [-.013, .036]. While the latter 

result may be due to the larger standard errors for the no tone trials, the difference 

between tone and no trials cannot be due to larger standard errors in the latter, as the 

difference is significant. In sum, people’s learning was influenced by context with 

evidence of learning particularly when the context was relatively common. If learning 

on the task consisted merely of non-associative priming of the abstract concepts of 

left and right (i.e. if seeing something on the left primed a tendency to respond left 

regardless of context) then the presence or not of a tone would be irrelevant. 

Associative learning predicts an influence of context, as we found. 

The results do not illuminate the basis of the associative learning, for example 

whether based on exemplar coding of a whole trial (e.g. tone plus side of square) (cf 

[9]) rather than a strength-based mechanism (like Rescorla Wagner). We can be sure 

that whatever the context-linking mechanism, however, it involves developing 

sensitivity to several trials in the past, so is not based on a memory of just one trial 

back (contrast [10]). 
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 Destrebecqz et al [11] and Mitchell et al [12] used a similar task as ours, but 

with a reaction time measure of learning. Participants had to press a button when a 

stimulus appeared, which could be indicated by a tone.  Mitchell et al [12] argued 

(contrary to [11]) that rather than associative learning, response priming could 

account for the RT benefits, i.e. people press a button faster when they have just 

pressed it. While this is a possible explanation in their task, in the current task subjects 

make a prediction about a random stimulus so repeating the response of the previous 

trial would not produce any sensitivity of the current response to the stimulus location 

on the previous trial. Yet what we show is strong sensitivity of the current response to 

what the stimulus was on the just previous trial. Thus, this sensitivity cannot be 

response priming. 

A weakness of the method is illustrated by the negative correlation three time 

steps back. Associative learning would only produce positive correlations. Perruchet 

[13] found that when people were asked to predict a binary event (presence or absence 

of an air puff) , such predictions were susceptible to the gambler’s fallacy, even when 

an eye-blink response showed standard conditioning. That is, the more often an air 

puff followed a tone, the less subjects expected it after a tone.  Figure 1 illustrates that 

for the conditions of our method (including the rapid time scales: Perruchet had an 

interval of 10 seconds between trials instead of less than a second we used), the 

gambler’s fallacy is swamped by a process producing positive correlations, except for 

three trials back.  Nonetheless, the contribution of the gambler’s fallacy to our 

findings is an important issue which we consider again in the discussion, with 

additional analyses.  

Indeed, an alternative interpretation of the difference between tone and no 

trials is that the diminished sensitivity to past trials in the latter case reflects not 
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diminished associative learning but an enhanced gambler’s fallacy tendency on no 

tone versus tone trials. However, a change in context has been found to reduce the 

tendency to use the gambler’s fallacy (with a coin toss) [14], rendering gambler’s 

fallacy a less plausible explanation of experiment 1. 

As the structure to be learned is minimal (i.e. the sequence is random) people 

are learning spurious correlations when they become sensitive to past trials. In order 

to show that learning does occur on the task when there is real long term structure, 60 

subjects were ran on the task (all trials no tones) where the probability systematically 

changed over trials. Specifically, for half the participants, for the first 120 trials the 

probability of left was 60%, then for 40 trials it was 50%; then for 120 trials it was 

40%; for the other half of the participants the blocks occurred in reverse order.  While 

people did not probability match perfectly, there was a 9% change in the actual 

probability of the stimulus occurring on the left or right in the final rather than first 

block, the probability of people’s responses changed by 6% in the appropriate 

direction, t(59) = 4.09, p < .0005, illustrating that people do learn structure in the task. 

 

****Insert Figures 1 and 2 here**** 

 

EXPERIMENT 2  

 

In experiment 2 we sought to determine the implicit nature of the knowledge. Implicit 

learning is a process by which people acquire knowledge of the structure of an 

environment without being aware of what that knowledge is [15].  In addition, 

implicit learning involves not only unconscious structural knowledge but also on 

occasion, produced by that structural knowledge, expectations which people are 
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unaware of having [16-18]. Thus, in experiment 2 we determined if people were 

aware of having any knowledge.  

 

Method 

 

Participants. Fifty participants were recruited from the University of Sussex students 

and alumni to obtain a range of ages (20 to 67) so that any effect of age on the task 

could be controlled for when investigating amnesia below. These participants are the 

normal controls for the amnesic patient in experiment 3, and discussed further below. 

 

Procedure. The timings were the same as in experiment 1. After ‘ready’ was 

displayed for 400ms (no tone was sounded), participants were instructed to press the 

X key if they purely guessed left; Z if they had any confidence in a left prediction; N 

if they purely guess right; and M if they had any confidence in their right prediction. 

Participants were told that despite the fact that the sequence was random they may 

develop expectations of left or right; if they are aware of any expectations they should 

indicate some confidence.  

 

Results and discussion 

 

 Experiment 2 asked people about their phenomenology. If people are 

sometimes unaware of expectations people should be influenced by past trials when 

they believe they are purely guessing.  In experiment 2, people said they were 

guessing on 66% (SD = 24.5%) of trials. On those trials, predictions were influenced 

by past trials, the average correlation of predictions with what happened for trials one 
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to ten back was .02 (SD = .04), significantly above zero, t(49) = 2.64, p = .011, d = 

0.37. On trials in which people were sure, the average correlation was .00 (SD = .08).  

 In the applications to particular domains below we will distinguish between 

recent and distant influences on current predictions.  To provide a measure of recent 

influences, the correlations of current prediction with past occurrences of the square 

for one and two trials back were averaged together. To provide a measure of distant 

influences, the correlations for four to ten trials into the past were averaged together. 

The division is based on the predominance of the gambler’s fallacy at three trials back 

only. We use the same division in the remaining experiments.  

 When people said they were guessing, the mean level of recent influence was 

.07 (SE = .018), significantly different from zero, t(47) = 3.88,  p < .0005, d = 0.55, 

and the mean level of distant influence was .01 (SE = .005), significantly different 

from zero t(49) = 2.17, p = .035, d = .31. Thus, people showed significant learning of 

both recent and distant events even when they thought they were purely guessing. The 

corresponding figures for when people were partially sure for recent and distant 

influences were .06 (.035) and .00 (.01).   

Experiment 4 provided further data on people’s learning when they believed 

they had used guessing or intuition, using different stimuli than experiment 2. In 

Experiment 4 it is argued that mood will affect learning, and either a happy or a sad 

mood was induced. Only the sad condition is analysed here because the happy 

condition eliminated any clear signs of learning overall. Participants reported 

guessing or using intuition on 65% (SD = 25.3%) of trials indicating the 

phenomenology characteristic of implicit learning on a majority of trials. On those 

trials, predictions were influenced by past trials, the average correlation of predictions 

with what happened for trials one to ten back was .02 (SD = .03), significantly above 



 12

zero, t(26) = 2.77, d = 0.53, p = .01. On trials in which people were using rules or 

recollections, the average correlation was .00 (SD = .10). 

 In sum, a majority of trials involved a phenomenology characteristic of 

implicit learning, i.e. feelings of guessing or of intuition, while demonstrating 

sensitivity to structure.  Having established that the method does measure the rate of 

specifically implicit learning, we turn now to consider two applications of the method. 

 

EXPERIMENT 3 

 

 In experiment 3 we applied the method to understanding amnesia. People with 

anterograde amnesia, following damage to the temporal lobes and underlying regions, 

have difficulty creating new explicit long-term memories resulting in major 

impairments in recalling post-morbid events. Nonetheless, they can be near normal in 

acquiring procedural skills [19]. A standard explanation is that there are different 

memory systems, for example a procedural one and also an episodic or declarative 

one, and people with anterograde amnesia have damage only to the latter [20]. 

Another explanation is that damage to the temporal lobes changes the learning rate of 

a single system (or at least of a relevant system). Two possibilities are that amnesia is 

a result of (1) an increase or (2) a decrease in learning rate compared to normal.  We 

consider each possibility in turn.   

Perhaps people with amnesia have a small learning rate on all tasks [21-23]. 

Thus, they cannot perform one-shot learning like storing one-off episodes in their life, 

but they can still fine tune procedural skills over many trials, which requires a small 

learning rate. Shanks and his colleagues have simulated learning in complex tasks and 

fitted the data by assigning people with amnesia a lower learning rate than healthy 
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controls. This evidence is suggestive but depends on complex tasks where 

performance can be made worse by either an increase or a decrease in learning rate 

from its optimal value. Here we explore the relation between amnesia and learning 

rate using our method where there is a more transparent relation between data and 

learning rate. 

 While the hypothesis that amnesia is associated with as small learning rate 

seems plausible, it has some counter-intuitive consequences. If amnesia is associated 

with a smaller learning rate, each new trial makes a small contribution to associative 

strength, so associative strength depends on a proportionately greater influence of past 

trials. In that sense, learning rate is a measure of memory into the past: The smaller 

the learning rate, the longer the memory into the past. On these grounds one might 

expect that amnesia is associated with a large learning rate: Responses depend mainly 

on only the last trial or two and hence memory into the past is short. For example, 

with a learning rate of 1, current predictions would depend completely on the one 

previous trial and memory would go only one time step into the past. 

 It is likely people adjust learning rates to different tasks. In a task with the 

random structure we used, there is no “optimal” learning rate: all strategies will lead 

to the same performance.  In a slowly changing world, small learning rates will 

average out the noise by taking into account many trials, and in a quickly changing 

world, a faster learning arte will more effectively track these changes. Thus we expect 

normal people to have relatively small learning rates on our task. The question is 

whether amnesic people will have a small learning rate on this task also.  

 

Methods 
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Participants.  JC is discussed in chapter 4 of [24], referred to as case “Jay”. JC 

suffered an aneurysm at the age of 20, resulting in severe anterograde with virtually 

non-existent retrograde amnesia. An MRI scan indicates lesions are restricted to the 

hippocampal area. On the Wechsler Memory Scale, immediate recall is 8 (normal) 

and delayed recall is 0 (severely impaired). He is severely impaired also on the 

Rivermead Behavioural Memory Test and recall of the Rey-Osterreith Complex 

Figure. By contrast, recall of childhood and (pre-morbid) early adult life is normal. 

 At the time of testing JC was 42 years old. We recruited 30 University of 

Sussex students and alumni to create an even spread of ages from around 20s to 60s; 

mean age was 40.1 years (SD = 15.8), range 20 to 67. The correlation of recent 

influences with age was .05, not detectably different from zero, 95% CI [-.40, .32]. 

The correlation of distant influences with age was -.26, also not detectably different 

from zero, 95% CI [-.57, .11]. To increase power for comparing with JC, this sample 

was combined with another of 20 Sussex students, aged in their 20s, and the 

combined sample of 50 students and alumni used as the controls for JC. Note that as 

JC was a University student when he suffered his aneurysm, all controls were 

University educated. 

 

Procedure. The same procedure as experiment 2 was used. JC performed the task on 

18 separate days, for 300 trials on each day. Each control participant performed the 

task once, for 300 trials.  

 

Results and discussion 
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 Experiment 3 tested a dense amnesiac, JC, and matched controls. Figures 3 

and 4 show the profile of correlations of current predictions with what happened for 

from one to ten trials into the past for  JC and the normal controls in experiment 3. 

The pattern is consistent with JC having a large rather than small learning rate. The 

strength of recent influences (as defined above) was stronger for JC (.25, SD = .13) 

than for controls (.09, SD = .13), t(66) = 4.56, p < .0005, d = 1.24, while the strength 

of distant influences (as defined above) was stronger for controls (.01, SD = .03) than 

for JC (-.01, SD = .02), t(66) = 2.73, p = .008, d = 0.79. The data provide impressive 

support for the theory that people with amnesia, at least on this task, have an 

exceptionally high learning rate, and against the theory that people with amnesia have 

a generalised low learning rate. Note the evidence applies separately for recent and 

distant trials: One cannot try to e.g. explain away the evidence just for recent trials 

because the distant trials also provide evidence that JC has an especially large 

learning rate (and vice versa). 

 Other paradigms have found a range of results for the rate of conditioning for 

people with amnesia. For example, people with amnesia can show slower trace eye 

blink conditioning compared to controls [25], and equivalent delay eye blink 

conditioning [26]. Thus, we do not claim that people with amnesia have a generalised 

large learning rate, nor that a single system explains human learning (e.g. see [27] and 

[28] for dual systems approaches to learning in general). Our working hypothesis is 

that people normally do not have a fixed learning rate, but adjust according to how 

slowly the world appears to be changing and the amount of noise that needs to be 

averaged out. In a noisy slowly changing world small learning rates are optimal 

because they average the noise out of as many trials as possible. In normal people, 

learning may proceed by selecting from multiple learning devices for the one with the 
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most effective learning rate for the task at hand (cf [7]). Thus, normals have a 

relatively low learning rate on the current task (random probability structure static 

over many trials), but a relatively large learning over a few conditioning trials with a 

clear signal. People with amnesia may be more rigid in the learning rate they can 

settle on. The task we have introduced provides a simple environment in which such 

issues can be explored. 

 

****insert figures 3 and 4 here ***** 

 

 

EXPERIMENT 4 

 

In experiment 4 we applied the method to understanding the role of emotion in 

learning. According to the “affect as information” hypothesis of Schwarz and Clore 

[29-30] mild transient affective feelings arising with the performance of a task may be 

experienced as feedback about one’s performance. Success feedback should lead to 

use of prior knowledge and failure feedback to learning [31-32]. For example, people 

surreptitiously induced to be sad rather than happy rely more on stereotypes in social 

judgments. If the “affect as information” argument applies to implicit learning, then a 

surreptitious induction of a sad mood should indicate to the learning system that what 

it knows is not working: It can’t rely on prior knowledge but needs to attend to the 

present. That is a sad rather than happy mood should be associated with a larger 

learning rate. Similarly, according to the theory, happy moods lead to more global 

processing and more integration [33]; i.e. happy moods should lead to a small 

learning rate, involving a greater integration of information over time.  
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Methods 

 

Participants. Twenty-seven participants from the University of Sussex participated in 

the sad condition and 29 in the happy. 

 

Procedure.  In this experiment the random stimulus to be predicted was a face, which 

appeared on the left or right of the screen. The same timings were used as in the 

previous experiments on half the trials. On these trials an emotionally neutral male or 

female face was used as the stimulus. The remaining half of the trials (randomly 

intermixed with the neutral trials) were the mood inducing trials. The neutral trials 

were inserted to decrease habituation to the mood inducing stimuli.  On the mood 

trials, the word ‘ready’ was displayed for 200ms, the word ‘sad’ or ‘happy’ 

(depending on group) was displayed for 100ms, then the word ‘ready’ was displayed 

for 200ms (thus, the word ‘ready’ was displayed for 400ms altogether, as in the 

previous experiments). The neutral face was displayed (on the left or right) for 200ms, 

then either a sad or happy face (depending on group) was displayed for 150ms, and 

the neutral face again for 200 ms. All faces were equally likely to be male or female.  

 On all trials, participants were instructed to press the X key if they chose left 

because they were purely guessing or using intuition; Z if they using some conscious 

rule or recollection of a pattern to predict it will appear on the left; N for choosing 

right on the basis of guessing or intuition; and M for choosing right on the basis of a 

rule or recollection. 

 At the end of the experiment participants rated on a 1 to10 scale how happy, 

sad, and alert they felt. 
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Results and discussion 

 

 In experiment 4, we investigated the effect of mood on learning rate. Mood 

valence was measured by subtracting the sad rating from the happy rating. 

Participants in the happy condition had a more positive valence (3.1, SD = 3.0) than 

those in the sad condition (1.0, SD = 3.0), t(50) = 2.58, p = .013, d = 0.72. Usefully, 

participants in the happy condition were not detectably different in alertness (4.2, SD 

= 2.0) than those in the sad condition (4.3, SD = 2.2), t(50) = .10, p = .92, d = .02, 

95% CI [-1.2, 0.7], consistent with the manipulation changing only the valence and 

not the arousal of participants’ mood.  

 The mean recent influence in the sad condition (.13, SD = .11) was, as 

predicted, greater than that in the happy condition (.03, SD = .16), t(52) = 2.54, p = 

.014, d = .70. The mean distant influence was not detectably different between sad (-

.00, SD = .02) and happy conditions (.00, SD = .02), t(53) = 0.64, p = .47, d = .20, 

95% CI on the difference [-.01, +.01]. A Bayes factor  (see Materials and Methods for 

explanation) indicated the data for recent influences provided, relative to the null, 

strong support for the theory the sad condition had a higher learning rate than the 

happy, B = 11.86; and the data for distant influences were neutral between this theory 

and the null, B = 0.77. Thus, together the data for recent and distant influences 

provide strong support for the theory, overall B = 11.86*0.77 = 9.13. That is, the rate 

of implicit learning is sensitive to the use of mood inducing stimuli consistent with the 

predictions of the affect-as-information hypothesis (cf also [34]). 
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DISCUSSION 

 

 We introduce a method for measuring learning rate in a very simple prediction 

task. Its virtue is its simplicity and the transparency by which learning rate shows 

itself. The task is premised on implicit learning involving a strength of prediction of 

an event. Specifically, the method assumes that the strength of prediction on a given 

trial can be represented as a weighted mean of the strength on the previous trial and of 

what happened on the current trial. This assumption is a good characterisation of most 

models of implicit learning, including the Rescorla-Wagner rule in associative 

conditioning, error correction in connectionist networks, Kalman filters as used in 

models of reinforcement learning, or chunking models in which the strength of a 

chunk is incremented less as chunk strength approaches a ceiling [21, 35, 36]. The 

weighting for the current trial is the learning rate: The more the current trial is 

weighted, the more impact each trial has on changing the strength of prediction. The 

consequence of such a rule is that strength on a given trial is influenced by past trials 

in an exponentially decaying way. The slope of the decay is governed by learning 

rate: The larger the learning rate the stronger the influence of recent trials and the 

weaker the influence of past trials. This property of the learning rate can be used to 

measure it. To make measurement clear, we also used a random sequence so the 

influence of each trial on current predictions does not need to be adjusted by what 

happened at other time points; each trial is independent, thus making computations 

clean. 

 We show that people often develop expectations sensitive to events in the past; 

that is, there is learning. Further the phenomenology associated with this learning is 

largely that associated with implicit learning [28, 37] (compare [38] for a similar 
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task). Although people sometimes use conscious rules and recollections, they largely 

rely on guessing and intuition. Further, the learning people show is sensitive to 

context, consistent with it being associative. 

 We illustrate the usefulness of the method by showing it sheds light on 

important psychological questions. Paradoxically we argue that amnesia should be 

associated with a large learning rate in certain situations: A large learning rate means 

a small memory into the past and this is just what we find with a case study with a 

very dense amnesic. Future research could address the conditions under which 

amnesia is associated with an especially high or low learning rate on different 

versions of the task. According to the Bayesian approach, learning rates will be 

adjusted according to the probabilistic structure and dynamics of the domain (e.g. 

[39]). On this approach, people with amnesia may have trouble adjusting learning 

rates to deal with domains with learning rates that are optimally low (i.e. dealing with 

long time scales), but they will not  in general be quicker than average to implicitly 

learn (for example, on a task that optimally has a relatively large learning rate). Junge, 

Scholl, and Chun [40] found in an implicit spatial context learning task that presenting 

subjects first with a block of trials with  no regularity to be learned inhibited  

subsequent learning of a regularity. Thus, using a genuinely random sequence may 

induce low learning rates in normal people on our task. Future research could explore 

if constantly changing the probability of the outcome, e.g. with a sinusoid, increases 

learning rate (note that the dependence between trials would then have to be partialed 

out to determine the profile of influence of past trials). 

 We use the affect-as-information hypothesis to predict that sad rather than 

happy moods should be associated with a large learning rate. Showing people sad 

faces as stimuli rather than happy ones indeed produced a larger learning rate. Future 
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research could usefully explore the relation between emotion and learning rate. For 

example, can happy and sad images implicitly give success and failure feedback 

independently of mood? Conversely, is mood associated with a change in learning 

rate when the target stimuli are emotionally neutral? We hope these applications 

motivate other ideas in researchers. For example, we showed the importance of the 

valence of stimuli in affecting learning rate, but what about arousal, which we 

controlled? In general, how does the rate of learning depend on different contents?  

How does learning rate vary over time on a task or with different populations, or by 

drug induced changes to different neurotransmitter systems? 

 A potential weakness of the method is that associative learning is not the only 

process that the task engages; people are also liable to the gambler’s fallacy [41], as is 

evident in Figures 1 and 2 for three time steps back, and four time steps back in the 

case of JC, where there is a tendency to predict the opposite to what happened. 

Overall, this influence is weak compared to the effect of implicit learning. In order to 

ensure the influence of the gambler’s fallacy was disentangled from implicit learning, 

trial-by-trial decisions were fit by a model consisting of a) a Rescorla-Wagner 

learning device with its learning rate, and simultaneously  b) a gambler’s fallacy 

process with its equivalent rate parameter (see Materials and Methods). Controlling 

for gambler’s fallacy in this way, JC had an estimated learning rate of .80 (SD = .14), 

still detectably higher than that of controls (.63, SD = .32), t(60) = 3.01 (df adjusted 

for unequal variances), p = .004, d = 0.69. In fact, there was no detectable difference 

in gambler’s fallacy rate parameter between JC and controls (nor between people in 

the happy and sad conditions of the mood experiment). Nonetheless, future research 

could usefully explore conditions where the effect of the gambler’s fallacy could be 

mostly eliminated: For example, by using a situation more complex than a simple 
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binary choice, by eliciting faster responses, or by using a cover story indicating the 

sequence was generated by human skill rather than a mechanical process [41] 

 The method assumes a learning process in which the enduring influence of a 

trial is determined completely by its contribution to a single overall strength term. But 

not all models of implicit learning make this assumption. For example, learning 

sequences of locations or musical tones has been successfully modelled with a “buffer 

network” in which the last n trials are explicitly represented and used to predict what 

happens on the next trial (i.e. there is a buffer of size n). [42-43]. In the models used 

by Cleeremans [42] and Kuhn and Dienes [43], the stimuli up to n trials back would 

all have equal influence in prediction, and any stimulus more than n trials back would 

have no influence. While the buffer network (with n = 4) was successful in accounting 

for the relatively complex tasks of Cleeremans and Kuhn and Dienes, Figures 1-4 

show that the influence of past events was qualitatively different in the current task 

than the buffer model predicts. The buffer model could be made to fit the influence 

profiles shown in Figures 1-4 by having a large buffer (up to at least n = 7) and 

adding an assumption that the representation of a stimulus decays according to n. This 

would ad hoc fit the data by brute force. The current method would then not so much 

measure learning rate as buffer size or the decay profile within the buffer. It would be 

measuring an interesting characteristic of the learning system, but not directly the 

learning rate of the component units in the network.  

Another approach to modelling implicit learning that violates the assumptions 

of the method is the exemplar approach [44-46], in which correct responses are stored 

together with contexts. If a correct response together with general context (e.g. 

warning signal) was stored on each trial, there would be a flat influence profile back 

in time, as each time in the past would be equally represented. If these stored 
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exemplars decayed, then most recent trials would have more influence, just as we 

find. In this case the learning rate measured by our method would reflect the decay 

rate of the exemplars. 

Future research could examine our task in a more fine-grained way to 

determine if a model more complex than simple accumulating strength is needed to 

account for performance. Given the simplicity of the task and the fit of the profiles to 

such a simple model (barring the gambler’s fallacy effect), a Rescorla-Wagner model 

can be taken as at least an emergent approximation to the learning system, which 

defines a level of description to which we can assign a meaningful learning rate. It 

will be interesting to see how far such an approximation takes us, and what lower 

level features the measured learning rate reflects, for example, underlying learning 

rates of neurons. 

 Learning is a fundamental process characteristic of much of the brain; 

exploring the factors that the rate of learning depends on is hence a fundamental 

problem for psychology. It has been investigated in the animal learning domain, and 

its generalisation to people, with respect to particular problems, such as the relative 

learning rates of different stimuli of varying salience (over-shadowing) and effects of 

predictability or surprise on subsequent learning rate [39-41]. Here we broaden the 

scope of the enquiry and provide a general tool for doing so. We show how exploring 

the problem of learning rate in people can produce interesting and surprising findings. 

 

COMPUTATIONAL METHODS 

 Bayesian analyses 

 A Bayes factor is useful for indicating continuous degrees of support for a 

hypothesis and hence when a null result counts against a theory that predicts a 
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difference or  doesn’t count one way or the other (see [42, 43] ). Values around one 

indicate the data are equally consistent with both null and experimental hypotheses. 

Values greater than one indicate increasing evidence for the experimental hypothesis 

and values approaching zero indicate increasing evidence for the null. Jeffreys [44] 

regarded Bayes factors of greater than 3 or less than 1/3 as providing substantial 

evidence.  A Bayes factor requires specification of what effect sizes the theory 

predicts. We based these predictions on a pilot study with 59 undergraduate students 

predicting whether a square will appear on the left or right. The mean degree of recent 

influences was .10, SD = .15, and of distant influences was .01, standard deviation = 

.03 (both significantly above zero). For the mood study, the difference predicted by 

theory between happy and sad moods was modelled with half-normals with a standard 

deviations equal to the means for the pilot; i.e. .10 for recent influences and .01 for 

distant influences. That is, the theory was taken as predicting differences in the 

required direction on the order of magnitude of the obtained pilot means, with smaller 

differences being more likely than larger ones. See [42] and the associated website, 

http://www.lifesci.sussex.ac.uk/home/Zoltan_Dienes/inference/Bayes.htm, which 

provides explanation and an on-line Bayes factor calculator. 

 

 

Computational modelling 

 Trial-by-trial predictions were modelled with a Rescorla-Wagner learning 

device that predicted left or right based on one permanently on unit coding general 

context. It could have any learning rate between 0 and 1 in steps of 0.1. Specifically, 

let what happened on a trial, S, is coded one if the square was on the right and 0 if on 

the left; and the rate parameter be R and the current strength of prediction for ‘right’ 
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being W, then the error in prediction was  (S – l) . W was updated according to:  W = 

W + R*error. 

A gambler’s fallacy process behaved in the same way except if the stimulus 

had just appeared on the left it increased the strength of prediction for right and vice 

versa; it thus also had a rate parameter between 0 and 1 in steps of 0.1. Specifically, 

let what happened on a trial, S, is coded one if the square was on the right and 0 if on 

the left; and the rate parameter be R and the current strength of prediction for ‘right’ 

being G, then G was updated according to:  G = R*(1-S) + (1-R)*G.  

On each trial the predictions of the two devices were combined with a 

weighted mean with a weight p for the Rescorla-Wagner output (and thus 1-p for the 

gambler’s fallacy) which also varied in steps of 0.1 between 0 and 1. That is, the 

overall strength of prediction for right was T =p*W + (1-p)*G.  Thus the 300 trials of 

a given run of the experiment with a person was checked against the predictions of all 

11 X 11 X 11 parameter combinations and the combination which minimised least 

mean square error was chosen as the best fitting parameter set. That is, error on a 

given trial was the difference between the subject’s response on that trial (coded 1 for 

right and 0 for left) and T. The error was squared and averaged over all 300 trials to 

provide a mean square error for a given model.  Because the structure to be learned is 

random, and the Rescorla-Wagner and gambler fallacy processes are opposites, the 

error space is relatively flat around the minimum. Thus, this method of determining 

learning rate is less sensitive than the main method used in the text (i.e. directly 

testing differences in correlations). In other data we have found that the method 

becomes sensitive when the structure to be learned is non-random.  

 The estimated gambler’s fallacy rate for JC was .46 (SD = .40) and for normal 

controls .43 (SD = .35), not detectably different, t(66) = .28, 95% CI [-.17, .23]. 
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Nonetheless, JC had an estimated learning rate of .80 (SD = .14), detectably higher 

than that of controls (.63, SD = .32), t(60) = 3.01 (df adjusted for unequal variances), 

p = .004, d = 0.69. For the mood study, people in the happy condition had an 

estimated gambler’s fallacy rate of .58 (SD = .32) not detectably different from those 

in the sad condition, .46 (SD = .37), t(54) = 1.24, 95% CI [-.07, .30]. Similarly, people 

in the happy condition had an estimated learning rate of .51 (SD = .34) not detectably 

different from the .63 (SD = .33) of people in the sad condition, t(54) = 1.34, though 

in the right direction and the confidence interval is wide in the predicted direction, [-

.30, .06]. 



 27

 

 

REFERENCES 

 

 

1. Reber AS (1989) Implicit learning and tactic knowledge. Journal. of Experimental 

Psychology: General 118: 219-235.  

 

2. Berry DC, Dienes Z (1993) Implicit learning: Theoretical and empirical issues. 

Hove: Lawrence Erlbaum.   

 

3.  Williams JN (2009) Implicit learning. In  Ritchie WC, Bhatia TK editors. The New 

Handbook of Second Language Acquisition. Emerald Group Publishing Limited. pp. 

319-353. 

 

4. Rünger D, Frensch PA (2010) Defining consciousness in the context of implicit 

sequence learning: Theoretical considerations and empirical implications. 

Psychological Research  2: 121-137. 

 

5. Cleeremans A, Destrebecqz A, Boyer M (1998) Implicit learning: News from the 

front. Trends in Cognitive Sciences 2: 406-416.  

 

6. Cleeremans A (1993) Mechanisms of Implicit Learning: Connectionist Models of 

Sequence Processing. Cambridge, MA: MIT Press. 

 



 28

7. Behrens TEJ., Woolrich MW, Walton ME, Rushworth MFS (2007) Learning the 

value of information in an uncertain world. Nature Neuroscience, 10(9): 1214-1221.  

 

8. Mackintosh NJ (1983) Conditioning and associative learning. Oxford: Oxford 

University Press. 

 

9. Pearce JM (1994)  Similarity and discrimination: A selective review and a 

connectionist model. Psychological Review 101: 587-607. 

 

10. Stewart N, Brown GDA, Chater N (2005) Absolute identification by relative 

judgment. Psychological Review 112: 881-911. 

 

11. Destrebecqz, A.,   Perruchet, P.,   Cleeremans, A.,  Laureys, S.,  Maquet, P., &  

Peigneux. P. (2010). The influence of temporal factors on automatic priming and 

conscious expectancy in a simple reaction time task. Quarterly Journal of 

Experimental Psychology, 63(2):  291 – 309.  

 

 

12. Mitchell CJ, Wardle SJ, Lovibond PF, Weidemann G, Chang BPI (2010) Do 

Reaction Times in the Perruchet Effect Reflect Variations in the 

Strength of an Associative Link? Journal of Experimental Psychology: Learning, 

Memory, and Cognition 36 (2): 567–572 

 

13. Perruchet P (1985) A pitfall for the expectancy theory of human eyelid 

conditioning. Pavlovian Journal of Biological Science, 20(4):163-70. 



 29

 

 

14. Roney CJR,  & Trick LMT  (2003) Grouping and Gambling: A Gestalt Approach 

to Understanding the Gambler’s Fallacy. Canadian Journal of Experimental 

Psychology 57(2): 69-75 

 

 

15. Norman E., Price MC, Duff SC, Mentzoni RA (2007) Gradations of awareness in 

a modified sequence learning task. Consciousness  and Cognition 16: 809-837.  

 

16. Dienes Z (2008) Subjective measures of unconscious knowledge. Progress in 

Brain Research 168: 49 - 64.  

 

17.  Dienes Z (2012) Conscious versus unconscious learning of structure. In: 

Rebuschat P, Williams J editors. Statistical Learning and Language Acquisition. 

Mouton de Gruyter Publishers. 

 

18. Wan LL, Dienes Z, Fu XL (2008) Intentional control based on familiarity in 

artificial grammar learning. Consciousness and Cognition 17: 1209-1218. 

 

19. Corkin S (2002) What's new with the amnesic patient H.M.?  Nat Rev Neurosci 3: 

153-60 

 

20. Squire LR (2001) The Many Faces of Memory. Nature Neuroscience 4: 867-868. 

 



 30

21. Kinder A, Shanks DR (2001) Amnesia and the declarative/nondeclarative 

distinction: a recurrent network model of classification, recognition, and repetition 

priming.  Journal of Cognitive Neuroscience 13: 648–669.  

 

22. McClelland JL, Rumelhart DE, and the PDP research group (1986) Parallel 

distributed processing: Explorations in the microstructure of cognition. Volume 

II. Cambridge, MA: MIT Press. 

 

23. Speekenbrink M., Channon S, Shanks DR (2008). Learning strategies in 

amnesia. Neuroscience and Biobehavioual Review, 32, 292-310. 

 

24. Wilson BA (1999) Case studies in neuropsychological rehabilitation. Oxford 

University Press.  

 

25. McGlinchey-Berroth R, Carrillo MC, Gabrieli JDE, Brawn CM, Disterhoft, JF 

(1997) Impaired Trace Eyeblink Conditioning in Bilateral, Medial-Temporal Lobe 

Amnesia.  Behavioral Neuroscience 111(5): 873-882. 

 

©

 

26. Gabrieli JDE, McGlinchey-Berroth R, Carrillo MC, Gluck MA, Cermak LS,  

Disterhoft JF (1995) Intact delay-eyeblink classical conditioning in amnesia. 

Behavioral Neuroscience 109: 819-827 

 

27. Pothos EM, Wood RL (2009) Separate influences in learning: Evidence from 

artificial grammar learning with traumatic brain injury patients. Brain Research 1275: 

67-72. 



 31

 

28. Scott RB, Dienes Z (2008) The conscious, the unconscious, and 

familiarity. Journal of Experimental Psychology: Learning, Memory, & Cognition 34: 

1264-1288 . 

 

29. Schwarz N., Clore GL (1983) Mood, misattribution, and judgments of well-being: 

Informative and directive functions of affective states. Journal of Personality and 

Social Psychology, 45: 513-523. 

 

30. Schwarz N, Clore GL (2003) Mood as Information: Twenty Years Later. 

Psychological Inquiry 14: 296–303 

 

31. Clore GL, Wyer RS, Dienes B., Gasper K., Gohm, CL, Isbell L (2001) 

Affective Feelings as Feedback: Some Cognitive Consequences. In: Martin LL, Clore 

GL editors. Theories of mood and cognition: A user’s handbook. Mahwah, NJ: 

Erlbaum. pp. 27-62 

 

32. Davey GCL, Eldridge  F, Drost J, MacDonald B (2007) What ends a worry bout? 

An analysis of changes in mood and stop rule use during a catastrophising task. 

Behavioural Research & Therapy 45: 1231-1243.  

 

33. Clore GL, Huntsinger JR (2007) How emotions inform judgment and 

regulate thought. Trends in Cognitive Sciences 11: 393-399 

 



 32

34. Pretz  JE, Sentman Totz KE, Kaufman SB (2010). The effects of mood, cognitive 

style, and cognitive ability on implicit learning. Learning and Individual Differences 

20( 3): 215-219.  

 

35. Cleeremans A, Dienes Z (2008) Computational models of implicit learning. In: R 

Sun R editor. Cambridge Handbook of Computational Psychology. Cambridge 

University Press. pp 396 - 421  

 

36. Pothos EM (2007) Theories of Artificial Grammar Learning. Psychological 

Bulletin 133: 227-244.  

 

37. Shanks DR (2005) Implicit learning. In: Lamberts K, Goldstone R editors. 

 Handbook of Cognition. London: Sage. pp. 202-220 

 

38. Reber AS, Millward RB (1968) Event observation in probability learning. Journal 

of Experimental Psychology 77:  317-327 

 

39. Orbán G, Fiser J, Aslin RN, Lengyel M (2008)  Bayesian learning of visual 

chunks by human observers.  Proceedings  of the National Academy of Sciences 105: 

2745-2750.  

 

40. Junge JA, Scholl BJ, & Chun MM (2007) How is spatial context learning 

integrated over time?: A primacy effect in contextual cueing. Visual Cognition, 15(1): 

1 - 11.   

 



 33

41. Ayton P, Fischer I (2004) The Hot Hand Fallacy and the Gambler’s Fallacy: Two 

faces of Subjective Randomness? Memory & Cognition 32: 1369-1378  

 

42. Cleeremans A (1993) Connectionist models of sequence learning. Cambridge: 

MIT Press. 

 

43. Kuhn G, & Dienes Z (2008) Learning non-local dependencies. Cognition, 106: 

184-206. 

 

44. Dienes Z & Fahey R (1995) The role of specific instances in controlling a 

dynamic system. Journal of Experimental Psychology: Learning, Memory, & 

Cognition, 21: 848-862. 

 

45. Dienes Z & Fahey R (1998) The role of implicit memory in controlling a dynamic 

system. Quarterly Journal of Experimental Psychology, 51A: 593-614. 

 

46.  Jamieson RK, & Mewhort DJK (2009) Applying an exemplar model to the serial 

reaction time task: Anticipating from experience. Quarterly Journal of Experimental 

Psychology, 62: 1757-1783. 

 

47. Griffiths O, Mitchell CJ (2008) Selective Attention in Human Associative 

Learning and Recognition Memory. Journal of Experimental Psychology: General 

137: 626–648   

  

 

48. Wills AJ editor (2005) New directions in human associative learning. Erlbaum.  



 34

 

49. Dienes Z (2008) Understanding Psychology as a Science: An Introduction to 

Scientific and Statistical Inference. Palgrave Macmillan  

 

50. Dienes Z (2011) Bayesian versus Orthodox statistics: Which side are you 

on? Perspectives on Psychological Sciences 6(3): 274-290.  

 

51.  Jeffreys H (1961) The Theory of Probability, third edition. Oxford.  p. 432.  

 



 35

Figure 1 

Results for testing whether learning is associative. Correlation of current prediction 

with what happened  on the nth trial in the past plotted against trials into the past (n). 

Figure 1 shows the data for tone trials  

 

Figure 2 

Results for testing whether learning is associative. Correlation of current prediction 

with what happened  on the nth trial in the past plotted against trials into the past (n). 

Figure 2 shows no tone trials. Figure 2 is based on fewer trials than 1, hence the wider 

confidence intervals. The overall level of correlation is detectably stronger for Figure 

1 rather than 2, indicating context is important 

 

 

Figure 3 

Results for testing normal controls. Correlation of current prediction with what 

happened on the nth trial in the past plotted against trials into the past (n).  

 

Figure 4 

Results for testing JC. Correlation of current prediction with what happened on the 

nth trial in the past plotted against trials into the past (n). JC shows a stronger 

influence of recent trials than normal controls, and normal controls show a stronger 

influence of distant trials than JC. 
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