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Spiking Neural Network Model of Sound
Localisation using the Interaural Intensity Difference

Julie A. Wall, Liam J. McDaid, Liam P. Maguire, and Thomas M. McGinnity

Abstract—In this paper, a spiking neural network (SNN)
architecture to simulate the sound localisation ability of the
mammalian auditory pathways using the interaural intensity
difference (IID) cue is presented. The lateral superior olive
(LSO) was the inspiration for the architecture which required the
integration of an auditory periphery (cochlea) model and a model
of the medial nucleus of the trapezoid body (MNTB). The SNN
uses leaky integrate and fire excitatory and inhibitory spiking
neurons, facilitating synapses and receptive fields. Experimentally
derived Head Related Transfer Function (HRTF) acoustical data
from adult domestic cats were employed to train and validate the
localisation ability of the architecture; training used the super-
vised learning algorithm called the Remote Supervision Method
(ReSuMe) to determine the azimuthal angles. The experimental
results demonstrate that the architecture performs best when it
is localising high frequency sound data in agreement with the
biology, and also shows a high degree of robustness when the
HRTF acoustical data is corrupted by noise.

Index Terms—Spiking neural networks, sound localisation,
lateral superior olive, interaural intensity difference

I. INTRODUCTION

OF all the organs in the body, there are few that can com-
pare to the ear with regards to the degree of functionality

it contains within such a small and compressed space. Sound
localisation is one such function that the ears and auditory
pathways perform together and can be defined as the ability to
determine the point of origin of a sound source. It is a powerful
aspect of mammalian perception, allowing an awareness of the
environment and permitting mammals to locate prey, potential
mates and predators [1]. The neural components of sound
localisation are complicated, as the location of a stimulus can
only be determined by combining input from both ears [2].

Mammalian sound localisation is determined with a com-
bination of binaural cues; interaural time differences (ITDs),
which are processed in the medial superior olive (MSO) for
low frequency sound-signals (< 1.5 kHz in both humans and
cats) and IIDs, which are processed in the LSO for high
frequency sounds (> 2 kHz in humans and 5 kHz in cats)
[3]. Both the LSO and MSO are located within an area of the
auditory system called the superior olivary complex [3]. The
combination of ITD and IID processing is better known as the
“duplex theory of sound localization” and was first devised by
Thompson and Rayleigh [4], [5]. ITD refers to the different
points in time at which a sound from a single location arrives

Manuscript received December 23, 2010. The authors are with the Intelligent
Systems Research Centre, School of Computing and Intelligent Systems,
University of Ulster, Magee Campus. (phone: +44 (0)28 71375166; email:
j.wall@ulster.ac.uk). This research is supported under the Centre of Excellence
in Intelligent Systems (CoEIS) project, funded by the Northern Ireland
Integrated Development Fund and InvestNI.

at each individual ear [6]. From this time difference, the brain
can calculate the angle of the sound source in relation to the
head [7]. In this paper there is a focus on sound localisation by
means of IID, defined as the difference in sound pressure levels
(SPL) of the sound signal between each ear for a particular
frequency, measured in decibels [3], [8].

In humans, the LSO appears as a folded sheet of excited-
inhibited neurons with high characteristic frequencies in agree-
ment with the duplex theory of sound localisation; it is signif-
icantly smaller than the MSO [9]. The size of the LSO in
different mammals is consistent with the range of usable fre-
quencies, e.g. bats and porpoises which can process extremely
high frequencies have large LSOs whereas humans are not as
sensitive to such frequencies and as such have a smaller LSO
[10], [11]. Cats are sensitive to both low and high frequencies
with a frequency range of about 100 Hz to 50 kHz, and have an
LSO which is equally prominent to its MSO [11]. The LSO
favours high frequencies as the head casts a clearer shadow
in the sound-scape producing differing SPLs at each ear for
a particular sound source frequency [3], [12], [13], [14]. It
should be noted that there have been some observations as to
the functionality of the LSO in the presence of low frequency
sound. It is thought that there are several different functions,
e.g. the response of the LSO to low frequency sounds interacts
with the response of the MSO at the inferior colliculus (IC)
producing neurons with more distinct ITDs than if the LSO
and MSO were working independently [15]. The LSO has a
tonotopical organisation, high frequencies are represented in
the middle of the LSO and continually lower frequencies to
the sides [2]. It is excited by innervation from small spherical
bushy cells of the ipsilateral anteroventral cochlear nucleus
(AVCN) and inhibited by innervation from the contralateral
MNTB. The MNTB receives input from globular bushy cells
of the contralateral AVCN [2], [12].

For high frequency sound waves that have a similar or
smaller wavelength than the diameter of the human head, a
shadowing effect occurs on a sound wave approaching the
contralateral ear [16]. This shadowing of the sound wave gives
a difference of intensity between the two sound signals for each
ear, i.e. the head acts as a low-pass filter causing IIDs of up
to 20 dB SPL. Processing in the LSO involves taking as input
the two sound signals in the form of a neural stimulus from
each ear. The ipsilateral stimulus will take an excitatory form
and the contralateral will be inhibitory having passed through
the inhibitory MNTB. The interaction between the two stimuli
works as a neural form of subtraction producing an output
relating to the IID [3].

The localisation of sound is currently present in many
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applications, from virtual reality to hearing aids. However,
the power and speed of mammalian sound localisation can
only enhance these applications. The ability to model the
ways in which mammals localise a sound source can: allow
for the development of better virtual realities; increase the
intelligent behaviour of robotics; improve teleconferencing;
provide surveillance systems with omni-directional sensitivity;
improve the building of cinemas, opera houses and theatres
by being aware of where to put sound-reflective surfaces;
and enhance hearing aids by improving the localisation of
individual sounds. These enhancements which are enabled
by the ability to understand and model mammalian sound
localisation provide the rationale for the research outlined in
this paper.

The aim of this research involves the development of a
model, using spiking neurons, which will process and extract
the binaural cue of IID with a topology inspired by the
mammalian auditory pathways. To that end, this research
proposes to create a SNN model which emulates the way in
which mammals localise sound. The reasoning for the use of
SNNs is to maintain biological realism, i.e. spiking neurons
are the most biologically inspired type of computational neuron
model. Biological neurons process and circulate information by
electrochemical signalling using spikes or action potentials, and
spiking neurons can model this behaviour. Thus, topologies of
spiking neurons can closely model a neural circuit. Our overall
aim is to perform the task of sound localisation in real time in
a biologically-inspired way using real biological data as input.
To achieve this, the architecture presented benefits from both
engineering principles in the form of machine learning and
simple LIF spiking neurons; and biological inspiration based
on the topology of the mammalian auditory system and its
functional components.

The research presented in this paper builds on earlier work
[17], [18] and involves the development of an SNN model
which aims to mimic the architecture of the human auditory
pathways, specifically the LSO, for the purpose of sound
localisation. The SNN is trained with ReSuMe [19] to localise
experimentally derived acoustical HRTF data to every 10°. The
model employs an auditory periphery (cochlea) model which
takes as input HRTF data for each ear and produces spike
trains relating to the sound frequency and SPL of that input.
All neurons in the architecture are implemented using a leaky
integrate and fire (LIF) model. The architecture consists of
two separate SNNs which reflect the bilateral symmetry of
the nervous system, i.e. there is one model for each ear; one
processes data corresponding to angles in the range of -60° to
0°; the other corresponds to angles in the range of 10° to 60°.

In this approach, the LSO neuron takes as input an excita-
tory and inhibitory input stimulus. The output, which can be
considered a neural form of the IID, is routed through a layer
of receptive fields (RF). The function of the RFs and their
corresponding neurons is to respond to unique spike frequency
ranges and to encode the output responses of the LSO into
linear spike trains for ReSuMe to classify to angles of location;
a linear spike train means that the spike train is generated using
a constant interspike interval (ISI).

The paper is organised as follows. Section II provides a
review of the current state of the art in sound localisation
modelling while Section III will describe each layer of the
SNN model of interaural intensity based sound localisation.
Section IV will present the results achieved from both training
and testing; and Section V draws the conclusions.

II. REVIEW

There are three distinct approaches to sound localisation
modelling, namely statistical theory [20][21], signal processing
with cross-correlation [22][23], and artificial neural networks
(ANN). ANNs are mathematical or computational models
which aim to imitate the framework and functionality of a
biological neural network; the ideas for these types of networks
came from physiological studies of the nervous systems of
living beings. ANNs of the first generation consist of the
simplistic McCulloch-Pitts threshold neuron models [24], while
neurons of the second generation use a continuous activation
function [25]. The most biologically inspired ANNs are those
of the third generation, called SNNs, as individual spikes are
used as input which allow for spatio-temporal information to
be included in the computation [25]. Neural network-based
research on auditory modelling takes a more biologically
inspired approach in comparison to the statistical and signal
processing approaches. Therefore, the following review will
focus on the ANN and SNN techniques other researchers have
used to develop sound source localisation models.

Palmieri et al. [26] used an ANN to imitate the sound
localisation behaviour of the owl. Inputs to the system in-
volve both binaural time and intensity cues to determine the
azimuth and elevation of a sound source. The three-layered
neural network was trained with the multiple extended Kalman
algorithm. The error was determined by finding the difference
between the estimated azimuthal position produced as output
from the ANN against the actual position which was measured
with an ideal optical sensor. Using simulated input data the
average error produced was 1.86° and 0.81° for the elevation
and azimuth respectively. Alim and Farag [27] used an ANN
to localise sound using HRTFs generated from five human
subjects. The IID was determined by calculating the SPL for
every sound frequency at each ear, and the ITD was calculated
by correlating the right and left ear HRTF data. The four-
layered neural network was trained using back-propagation,
and while results show an error of 25%, a comparison with
localisation tests carried out on human subjects showed that
both sets of results were very similar.

More recently, SNNs have been used as the basis for sound
localisation systems, they are inspired by neurophysiological
studies on the functionalities of specific auditory neurons.
Voutsas and Adamy developed the BiSoLaNN system with
functionality based on the ITD auditory cue [28]. The network
can be described as a cross-correlation model of spiking
neurons with multiple delay lines and both inhibitory and exci-
tatory connections. Also developed was a model of the cochlea,
inner hair cells, and coincidence neurons. The coincidence
neurons, tuned by an evolutionary algorithm (EA), cater for
the range of sound frequencies and the different ITDs. The
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system was tested on pure tone sound signals between 120
Hz and 1.2 kHz, recorded in an anechoic chamber using the
Darmstadt robotic head for angles in the range of ±105° in
steps of 30°, giving a localisation efficiency of 59%. When
tested for lateralisation, i.e. an estimation of the sound source
position in the horizontal plane, an accuracy of almost 90%
efficiency was achieved. Poulsen & Moore also demonstrated
how SNNs could be combined with an EA to facilitate sound
localisation [29]. They simulated a 2-dimensional environment
wherein multiple agents possess an SNN which controls their
movements based on binaural acoustical inputs. An EA was
employed to evolve the connectivity and weights between
neurons. A spike response model was selected for each neuron
in the network and based on the position of the ears relative
to the sound source the ITD and IID was determined. The EA
updated an agents’ fitness score if they moved closer (increase)
or further away (decrease) from the source. After training, most
agents were able to localise single sound sources, however this
ability decreased when multiple sound sources were tested.

Research by Liu et al. on the development of SNNs for sound
localisation outlined an auditory processing system utilising
both ITD and IID cues [30]. Input sound passes through
a Gammatone filterbank and is then encoded into phase-
locked spikes using a model of the halfwave rectified receptor
potential of inner hair cells. ITD processing uses a series of
delays and a LIF neuron model; the ITD is calculated for all
frequency channels to form a full map of ITD processing. IID
processing does not use a neuron model, rather a logarithmic
ratio computes the intensity difference. Both ITD and IID spike
outputs are routed through a model of the IC and conditional
probability is used to modify the weights on each input. The
model was tested using a robotic head on broadband sounds,
both noise and speech, in the range of [±90°in steps of 30°]
and achieved overall localisation accuracies of 80%. The model
was also tested on multiple sound sources using two speakers
with very encouraging results also.

In contrast to the purely computational or signal processing
techniques, the ANN and SNN approaches are more biolog-
ically inspired and when trained with real experimental data
increase the biological credibility. The work presented in this
paper differs from those above in that it uses experimentally
derived HRTF data generated from adult domestic cats as input;
performs sound localisation with a fine resolution of angles, i.e.
can localise to every 10°; outlines results showing successful
sound localisation across a wide range of high frequency
sounds; and uses a biologically inspired learning algorithm to
classify the outputs of the LSO model into distinct azimuthal
angles. Also, only the IID auditory cue is used in this research
as the aim is to model the functionality of the LSO and thus
localise high frequency sounds in a biologically-inspired way.
The training and testing accuracies presented are on a par with
the other SNN-based research on biologically inspired sound
localisation outlined in this review section.

III. NETWORK TOPOLOGY

Fig. 1 outlines the proposed fully-connected feed-forward
SNN architecture for sound localisation which consists of two

(a) SNN for angles originating from the range -60° to 0° (left
network)

(b) SNN for angles originating from the range 10° to 60° (right
network)

Figure 1: SNN architecture

separate SNN models reflecting the bilateral symmetry of the
nervous system; one deals with data corresponding to the sound
originating to the left of the head, i.e. angles in the range
of -60° to 0° while the other deals with data corresponding
to the sound originating to the right of the head, i.e. angles
in the range of 10° to 60°. The reason for separating the
azimuthal angles across two networks will become clear in
Section B. MNTB and LSO Layer. For the remainder of this
paper, the functionality of the left network will be described as
both networks process data identically. However, results will
be given for both networks in Section IV.

The SNN architecture consists of an input layer which
encodes the HRTF data into spike trains. The contralateral
input passes to an MNTB node and the inhibitory output of
this is then combined with the excitatory ipsilateral input at the
LSO neuron which decodes the IID. The outputs of the LSO
neuron are routed through a layer of RFs, which respond to
unique spike frequency ranges. The final layers of the network
classify the data into azimuthal angles, the purpose is to
produce the correct output angle for each input combination of
HRTF data from both the left and right ears. Parameters of the
synapses and neurons at all layers are independent of the many
different sound frequencies used in individual experiments.
Initial experiments will involve training and testing the SNN
with three different sound frequencies, (5 kHz, 15 kHz and
25kHz) and their immediate neighbouring sound frequencies.
Bushy cells from the AVCN region are not modelled in this
architecture. At these frequencies, biological bushy cells have a
primary-like response; for every spike which arrives at a bushy
cell, one spike is generated [2]. For computational efficiency,
the ipsilateral outputs of the cochlea model are routed directly
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Figure 2: Plan of the auditory periphery model, from [31], [32]

to the LSO neuron and the contralateral outputs of the cochlea
are routed directly to the MNTB neuron. The network is now
described in more detail.

A. Input Layer

The input layer consists of two auditory periphery (cochlea)
models [31], [32], see Figure 2, based on empirical observa-
tions in the cat. As such, this model is appropriate for the
HRTF input data [33] used in this work as this data was taken
from an anesthetised cat. There is one cochlea model for each
ear, which encodes the input data into spike trains. HRTF
data describes the acoustical gain (dB) in response to a sound
before it reaches the cochlea after the diffraction and reflection
properties of the head, pinna and torso have affected it. Data
is available for thirty-six different azimuthal angles (-180° to
170° in bins of 10°) at 148 distinct sound frequencies (600
Hz to 30 kHz in steps of 200 Hz) for both the left and right
ears. Thirteen angles are used for classification, corresponding
to the angles ±60° in steps of 10°. The angles within the range
of ±60° were chosen as they constitute a continuous range of
angles that can be linearly distinguished. However, this issue
with linearity is not overly important as there is a set of HRTF
data between ±60° for each individual ear. The data which
is used for classification is the combination of the data from
each ear, i.e. the output of the LSO layer. The 3-D mesh surface
plot shown in Fig. 3 demonstrates the highly complex and non-
linear nature of this data for a classification-type problem.

Each cochlea takes the frequency and intensity of a sound
source at a particular azimuthal angle as input and produces a
spike train based on that input generated through an inhomo-
geneous Poisson encoding process [34]. For the purposes of
training the SNN to recognise and classify this data, multiple
spike trains were generated for training and testing, see Figure

Figure 3: 3-D mesh surface plot of the right ear HRTF acoustical
input data for the angles ±60° across the range of sound frequencies
from 600 Hz to 30 kHz in steps of 200 Hz.

Figure 4: 100 different neural outputs from the cochlea model for
the -50° angle of the left input 15000 Hz sound frequency

4. As the spike trains generated by the cochlea model are
encoded by a Poisson process, when the same data point
is passed through the cochlea multiple times the spike train
frequencies generated will differ each time. However, they will
all be distributed around a mean frequency, within ±20 Hz of
the mean. In some cases a spike train will be generated with a
frequency which is far removed from that mean frequency and
these outliers will not facilitate exact classification, see Figure
5. However, it was decided to retain these outliers in order
to assess the capability of the SNN model when processing
experimentally derived biological data. This Poisson process
allows for the creation of training and test data consisting of
different patterns of spike trains relating to the same angle
and sound frequency. In these experiments, ten samples were
produced for each HRTF data point, i.e. ten spike trains were
generated for every angle at a particular sound frequency. When
training the SNN, pairs of spike trains are passed through the
network in sequential order, beginning with the first sample
from the left and right ear HRTF data sets, corresponding to
the angle -60°.



5

Figure 5: Histogram plotting the range of output frequencies from
the cochlea model for the -50° angle of the left input 15 kHz sound
frequency. The red dotted line indicates the average output frequency.
Those frequencies at the edge of the histogram, i.e. < 70 Hz are
considered to be outliers and do not facilitate exact classification.

B. MNTB and LSO Layer

The MNTB layer, see Fig. 1, consists of an inhibitory
LIF neuron which represents the neurons of the tonotopically
organised by frequency MNTB. The model consists of one LIF
neuron as it relates to a narrow frequency band of sound. This
work considers the SNN to be akin to the subset of biological
neurons assigned to dealing with a narrow frequency band
of sound; multiple networks are required to process multiple
sound frequencies. For computational efficiency, the same SNN
structure with no change to parameters is reused to train and
test multiple sound frequencies. The MNTB neuron takes the
contralateral stimulus as input and converts it to an inhibitory
stimulus with the same pattern and frequency of spikes. This
output is then routed to the LSO layer. All LIF neurons in the
network are modelled by [35]:

τmem
dv

dt
= −v +RinIsyn(t) (1)

where τmem refers to the membrane time constant of the
neuron, v is the membrane potential and Rin is the membrane
resistance, driven by a synaptic current Isyn(t).

It is now known that synapses of the neocortex are dynamic;
neuron responses are not as simple as multiplication of a post-
synaptic input by a synaptic weight, rather it is a reaction to
short term input [36], [37]. There are two known types of
dynamic synapses, facilitating synapses which can be found
between pyramidal neurons and inhibitory interneurons, and
depressing synapses which can also be seen between pyramidal
neurons [38], [39]. Facilitating synapses gradually use their
synaptic resources and produce a sustained response. Depress-
ing synapses consume all of their resources in the first few
spikes and become unresponsive thereafter.

The LSO layer, see Fig. 1, consists of a LIF neuron with
excitatory and inhibitory facilitating synapses which closely
model the functionality of the biological LSO. The human
LSO consists of approximately 4,500 - 5,000 neurons organised
tonotopically by frequency. Therefore, this work considers the

LIF neuron to be akin to the subset of biological neurons
assigned to dealing with a narrow frequency band of sound.
The LSO neuron takes input from the excitatory facilitating
synapse and the inhibitory facilitating synapse via the con-
tralateral MNTB neuron. The difference in these spike train
frequencies relates to the IID and is reflected in the LSO output
response, which is used to classify the azimuthal angle of the
input stimulus in latter layers of the network. To calculate the
difference, the excitatory and inhibitory post synaptic potentials
(PSP) are summed; essentially the inhibitory PSP generates
the neural equivalent of subtraction. Facilitating synapses are
used in this layer as they produce a smooth PSP enabling
the subtraction process to be more adept at producing the
difference between the excitatory and inhibitory input stimuli.
The resultant PSP generated from this summation is the input
to the LIF neuron and the associated output response is a
measure of the difference between the two input frequencies.
Both inhibitory and excitatory facilitating synapses in this layer
use the following differential equations [38]:

dx

dt
=

z

τrec
− USEx(tsp) (2)

dy

dt
= − y

τin
+ USEx(tsp) (3)

dz

dt
=

y

τin
− z

τrec
(4)

These equations depict the inactive (x), active (y) and recov-
ered (z) states of the synapse where τrec is the recovery time
period, USE is a constant value which denotes the maximum
amount of neurotransmitter which can be released after each
presynaptic spike arrives, tsp is the presynaptic spike arrival
time and τin is the inactivation period usually of a few
milliseconds. The postsynaptic current can then be determined
using:

Isyn(t) = ASEy(t) (5)

where the current is calculated as being proportional to the
fraction of resources in the active state (y); ASE is a constant
value which represents the absolute synaptic strength (weight)
[38]. The equations in (2-5) model a depressing synapse.
Facilitating synapses need an additional equation where USE

can increase with every input spike; the changeable value of
USE is referred to as U1:

dU1

dt
= − U1

τfacil
+ USE(1− U1)δ(t− tsp) (6)

where τfacil is the facilitation time constant and the initial
value of U1 is the value of USE at the time of the first spike
[38]. Parameters chosen for the facilitating synapses can be
found in [38].

Fig. 6 outlines the general and expected behaviour of an
LSO neuron with both ipsilateral and contralateral binaural
inputs. The actual spike output of the left and right LSO
neurons in this work is outlined in Fig. 7 which shows the
LSO output responses for two different sounds, 5 kHz and
15 kHz for 100 samples of data at each azimuthal angle
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Figure 6: Response of both (A) left and (B) right LSOs based
on the interplay of the ipsilateral excitatory and contralateral
inhibitory input [3].

(a) 5 kHz sound

(b) 15 kHz sound

Figure 7: LSO neuron output versus angle for the sound frequencies
5 kHz (a) and 15 kHz (b). It is possible to see where the clusters of
training samples overlap between the angles, resulting in overlapping
frequency selective RFs.

in the range of ±60°. The x-axis portrays the angles and
the y-axis shows the output responses produced by the LSO
neuron in response to the input data relating to each angle.
With 0° as the centre point, the response to angles to the left
and right are approximately mirror images of each other. The
minimum output frequencies are produced at 0°, and as the
sound source pans to the left/right of the head, i.e. to ±60°,
the LSO output spike frequencies increase. The LSO output
responses presented in Fig. 7 relate to the output of both SNN
architectures combined, to show the response for all azimuthal

angles. Negative azimuths correspond to the origin of the sound
signal being to the left of the head, whereas positive azimuths
correspond to the sound originating from the right of the head.
This is in accordance with the physiological data provided
by [40], where it is also seen that the LSO discharge rates
show a sigmoidal behaviour as the azimuthal angles increase
in both the positive and negative ranges for the range of angles
±60°. It is this monotonic increase in spike train frequency that
enables the classification of the input data to angles of location.
This is the main reason for having separate networks assigned
for angles to the left and right of the head respectively. One
combined network would be unable to classify between -60°
and 60°, -50° and 50°, and so on. The output frequencies were
determined by counting the number of spikes in the spike train
for a stimulus duration of 50 ms. The duration of a sound has
no affect on the ability for azimuthal sound localisation, as long
as there is a minimum duration of 3 ms [41], [42]. Therefore,
the use of a 50 ms sound duration in this work is appropriate.

Another point to note from Fig. 7 is that there is a spike train
frequency overlap between neighbouring angles, i.e. individual
samples produce the same response for multiple angles. The
amount of overlap also varies with sound frequency; the LSO
output responses for the 5 kHz sound overlap considerably
more in comparison to the 15 kHz sound. As the rate of overlap
between angles increases, the task of localisation becomes
more difficult, i.e. classification of the 5 kHz sound is more
complicated in comparison to classification of the 15 kHz
sound. The proceeding layers (RF and output layer) of the
network will aim to classify this overlapping data between
angles using frequency selective RFs and a supervised learning
algorithm. Lastly, from Fig. 7 it can be seen that the range
of responses for each angle produced by the LSO neuron is
wider for the 5 kHz sound than for the 15 kHz sound. This
difference indicates that the RFs designed for each sound will
vary greatly even with respect to the same angles, i.e. the RF
designed for 0° at 5 kHz will be very different to the RF
designed for 0° at 15 kHz. This difference in RF widths is
consistent with Tollin and Yin [40] who report that the spatial
RFs of LSO neurons for lower sound frequencies around 5 kHz
are much wider than those for higher frequencies. Overall, Fig.
7 highlights the issues the supervised training algorithm will
have with classifying the LSO outputs and also how the success
of classification differs across varying sound frequencies.

C. Hidden Layer

In order to validate the performance of the LSO neuron
it was necessary to establish whether the resulting output
spike frequencies could be classified by a biologically inspired
SNN. The spike trains resulting from the cochlea model and
subsequently from the LSO neuron presented a number of
issues. The first was that the nature of the Poisson encoding
produced spike trains with extreme bursting activity, which
made any subsequent classification difficult. The second issue
was a practical one: the time step utilised in the simulation of
the cochlea model produced spike trains with 10000 time steps
for a stimulus duration of 50 ms, which placed limits, in terms
of computer memory on the number of spike trains that could
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be processed at any one time by the SNN.
To overcome these difficulties, the hidden layer consists of

a layer of RFs, see Fig. 1, which encode the LSO output spike
train frequencies into linear spike trains for the supervisory
learning algorithm to classify. RFs are thought to be located
throughout the auditory pathways; each region consists of RFs
representing an area of space which responds selectively to
sound frequency [40]. It is also thought that auditory RFs are
sensitive to ITD, IID and other monaural spectral cues [40],
[43], [44]. Bohte et al. [45], [46] used RFs in their time-to-
first spike algorithm where inspiration was taken from the local
RFs of biological neurons. The RF is used to encode the delay
of the first spike time at the input layer. Similarly, the RFs
in this work take the form of a Gaussian function; a Gaussian
function was chosen as it provided a smooth transition between
the activation of neighbouring neurons:

yi = e−((xi−fo)/dm)2 (7)

where yi is the output spike train frequency of the RF, xi is the
input frequency which has been routed from the LSO layer, fo
is the operating frequency of the RF and dm denotes the width
of the RF. A RF was created for every angle being processed
by the network using the half maximum distance method from
fuzzy logic systems and radial basis function networks [47].
Each RF was assigned an operating frequency and width based
on the LSO output frequencies of the specific angle assigned
to it. To determine the operating frequency and width of each
RF the following steps were taken. For each angle, 100 spike
trains were generated from the left and right cochleas and these
trains were routed through the LSO layer. The frequency of
each train was found by counting the number of spikes over the
time-length of the spike train. Unlike linear spike trains, the ISI
cannot be used to determine the frequency of a Poisson spike
train. The average spike train frequency produced by the LSO
neuron becomes the operating frequency of the RF. The width
of the RF dm reflects the spread in the spike train frequencies
about fo.
Originally, each RF was assigned the same arbitrarily cho-
sen width. In some cases this value was too narrow and
some samples of data did not activate their own designed
RFs. Similarly, in other cases this value was too large and
neighbouring RFs overlapped too much causing difficulty with
classification. Fine-tuning of the RFs led to the use of the above
process to determine the widths and operating frequency for
each individual RF. In any case, when training and testing the
network, samples will predominantly pass through a particular
RF with some overlap with neighbouring RFs; hindering the
selectivity of the neurons to individual angles.

The function of the RFs and their respective neurons is to
scale the LSO output response to fall into the arbitrarily chosen
range of [0, 40 Hz]. If the LSO output spike train frequency
equals the operating frequency, the maximum frequency is
encoded to be routed to the output layer for classification.
Similarly, if an input frequency does not lie within the scope
of the RF, the minimum frequency of 0 Hz is encoded. This
is illustrated by Fig. 8. An input frequency, xi, routed from
the LSO activates both RFs, A and B. As the input equals

Figure 8: Behaviour of RFs in response to incoming stimulus

Figure 9: Outputs of left RF layer neurons for the 15 kHz sound
frequency. The input to these neurons is routed from the LSO which
is filtered by RFs.

the operating frequency, fo, of RF A, that RF produces a
maximum output frequency, yA. However, the same input, xi,
only activates the edge of RF B, thus producing a lower output
frequency, yB . It is this behaviour which enables the separabil-
ity of the input data to differing angles of location. It should be
noted that this re-scaling method of LSO responses is identical
for all LSO spike train outputs; hence the relationship between
spike train frequencies of the LSO output was preserved.

Fig. 9 shows the RFs created for the 15 kHz sound and
subsequent LSO output for the angles -60° to 0°, see Fig.
7(b), and the corresponding output response of each encoding
neuron. Each RF and encoding neuron is assigned an angle of
location, i.e. A is -60°, B is -50°, etc. As the input data for each
angle is processed by the network, it is clear to see how each
RF and corresponding encoding neuron respond. For example,
encoding neuron A responds maximally when data for the -60°
angle is routed through the network; produces a more muted
response when data for the -50° angle is processed, as the
two RFs, A and B, for -60° and -50° overlap; and there is no
response when data from the other five angles are processed.
When there is little or no overlap between neighbouring RFs,
for example C, D and E, the encoding neurons produce a crisp
output response.

The technique outlined above for tuning RFs reduces com-
putational overhead because it minimises the number of RFs
required. Ultimately, including a layer of RFs in the network
increases neuron selectivity to individual angles and thus de-
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creases the complexity of assigning the angle data to individual
neurons in the output layer.

D. Output Layer

The output layer consists of seven LIF neurons relating to
the angles -60° to 0° in steps of 10°, see Fig. 1(a). The learning
algorithm used in this research is ReSuMe [19]. The aim of
training is to map the input data to the correct angle where the
highest firing frequency determines the classification.

ReSuMe [19] learning is similar to Supervised Hebbian
Learning (SHL) [48] in that a supervisory (target) signal (spike
train) is used to supervise the network during training. However
ReSuMe, unlike SHL learning, does not feed these target
signals directly to the current learning output neuron. Instead
it controls the update of the synaptic efficacies on the active
connections leading to the learning output neuron. Hence, the
name remote supervision. The goal of ReSuMe is to train an
SNN to produce a desired output in response to a given input.
The learning rule modifies the synaptic weights between the RF
layer encoding neurons and the output neurons using a remote
supervisory signal. This modification is done using [19]:

d

dt
wki(t) =

Sd(t)

[
ad +

∫ ∞
0

W d(sd)Sin(t− sd)dsd
]
+

Sout(t)

[
aout +

∫ ∞
0

W out(sout)Sin(t− sout)dsout
]

(8)

where d
dtwki(t) is the rate of change of the weights over

time, Sd(t) is the remote supervisory signal, Sin(t) refers
to the input spike trains, Sout(t) is the actual output of the
output neurons, ad and aout are the amplitudes of the non-
Hebbian processes of weight modifications and W d(sd) and
W out(sout) are the learning windows themselves. ReSuMe
can be considered a biologically plausible learning rule as it
is based on Hebbian learning and evidence has been found
for remote supervision in biological synapses [49]. The main
advantage of using ReSuMe over the similar learning algorithm
of SHL, is that ReSuMe can increase synaptic weights that have
been reduced to zero if those synaptic weights are required at
a later epoch [50].

Each output neuron was trained to be associated with a
particular angle. During each epoch of training, the network
was fed the training data for each angle in sequential order from
-60° to 0°. For instance, input data for both ears corresponding
to an angle of -60° was routed through the network to all the
output neurons. This data passes through the RF layer onto
one or more of the corresponding encoding neurons, see Figure
1(a). The encoding neurons pass the stimulus to each neuron
in the output layer. Several spike trains will pass through more
than one RF but the appropriate RF should produce the highest
output frequency. Consistent with ReSuMe, the connections
from the neuron producing the highest frequency will undergo
the maximum weight updates. In the present case, multiple

Figure 10: Stable weight distribution over fifteen epochs of training
on the connections between the RF and output layer neurons, 15 kHz
sound and angles -60° to 0°.

samples of differing spike train frequencies exist for each angle
and ReSuMe will produce a set of final weights for correct
classification.

The same supervisory target signal was used for training
every output neuron. The target signal consisted of an in-
dependently generated high frequency linearly encoded spike
train; a high frequency spike train was used to maximise the
number of weight updates. Using the same target signal ensures
that training is equal for all output neurons, and allows the
network structure to be reproducible for training other sounds
without changing parameters to suit any angle or sound. Fig.
10 shows the weight values produced by training over fifteen
epochs; these weights are located on the connections between
the RF layer neurons and output neurons. The weights stabilise
over the course of training with many of the weights on
the connections falling below zero while others stabilise at a
positive value, this distribution of weights is what enables the
network to associate new input data to the correct angle of
location. In the case of this system, the contribution of any
inhibitory weights in the output layer is negligible. During
training, the weights fall below zero to such a small amount that
the connections are effectively switched off. Some researchers
place a cap on weights during training to disallow them falling
below zero and increasing above a certain value, however the
authors of this work prefer not to place artificial limits on
weights.

IV. RESULTS

The network was tested in three different ways. The first
test set involved generating ten new samples from the cochlea
models using the same sound frequency used for training.
As outlined previously, spike trains generated by the cochlea
models for the same sound frequency will differ. This allows
testing of the network with the same sound frequency but
with unseen data. The other tests involved using data from
neighbouring sound frequencies, e.g. in Experiment1 (see Table
I) the training data corresponds to the 5 kHz sound and the
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Figure 11: Overall training error for fifteen epochs of training across
the angles -60° to 0° for the 15 kHz sound showing the accuracy for
the desired angle alone and the accuracy for the desired angle ±10°.

testing data corresponds to newly generated and unseen 5 kHz
data, and the neighbouring sound frequencies 4.8 kHz and 5.2
kHz respectively. These last two test vectors ensure that the
network is tested with completely unseen sound frequencies.

The classification accuracy of the network is determined by
the output neuron that is firing with the highest frequency. In
this way, if the unseen data presented to the network during
the testing phase produced the highest firing frequency at its
intended output neuron, the SNN model is deemed to have
made a correct classification. Results are now presented in two
different ways. The first type of classification, termed here as
absolute classification, is where the actual angle produced by
the network is equal to the desired angle. The second type of
classification takes into account the possibility of the network
producing an angle at its output which is equal to the desired
angle ±10°, i.e. if the desired angle is 30°, an output of 20°
or 40° is also deemed acceptable. Fig. 11 plots the training
accuracy for the 15 kHz sound source over fifteen epochs of
training. After nine epochs, the absolute classification accuracy
reaches 92.86%, however after only two epochs the desired
angle classification ±10° reaches 100%.

Initial experiments involved training with three different
sound frequencies of 5 kHz, 15 kHz and 25 kHz. The weighted
average generalisation testing results for angles in the range
(±60° in steps of 10°) can be seen in Table I. The weighted
average represents the classification accuracy of the SNN
across all angles, i.e. the accuracies from both left and right
networks are averaged together using the following weighted
average formula:

(7 ∗ al) + (6 ∗ ar)
13

(9)

where al is the accuracy of the left network which has seven
angles, -60° to 0°, and ar is the accuracy of the right network
which has six angles, 10° to 60°.

The network performed at its best when trained and tested
with the 15 kHz sound, achieving absolute classification ac-
curacies of approximately 80% and with ±10° resolution,
the classification accuracy increases to approximately 99%.
The results for the 5 kHz sound were lower, with absolute

Table I: Initial testing results for three sound frequencies, 5 kHz, 15
kHz and 25 kHz

Sound
Generalisation
Accuracy (%)

Accuracy±10°
(%)

4.8 kHz 49.10 86.92
5 kHz 52.49 86.15

5.2 kHz 40.15 84.15

14.8 kHz 76.54 98.46
15 kHz 83.07 100

15.2 kHz 78.85 96.15

24.8 kHz 43.46 74.62
25 kHz 39.99 71.54

25.2 kHz 41.93 69.23

classification accuracies of 48% and for the ±10° resolution
approximately 84%. The 25 kHz sound performed the worst
with absolute classification accuracies of 43% and for the
±10° resolution approximately 72%. This result is consistent
with Tollin and Yin [40] who reported that IIDs vary non-
monotonically with azimuth at this very high sound frequency
and thus are difficult to classify. Even though the absolute
classification accuracies are low, the classification accuracies
in the ±10° column from Table I are considerably higher and
therefore, it is reasonable to say that there is a degree of
classification occurring, i.e. the angle of the incoming sound
is being localised to the neighbouring angle in most cases, not
a random and completely incorrect non-neighbouring angle.

Sound localisation differs from many classification tasks in
that there is a relationship between the classes (angles). The
difference between the experimental input data corresponding
to neighbouring angles is small and in some cases identical
for particular sound frequencies. This makes the task of dis-
tinguishing between neighbouring angles difficult for the SNN
model. Conversely, in most cases, non-neighbouring angles can
be more easily distinguished by an SNN. This is arguably why
many researchers present results using a coarser selection of
angles, usually in steps of 30° [28], [30]. The results presented
here show that when a margin of error of 10° is allowed, the
classification results are significantly improved, as can be seen
from Table I.

Each time the network was trained with a particular sound
frequency, it was tested on that and two additional neighbour-
ing sound frequencies over the range of angles ±60°, see
Table I. It is interesting that not only is there a relationship
between neighbouring angles in the input data, but there is also
a relationship between neighbouring sounds, as the SNN can
be used to process to a high classification accuracy multiple
sounds. Using neighbouring sounds also gave the advantage of
testing the network on completely unseen data.

To fully determine the system’s localisation capabilities
across all sound frequencies from 600Hz ≤ f ≤ 30 kHz,
it was decided to develop and train an SNN for one-third of
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Figure 12: Classification results when tested by the entire range of sound frequencies, 600Hz ≤ f ≤ 30 kHz

the total number of sound frequencies available and use the re-
maining two-thirds for testing. This equates to thirty-one sound
frequencies for training and sixty-two neighbouring sound
frequencies for testing. This was an exhaustive but informative
undertaking regarding the relationship of neighbouring sound
frequencies and their classification accuracy. It was envisaged
that the models would produce the best classification accuracies
for high frequency sounds. The results of these experiments can
be seen in Fig. 12, where the weighted average classification
accuracy for both the left and right networks are reported along
with the weighted average classification accuracy ±10°.

As expected, the models achieve high classification accura-
cies for high frequency sounds, ≥ 4 kHz, but do not localize
well for sounds ≤ 4 kHz. Low frequency sounds, ≤ 1.8 kHz,
are localized using the binaural cue of ITD and the MSO.
Therefore, using the IID binaural cue for this band of sounds,
it was expected that the localisation accuracies would be poor.
For the intermediate range between high and low frequencies,
1.8 kHz ≥ f ≤ 4.2 kHz, neither the ITD nor IID binaural
cues are proficient. This can be seen in biology, where the
crossover between low and high frequency sounds cannot be
localised to any great accuracy [51]. However, the overall
classification results are quite high. There are two areas where
the localisation ability of the IID model is lower than normal,
around 10 kHz and above 25 kHz. These problems seemed
to come from the experimental HRTF input data. The gain
values across all of the input data are at their maximum around
these sound frequencies. Initial experiments for these sound
frequencies produced very low classification results. The HRTF
data was scaled to counteract this problem and the results did
improve but those problematic sound frequencies continued to
achieve the lowest results across the entire range of sound
frequencies. Furthermore, as previously stated, sounds ≥ 25
kHz are difficult to classify due to the variability of IIDs,
providing further insight for the lower classification accuracies
within this range.

A significant consideration when modelling mammalian
sound localisation is the ability to localise a sound source in
the midst of noise. Jacobsen [52] determined that when a pure
tone signal is presented along with white noise, the ability to
localise that pure tone is only compromised when the signal
to noise ratio (SNR) falls below 20. The SNR defines how
much of the original signal has been corrupted by noise. In

the present case, the signal relates to the HRTF input data and
the noise is white Gaussian noise. SNR can be defined as:

SNR =
Psignal

Pnoise
(10)

where P is the average power. Good and Gilkey [53] also
performed thorough investigations on the affect of noise and
found that a broadband click can be localised until the SNR
falls into the negative range.

It was deemed necessary to determine whether the SNN
models of sound localisation presented in this research would
have similar performance abilities to those experiments dis-
cussed above. To do this, white Gaussian noise was added to
the HRTF data for the 5 kHz, 15 kHz and 25 kHz sounds
and the models were retested to evaluate the classification
accuracies. A range of SNRs were chosen for this task: 0.1,
1, 5, 10, 20 and 30. The MATLAB awgn function was used
to incorporate the white Gaussian noise into the HRTF input
data. Fig. 13 plots the classification accuracies when the SNN
models are tested with noisy data. Each subplot shows the
classification accuracy of the original non-noisy data and for
the five different SNRs added to the original HRTF data.
For each sound, the classification accuracies decrease almost
monotonically with SNR. However, in some cases, higher
SNR ratios report lower accuracies than for the same sound
with a lower SNR. For example, the input data for the 15
kHz sound with an SNR of 0.1 produces higher classification
accuracies than for the same input with an SNR of 1. This
can be explained by the Poisson encoding scheme at the input
layer and the random nature of adding noise to data itself.
However, the three sounds tested showed a high degree of
robustness to all the levels of noise, in agreement with the
experiments described by [52], [53], i.e. the SNN maintained
the ability to localise the input data to a high standard when
it was contaminated with noise.

To determine the classification accuracy of the LSO model
across the entire frequency range of 600Hz ≤ f ≤ 30 kHz
thirty-one different models were trained and tested. Rather than
testing the networks on neighbouring sounds, it was considered
interesting to determine how wide a range of sounds can be
tested on a trained network while still providing acceptable
classification accuracies. To do this, the LSO networks were
tested using non-neighbouring sound frequencies.
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Figure 13: Classification accuracies when noise is added with five
levels of SNR, from 0.1 to 30, where Orig. refers to the original
classification accuracies of each sound with no added noise.

Experimental results show that the LSO networks only
generalise well when the input data of the testing sound
frequency is similar to the input data from the sound frequency
used to train the SNN model. As the frequency of the sounds
increase, the RF configurations have to be adapted to cater
for the differing ranges of spike frequencies. This can be seen
from Fig. 7, where the range of output frequencies from the
LSO neurons for each angle differs between the two sound
frequencies, 5 kHz and 15 kHz. The LSO neuron produces out-
put frequencies across the angles ±60° which range between
250 Hz and 600 Hz. In contrast, when presented with the 15
kHz sound, a wider range of frequencies are produced by the
LSO neuron, ranging from 50 Hz to 600 Hz. This indicates
that differing sound frequencies far removed from each other
require different RF parameters for the ability to localise the
HRTF input data. Nevertheless, when the RF configurations
are appropriate for the input data, testing accuracies for non-
neighbouring sounds are quite good.

Fig. 14 plots the testing accuracy of the LSO model for
the 5 kHz sound frequency. It also shows the classification
accuracies achieved when tested with lower and higher non-
neighbouring sound frequencies. The lower frequencies of 3.8
kHz, 4 kHz and 4.2 kHz achieve a 0% classification accuracy,
i.e. the RF configurations are so different between the 5 kHz
sound and these lower sound frequencies that no data can be
routed through the appropriate RF to the output layer. The
higher frequencies of 5.8 kHz, 6 kHz and 6.2 kHz produce
decreasing classification accuracies as the sound frequency
increases. Yet, the classification accuracies ±10° do not change
with the increasing sound frequencies. In these cases, the RF
parameters are adequate for these higher non-neighbouring

Figure 14: Generalisation across non-neighbouring sounds

Table II: Comparison of SNN and ANN sound localisation gener-
alisation results for three sound frequencies, 5 kHz, 15 kHz and 25
kHz

SNN ANN

Sound
Generalisation
Accuracy (%)

Accuracy±10°
(%)

Generalisation
Accuracy (%)

4.8 kHz 66.02 96.15 78.08
5 kHz 63.07 98.46 94.95

5.2 kHz 70.76 99.23 89.12

14.8 kHz 72.17 95.38 92.34
15 kHz 75.76 96.15 86.93

15.2 kHz 73.07 96.92 87.02

24.8 kHz 69.23 100 94.55
25 kHz 71.02 100 91.51

25.2 kHz 60.38 95.38 77.39

sound frequencies.
Finally, the overall aim of this work was to perform the task

of sound localisation in real time in a biologically-inspired
way using real biological data as input. To achieve this, the
architecture presented benefits from both engineering princi-
ples in the form of machine learning and simple LIF spiking
neurons; and biological inspiration based on the topology of
the mammalian auditory system and its functional components.
As the model is used as an engineering solution, to perform
sound localisation, it was deemed necessary to compare it to
a baseline classifier. In this case, we chose to compare the
results of the SNN against a second generation artificial neural
network (ANN), with the constraint that both the ANN design
and the results should be comparable.

Firstly, a Poisson distribution function, akin to the Poisson
encoding method used for generating the spike trains, was used
to create the training and test data sets. In these experiments,
400 samples per angle at a given frequency were required to
achieve the high classification accuracies outlined in Table II,
in comparison to 10 samples produced for the SNN. Many
different network configurations, activation functions, learning
algorithms, initial parameters, etc., were tried for both training
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and testing. However, the ANN which produced the optimum
results as seen in Table II had three layers; thirteen input
neurons, two hidden layers neurons activated with a hyper-
bolic tangent sigmoid transfer function and one output neuron
activated with a linear transfer function; and was trained with
the Levenberg-Marquardt backpropagation algorithm.

As expected, the ANN classification results are more ac-
curate than the SNN, as the ANN is widely considered to
be a universal approximator. However, the ANN is a black
box which provides no information on biological behaviour.
Meanwhile, even though SNNs are still in their infancy, with
the same input data set, the SNNs do achieve impressive
results using more complex and biologically inspired neurons,
architecture, and learning algorithm.

V. CONCLUSIONS

This paper presents a biologically inspired SNN-based archi-
tecture of the mammalian auditory pathways. Experimentally
derived HRTF data for each ear is used as input to the model
and the IID binaural cue is extracted and used to localise
that input to azimuthal angles. In comparison to the related
work, this research provides novelty and advances significantly
in this domain by using: topologies which are faithful to
the architecture of the mammalian auditory pathways; a wide
range of sound frequencies to test the localisation ability
of the architecture; the utilisation of real experimental data
rather than simulated data; and a fine resolution of angles.
Additionally, to evaluate the capabilities of the SNN model, a
biologically plausible supervised learning algorithm was used
to train the architecture to localise the input data to a high
degree of accuracy. Analysis of the processing abilities of the
SNN with regards to robustness of localisation in the midst
of noise and its generalisation capabilities are outlined. The
experimental results derived from testing the full range of
sound frequencies showed that this model behaves in a similar
manner to the mammalian auditory pathways which process the
binaural cue of IID, with regards to its ability to successfully
localise high frequency sounds and issues with localising low
frequency sounds. For these reasons, the authors believe the
work presented in this paper is a significant step forward in
biological sound localisation modelling.

Further work is planned which will involve implementation
of the architecture on a mobile robot to perform sound locali-
sation in an echoic and noisy environment. Extra functionality
will be developed to enable the mobile robot to localise
complex sounds and to discriminate between multiple sound
sources. Additionally, this research will be extended to the
modelling of regions higher up in the auditory pathways, i.e.
the lateral lemniscus and IC.
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