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Abstract Empirical research on Free/Libre/Open Source Software (FLOSS) has shown
that developers tend to cluster around two main roles: “core” contributors differ from
“peripheral” developers in terms of a larger number of responsibilities and a higher
productivity pattern. A further, cross-cutting characterization of developers could be
achievd by associating developers with “time slots”, and different patterns of activ-
ity and effort could be associated to such slots. Such analysis, if replicated, could be
used not only to compare different FLOSS communities, and toevaluate their stabil-
ity and maturity, but also to determine within projects, howthe effort is distributed in
a given period, and to estimate future needs with respect to key points in the software
life-cycle (e.g., major releases).

This study analyses the activity patterns within the Linux kernel project, at first
focusing on the overall distribution of effort and activitywithin weeks and days;
then, dividing each day into three 8-hour time slots, and focusing on effort and ac-
tivity around major releases. Such analyses have the objective of evaluating effort,
productivity and types of activity globally and around major releases. They enable
a comparison of these releases and patterns of effort and activities with traditional
software products and processes, and in turn, the identification of company-driven
projects (i.e., working mainly during office hours) among FLOSS endeavors.

The results of this research show that, overall, the effort within the Linux kernel
community is constant (albeit at different levels) throughout the week, signalling the
need of updated estimation models, different from those used in traditional 9am-5pm,
Monday to Friday commercial companies. It also becomes evident that the activity
beforea release is vastly different fromafter a release, and that the changes show an
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increase in code complexity in specific time slots (notably in the late night hours),
which will later require additional maintenance efforts.

1 Introduction

Software development productivity measurement and cost estimation has been a re-
search topic for more than 3 decades [1], [2], [3]. So far, thevast majority of empiri-
cal studies have involved data from proprietary software projects [4]. Even though an
increasing number of governments, non-governmental organizations and companies
seem interested in using, evaluating and contributing to FLOSS, effort estimation
models or other measurement-based models are not generallyused within FLOSS
communities [4]. Indeed, such exploration and quantification of productivity, specif-
ically the determination of how a FLOSS community manages and allocates effort
around a major release, may help in comparing FLOSS projectsboth with propri-
etary software projects, and also be useful when making comparisons between large
FLOSS communities. Furthermore, such productivity modeling can also help to iden-
tify a baseline to measure the possible impact of changes in,for example, processes,
methods and tools used by FLOSS communities.

The analysis of FLOSS productivity so far has shown that there is an increase in
productivity as long as FLOSS developers progress in their statuses within a project.
A good approximation of such observed practice has been visualised along the clus-
ters of the so called “onion model” [5], [6]. The external layer of this representation
consists ofusers, strictly speaking not representing developers, but nonetheless form-
ing a valuable community for both the diffusion of FLOSS products and the testing
of their functionalities. Thecontributors, less numerous than the users, represent the
next layer, producing source code and fixes, as well as providing feedback and discus-
sion. Finally, thecore developers, representing the centre of the onion, provide most
of the work needed both in the creation, and in the maintenance, of new or existing
content, and their productivity is an order of magnitude higher than the contributors.
It has been also argued that the core team must be small [7] in number, in order to
keep a tight control over the core system. It has also been found that the coordina-
tion issues of traditional software systems (e.g., Brooks’law [8]) still apply within
FLOSS core teams, while such issues are much less relevant inother layers of the
onion model [9].

The objective of this research is to develop a framework for FLOSS effort es-
timation based on clustering developers around differenttime slots, and by consid-
ering “days of the week” or “hours in a day” as cross-cutting attributes for effort
and productivity models. The rationale for doing this derives from both a lack of
such differentiation in the current literature, and the results obtained in a previous
work [10] analysing the effort produced by a UK-based software development com-
pany. A Source Code Management system (SCM) is kept by the company1, so daily
and weekly analyses are possible: among other results, it was found that the pattern

1 All the developers are co-located, so no further adjustmentsare needed in terms of the time of the day
of each commit
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of activity could be described by a traditional 9am-to-5pm,Monday to Friday com-
mitment. Most days experience comparable effort levels, apart from Thursdays, when
most of the “user stories” get completed, and Fridays, when mostly testing is done.

Performing a similar analysis for FLOSS projects could leadto better understand-
ing of how the FLOSS development works, and whether its characteristic activity and
effort distributions are so different as to render “traditional” effort estimation software
cost models unusable. On the one hand, the analysis could highlight productivity pat-
terns around specific dates (e.g., when a major release is made public). On the other
hand, its results could be used to determine whether specifictime slots are more pro-
ductive, or are more prone to modifications that increase thecode complexity, than
others.

In both cases, the wealth of data coming from FLOSS projects could help produce
and replicate ad-hoc estimation models, eventually differentiatingcompany-driven
projects fromcommunity-drivenendeavors. FLOSS projects backed by large compa-
nies (i.e., company-driven) should reflect developers witha more traditional, 9am-
5pm activity patterns, commit policies and so forth. Thecommunity-drivenFLOSS
projects should instead follow more continuous working patterns, since developers
are working in their spare time, and outside normal “office hours”. If identified and
confirmed, such emerging patterns would present new, specific challenges:

– how to differentiate the effort estimation models based on the periods of activity,
by means of weights and triggers of model-switching; and

– the effective utilization of monitoring tools in specific time intervals, or parts of
the day, in order to properly monitor the diverse productivity at certain times of
the day, or in specific days of the week.

So far, this research has achieved four main contributions:

1. It demonstrates that the patterns of work within the selected case study (the Linux
kernel) are different from those found in a traditional software development team.

2. It presents the analysis of the development of the Linux kernel along specific pe-
riods of the day (e.g.,time slots), and in specific periods (around major releases),
with the aim of investigating the changes in productivity and code complexity
during such periods.

3. It performes the analysis using the “Git” SCM repository,which offers additional
information on the development processes, not offered by other repositories, and
not used in previous studies on FLOSS systems. In comparisonwith other config-
uration management systems (such as CVS or SVN), a Git repository retains the
information about both the authors and their local submission dates, rather than
aggregating the latter into the central server’s time [11].With this information,
it is possible to group the developers’ effort based on the effective time of the
day when such actions were performed. This provides valuable information when
a distributed, trans-national development approach is considered (as the FLOSS
model requires).

4. Finally, this research provides the raw data, the intermediate steps and all the
scripts to allow the replicability of this study on other FLOSS projects to further
enhance the knowledge on FLOSS systems.
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2 Empirical Approach

This section details the various steps of the empirical process to extract the met-
rics and the results from raw data, given a number of researchquestions, for the
purpose of allowing other researchers to replicate the steps for other FLOSS (but
not only) systems. One of the contributions of this paper is in terms of the method
and a baseline that can be used for comparison with other systems. The section is
articulated as follows: subsection 2.1 introduces the basic terminology and the def-
initions used throughout this study; subsection 2.2 illustrates the research goal and
questions, together with the metrics used to accomplish such goal, using the GQM
framework [12]; subsection 2.3 details the process used to obtain the selected met-
rics, using the history logs contained within the Git repository of the Linux kernel;
subsection 2.4 finally illustrates the process and tools used to extract the complexity
metric of the single source files, and of all the revisions that each file underwent.

2.1 Definitions

The definitions used in the following study are as follows:

– Commit (or revision): change on the source code submitted to the source code
management system. This updates the current version of the tree directory with a
new set of changes. Those changes are generally summarized in apatchwhich is
a set of lines with specific information about the affected files, but also about the
affected lines. In this paper, the link between amount of commits and developers’
effort is established from previous literature [13].

– Committer: any person with rights to commit a change into the source code.
– Author: At times, a commit is committed by a given committer, but shemay not

be the real (or only) author. Some SCMs offers this information, and the Git SCM
provides a specific field for this.

– Major release: this research will focus on specific points when higher activity
is detected, namely the releases of the Linux were made publicly available. The
releases studied in this research are the ones contained (ormigrated) within the
Git repository during the 2.6 branch of development, starting from release 2.6.12
and including release 2.6.34. In total, an overall of 23 releases were analysed,
spanning some 5 years of development under the Git repository.

– Timezones: in this research any day is divided into three 8-hour sections, with
“office hours” (OH) defined as the period from 9:00 to 17:00 between Mondays
and Fridays; similarly “after office” (AO) is the period from17:00 to 1:00, and
“late night” (LN) runs from 1:00 to 9:00. As mentioned above,and differently
from other systems (e.g., CVS, Subversion), the Git configuration management
system records and permanently stores the times local to theindividual commit-
ter, which makes the definition of timezones feasible, and the study of working
patterns along different hours of the day possible.

– Complexity: since the Linux kernel is developed mainly using the C program-
ming language, the definition of complexity used in this paper is taken from the
McCabe cyclomatic index [14], [15].
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2.2 Goal-Question-Metric Approach and Research Questions

This section presents the general objective of this work, and it does that in the for-
mal way proposed by theGoal-Question-Metric(GQM) framework [12]. The GQM
approach evaluates whether a goal has been reached, by associating that goal with
questions that explain it from an operational point of view,and providing the basis
for applying metrics to answer these questions. This study follows this approach by
developing, from the wider goal of this research, the necessary questions to address
the goal and then determining the metrics necessary for answering the questions.

Goal: the long term goal of this research is to define, validate and update produc-
tivity models for FLOSS projects, and to differentiate themfrom existing proprietary
software models.

Question: In this research, and considering the Linux Kernel as a case study, the
following research questions have been evaluated:

Q1 – Is the effort towards the Linux kernel development evenly distributed?
Rationale: the aim of this question is to compare the distribution of changes in
the source code with those provided by the company studied in[10]. This will
also provide a first impression of the general distribution of the changes and a
first determination of the main differences between fully company-driven project
and a partially community-driven and company-driven project such as the Linux
Kernel.

Q2 – Do Linux developers work specifically during some days of the week, or some
hours of the day?
Rationale: the aim of this question is to check how the development activity car-
ried out by the developers of the project is distribited between the different days
of the week.

Q3 – Is there a statistically significant difference in the activity during various parts
of the day?
Rationale: the division of a day in time slots could help to improve the knowledge
about the different activities carried out by developers. This is also helpful to
develop an estimation model based on which time slots the commercial companies
usually work in (termed in this paper, Office Hours - OH) and extend such model
to FLOSS projects by adding information from the other time slots (AO and LN).

Q4 – Is there a statistically significant difference in the activity before and after a
major release in the Linux kernel?
Rationale: The aim of this question is to show how developerswithin the Linux
Kernel work around deadlines and release dates. It is known that some FLOSS
communities deal with deadlines similarly to software companies, imposing hard
dates and “feature-freeze” periods before a deadline [16],[17]. Thus, this ques-
tion aims to quantify the pre-release effort and post-release efforts, and it pro-
vides an oversight of how the Linux Kernel community deals with these dates of
high-load commitment.

Q5 – Are some parts of the day more prone than others to changes that increase the
complexity?
Rationale: the aim of this question is to check whether and how changes in-
crease or decrease the complexity of a file, depending on the time slots when
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such changes were submitted. From an intuitive point of view, a developer who
is performing time-consuming and highly intellectual worksuch as programming
will not be likely work at the same level of concentration during all of the different
time slots being studied.

Q6 – What is the relevance of the factor “time slot” for an estimation model?
Rationale: this final question aims to create a first approximation model for the
estimation of the effort in FLOSS communities based on the results provided by
the Linux Kernel community.

Metrics: For the purpose of this research, it is worth emphasizing again that,
within the Git system, the association of commit times to time slot uses thelocal
time of the developer, not some central timestamp provided by a central repository
(as in the CVS and Subsversion systems). Two empirical studies have been carried out
in this research, one related to the characterization of theoverall activity of commits
by committers during the whole development log of the Linux kernel; and the other
focused only on the major releases between (and including) 2.6.12 and 2.6.34, and
analysing the development activity both one week before, and one week after a major
release. For each of the addressed questions a set of metricshave been defined and
the empirical approach and method followed as explained in section 2.3 and 2.4:

1. Q1, Q2, Q3: In order to answer these questions, a weekly and hourly commits
activity is proposed in the study. In addition, a small studyabout a randomly
selected week has been carried out to study – at the granularity of lines – the dif-
ferent types of activity carried out by the developers (added, modified or removed
lines).

2. Q4: For this question, the metrics extracted are at first the overall activity in num-
ber of commits for each of the pre- and post-release periods,and secondly the
activity before- and after-releases in each of the different time slots. Each of these
series of data was compared before- and after-release usingthe appropriate hy-
pothesis testing (i.e., the Student’s t-test was used). In addition, differentiating
between authors and committers, a study about the number of people working in
each of the time slots is carried out. These people are divided by unique contrib-
utors in the different time slots, intersection of contributors among the different
time slots and finally, an intersection with all of the authors and committers that
have contributed in the three time slots during their activity period in the commu-
nity.

3. Q5: The aim of this question is to look for significant complexity changes in the
different time slots, but it is also focused on the differentpre- and post-release pe-
riods. For this purpose an increase or decrease of the McCabecomplexity metrics
for each of the files that have been handled in each of the periods and time slots
is calculated and analysised.

4. Q6: the metrics used for this question come from those previously calculated
in questions Q1, Q2 and Q3 basing the results on the number of commits per
time slot and also from the results obtained in the questionsfrom the complexity
approach.



Effort Estimation of FLOSS Projects: A Study of the Linux Kernel 7

2.3 Empirical Approach – Overall Activity

The first part of the paper is devoted to the characterizationof development activity
within the Linux kernel: the following empirical approach was followed in this first
part:

1. Git clone: at first, the Linux Git repository2 was cloned and stored locally. As
reported above, this repository spans the late life-cycle of the Linux Kernel (since
April 2005), when the project was moved to the Git repository.

2. Data pre-parsing: the information contained in the log of such repository was
parsed into commonly used results: the CVSAnalY toolset wasused for this pur-
pose. CVSAnalY has been developed at one of the authors’ institution, and it can
be found at the Libresoft tools Git repository3. In terms of functionality, it of-
fers more advanced features than other freely availabe tools [18], [19]; in terms
of testing, it has been extensively used as the core toolset in a large EU project4.
In this research, the toolset was used to save each commit ID,and the relevant
data along that commit, including the time, the authors and the committer, and
the rationale of such commits.

3. Time and full-path parsing: further to the pre-parsing by the CVSAnalY tool,
the time attribute of each commit was clustered in one of three slots,“office
hours”, “after office” or “late hours”, depending on the hourof such commit.

4. Major release dates:from the overall activity log of the Linux kernel (obtained
by issuing the “git log” command), the dates of each of the aforementioned re-
leases were clearly identified by a “release announcement” statement, and cross-
validated, for each release, with the upload date to re-distribution websites (e.g.,
http://www.kernel.org/pub/linux/kernel/v2.6/).

5. Identify commits before and after a release:in order to identify the list of com-
mits performed during the seven days before a major release (but excluding the
actual day of release), the database produced by CVSAnalY was queried starting
from the midnight of the first day, till the 23:59 of the seventh day5.

6. Added, Deleted and Modified lines:each commit is parsed with the ‘diffs-
tat’ utility, which uses the more common ‘diff’ program to define summaries
of added, deleted and modified lines within a large, complex set of changes. In
particular, for each commit, the switch “-m” is used to summarize a large chunk
of modifications in a readable format.

7. Authors and Committers: in order to identify the number of committers and au-
thors working in each of the aforementioned timeframes and during a pre-release
or post-release time, queries on the CVSAnalY database wereperformed to iden-
tify committers and authors working in specific time periods. Authors and com-
mitters were first identified for pre-release and post-release periods, and then were
further subdivided into those working in specific timeframes (e.g., OH, AO, LN).

2 As found in git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/
linux-2.6.git

3 git.libresoft.es
4 FLOSSMetrics project,www.flossmetrics.org/
5 In a SQL statement,where date≥ ’2005-06-09 00:00:00’ and date≤ ’2005-06-15 23:59:59’
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2.4 Empirical Approach – Complexity

The second part of this research is devoted to studying whether one of the (or more
than one) timezones are more prone to changes that add complexity than other parts
of the day. In contrast with the first part of the paper, this second analysis has not
produced an overall view of how the complexity is characterized in the whole life-
cycle, but it only focuses on the seven days before and the seven after a major release,
as defined above.

The following steps were followed to determine how the complexity was intro-
duced, increased or reduced along various commits or revisions:

1. Identify files affected in a commit: based on the list of commits executed either
before (pre-) or after (post-) a major release, a Git repository gives the opportunity
to display all such changes through the “git show” command. The output of such
command is used to display a summary of files affected by a revision (say, ’c‘),
as in “git show c | diffstat -m”. As a cross-validation of such results,
we used the information stored by CVSAnalY in the table “actions”.

2. Extracting the full path of files: Since the basic CVSAnalY only extracts file
names, a patched version of such tool was developed in order to extract the full
path of the files affected in a specific commit. As a cross-validation of such re-
sults, the Git command issued for extracting the full paths of the files affected in
a commit ‘c’, is “git show c | diffstat -p1 -w70”.

3. Evaluating the previous revision of a file:any file in the Git repository, after
being added, will go through a series of revisions, ordered by the date when each
was performed. If, say, the three files A, B and C were modified in revisionrev(t)
(Figure 1), each will have a previous revision where they were modified or firstly
added (in the example, B inrev(t-1), C in rev(t-2) and A in rev(t-3)). Given a
revision ‘r’ of the file ‘f’, the Git repository will show how the file ‘f’ was in that
specific revision ‘r’, by issuing the commandgit show r:f. In this way, it
is possible to compare two revisions of the same file, and to check whether the
changes inputed by a developer affected its structure.

Fig. 1 Evaluating previous revisions of files

4. Evaluation of the change in complexity:having the two subsequent revisions
of the same file, it is possible to evaluate both the complexity of its functions
(since the vast majority of the Linux kernel is implemented in the C program-
ming language), and the overall complexity of the same file, in the two subse-
quent revisions. The UNIX tool used to evaluate the complexity is pmccabe,
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so given a revision ‘r’ of the file ‘f’, the formulated commandis “git show
r:f | pmccabe -F”. By cross-cutting this analysis with the information on
the time of each revision, it is possible to conclude whetherin any of the time
slots developers added or removed complexity, or whether the change left the
same complexity unmodified.

3 Results – Development Activity

As mentioned above, the case study is the Linux Kernel which has been previously
studied several times and from several points of view ( [20],[21], [22], [23]). Two
aspects are presented below: the first considers the whole evolution log of the Linux
Kernel (since April 2005, when the overall data has been moved to the Git repository)
and it displays the patterns of activity in terms of week-days and hours worked on by
the Linux developers (irrespective of them being “core” or “peripheral” developers).
The second focuses on specific weeks of the Linux kernel development, justifying
this choice with the observed bias in the distribution of effort, and attributed to the
presence of major releases.

3.1 Results – Weekly and Hourly Activity

In order to compare and contrast the findings of the activity patterns during working
hours and throughout a week of traditionally developed software, the following sec-
tion presents the analysis of the Linux kernel development under a similar perspec-
tive. As mentioned above, it is possible to reliably extractthe “weekly” and (more
importantly) the “hourly” activity because of how the Git server stores the informa-
tion on the developers activity: the commit date and timestamp of Git uses the local
time of the developer, hence recording the time of her activity, rather than imposing
the timestamp from a central, shared repository.

Figure 2 (top) shows the analysis of the overall activity within the Linux Ker-
nel during the day, as recorded within the Git log. The first observation is that the
work/no-work distinction, found within the commercial counterpart [10], is not eas-
ily applicable to the Linux kernel development. The activity performed between 9am
and 5pm (corresponding to the “office hours”) accounts for some55% of the overall
amount of commits; some31% of the overall activity is produced during the “after
work” interval, or between 5pm and 1am; finally, some14% of the activity is per-
formed during the “late hours”, or between 1am and 9am. The second and third slots
of activity therefore represent a consistent departure from the commercial counterpart
studied in [10], reflecting a traditional pattern of activity since most of the commits
appear during the “office hours” (Figure 2, left). On the contrary, in the Linux kernel,
the most active time slot is found between 2pm and 4pm. Specifically at 3 pm we can
see a peak of activity which gradually decreases during the after-office hours.

Figure 2 (bottom) shows a complementary picture. The blending between a company-
driven community (which tends to work inoffice time), and a community-driven
project (where developers tend to work mostly on their sparetime) is evident in the
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distribution of activity throughout the week. In this figure, we divide the week in the
weekdays and calculate the aggregated number of commits forthe whole life of the
project. This figure shows how people in the Linux Kernel tendto work during the
weekdays: the first, clearly defined period is the interval “Monday - Friday”, where
the number of commits is daily more than 30,000. The second period of activity ap-
pears specifically during the Saturdays and Sundays, where the number of commits
jointly reaches some 30,000 commits (i.e., the same amount of commits achieved
in any other day of the week). In summary, the comparison witha traditional com-
mercial system shows that the Linux Kernel benefits overall from one “extra” day
of development per week (6 days with similar productivity out of 7), whereas the
observed commercial system benefits from 5 (unequally productive) days per week.

1 3 5 7 9 11 13 15 17 19 21 23

Hours

0

5000

10000

15000

20000

N
u
m

b
e
r 

o
f 

C
o
m

m
it

s

Monday Tuesday Wednesday Thursday Friday Saturday Sunday

Days of the Week

0

5000

10000

15000

20000

25000

30000

35000

40000

N
u
m

b
e
r 

o
f 

C
o
m

m
it

s

Fig. 2 Aggregated commits divided by hour of the day (top), and by the activity during the week (bottom)
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The observed patterns, in the Linux kernel and in the commercial company, pose
an issue of how to quantitatively describe the observed effort, and how to formulate
an effort estimation model. Since the distribution of effort is predefined throughout
the office hours in a commercial environment, the effort is only applied in that slot:
therefore, when expressing the effort as a function of the performed activity (e.g.,
amount of commits, lines added, modified or deleted; files added, modified or deleted;
etc.) the modeled commercial system would need to be modeledby an equation such
as

EC(t) = f(activityOH(t)) (1)

whereEC(t) is the development effort in a “commercial” setting during aperiod
t (daily, weekly, monthly, etc), whilef(activityOH(t)) is a function of the amount
of commits, during the same period, but only within the officehours boundaries (i.e.,
9am to 5pm).

On the other hand, when modeling the overall activity seen inthe Linux kernel
(and most likely other FLOSS systems), and taking into account the three time slots
(Office Hours, OH; After Office, AO; Late Hours, LH), one should also take into
account the other time slots, and weigh them appropriately:

EF (t) = wOH∗f(activityOH(t))+wAO∗f(activityAO(t))+wLN∗f(activityLH(t))
(2)

where whereEF (t) is the development effort in a FLOSS project during a period
t (daily, weekly, monthly, etc),wOH is the weight given to the activity observed
within the Office Hour slot;wAO the weight to the After Office slot; andwLN the
weight to the Late Night slot. In the case of the reported Linux kernel, the overall
activity observed in this project, based on the number of commits detected, produce
the following weights:wOH = 0.55, wAO = 0.31 andwLN = 0.14.

3.2 Results – Types of Activity

The overall activity shown above has the advantage of proposing the global picture
of the development within the Linux kernel, without revealing whether some parts
of the day were more prone to specific types of activity (e.g.,additions, deletions or
modifications). In order to perform a more focused analysis of the typeof activity
occurring in the various parts of the day, a number of “random” weeks were selected
to analyse whether the division of a day in three parts can shed further insights on
how work is performed within the Linux kernel.

The analysis reported below refers to the week between “April 13, 2009” (Mon-
day) and “April 19, 2009” (Sunday), where all the 838 performed commits have been
analysed for the purpose. Figure 3 reports how the changes evolve during such week.
These changes are divided into six different groups: the three main groups are given
by the three defined time slots and for each of them, we have calculated the number of
added and removed lines. In general, this distribution of the work follows the initial



12 Andrea Capiluppi, Daniel Izquierdo-Cortázar

distribution shown in the previous figures, except for the Wednesday. This seems to
be an outlier that does not follow the general tendency in amount of work.

For the mentioned figure, we can observe how the number of lines handled during
the weekend (even when we select the whole day and not dividedby time slots) is
really low, being developed the main activity in this specific week during the week
days.
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Fig. 3 Size of Changes for the week April 13 - April 19, 2009

In the specific case of the week days, we observe how the quantity of lines (added
or removed) in a given day is really high compared to the rest of the day, reaching
some days almost the 100% of the total modifications6. On the other hand, we can
see how in the weekends, the activity developed by the people(even out of the office
time 7) is really low, but developed out of the office time. In this case, the activity
developed during the weekend reaches up to an 80% on Saturday, and a 40% on
Sunday.

Table 1 finally displays, for the aforementioned week, the changes observed, and
divides them in three categories: added, deleted and changed lines. As also observed
in Figure 3, half of the activity is achieved during the day, in the time slot 9am-5pm,
with an overall count of 482 commits.

The standard deviation in each slot, the size of the largest commit, and the skew-
ness values show that the changes in each time slot have a power law distribution,
with up to two changes larger than 1,000 lines per slot. The density distribution of
changes (see Figures 4) confirms that some 60-70% of the changes (added, deleted
or modified lines) always fall in the size cluster of [0-10] lines. Also in any time slot,
and for any type of change (added, deleted or modified lines),more than 95% of such

6 A partial explanation for the low values of activity on April15th could be that the Federal Income
Taxes are due in the United States on that day

7 We provide the results for the office time during the weekends just to observe if there is a continuous
activity during the mornings. However, it has not happened since most of the activity, for instance, during
the Saturday, is developed during the afternoon and in the following.
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OH : 9am− 5pm AO : 5pm− 1am LN : 1am− 9am

ADD DEL MOD ADD DEL MOD ADD DEL MOD
AVG 36.10 15.80 5.37 40.94 19.45 4.96 95.15 90.32 9.02
STDEV 261.18 208.89 24.97 181.92 154.66 10.77 849.97 848.16 23.03
MAX 3,404 4,542 469 2,244 2,243 95 9,443 9,443 154
SKEW 14.38 15.61 11.82 9.11 13.34 5.00 10.99 11.08 4.32

Table 1 Average size of changes, differentiated by time slots and type of change

changes are within a [0-100[ lines boundary, while very few changes are over and
above 1,000 lines per change, and those are usually coupled to a change of oppo-
site sign (e.g., a very large commit of added lines coupled toa very large commit of
deleted lines). Although highly skewed, the use of averagesto summarise such distri-
butions could be considered acceptable, even considering the outliers over and above
1,000 lines.

Fig. 4 Density distribution of changes for the week April 13 - April19, 2009 – differentiated by time slot

These preliminary results were tested and compared with other randomly selected
weeks, but the findings reported above were not thoroughly confirmed in the other
sampled weeks. Investigating further, it was found that thesequence of major and
minor releases within the development plays a distorting role in recording effort by
committers towards a specific deadline. Figure 5 shows how the amount of commits
vary when considering seven days before and seven days afterthe “peak” of activity
represented by the actual day when the 2.6.14 release was made public. Therefore
it was decided that a study for characterizing the types of activity observed in the
Linux kernel should take into account such sequence of releases: the next section
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details and analyses the activity observed seven days before and seven days after
the date of a major release (while excluding the peak of the release day), for the
purpose of producing estimation models based on the types ofactions observed in
the development.

Fig. 5 Activity one week before and one week after the 2.6.14 release

3.3 Results – Before and After a Major Release

The history logs of the Linux kernel contained within the Gitrepository cover 23
major, from 2.6.12 (inclusive) to 2.6.34 (the latest one studied). Each was analysed
with respect to the amount ofcommits; authorsandcommitters; added, deletedand
modifiedlines as recorded both seven days before, and seven days after the date of
each public release.

The results of such analysis are reported, as longitudinal trends in the amount of
commits per release in Figure 6, and in the tabular form of Table 2, detailing for each
studied characteristic, its mean and variance value, both aweek before and a week
after a major release.

The following findings have been observed:

– The average amount of commits-per-release is somewhat similar during the OH
and AO slots, and both pre- and post- major releases;

– The average amount of commits-per-release during slot LN isclearly lower than
the OH and AO, both pre- and post- major releases, signaling alower activity in
such slot;

– The similarity between the OH and AO slots is consistent for all the studied met-
rics (authors; added, deleted and modified lines). The LN slot instead consistently
presents a lower level of activity;
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Fig. 6 Aggregated commits divided by hour of the day, before (above) and after (below) the major releases
in the Linux kernel

– Despite the lower amount of activity, the Linux kernel had anincreasing number
of people working during the LN slot, in both the pre- and post-week periods. The
pre-2.6.12 week only had 2 authors active during the LN slot,while the pre-2.6.34
week had some 311 authors in charge of commits; the post-2.6.12 week benefited
from 84 authors, and the post-2.6.34 week from 640 authors. As a summary,
figure 7 describes the intersections (for all the releases) of all the authors and
committers working on the OH, AO and LN slots. The differencein numbers
between the number of both authors and committers is evidentwhen considering
that the number of authors doubles the amount of committers in any time slots.
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– The distributions of all the measured characteristics werefound to be statistically
different, when considering the pre- and post-weeks: for example, the distribution
of commits in the OH slot before releases (51, 94, 121, 24, 141, 74, 103, 88,
152, 191, 94, 149, 196, 179, 682, 399, 435, 417, 530, 403, 462,425, 959) is
statistically different from the distribution of commits after releases (258, 269,
824, 797, 739, 484, 963, 722, 766, 631, 884, 1891, 2571, 1018,739, 1062, 845,
1287, 1498, 1288, 1048, 1272, 1361) when applying the t-test(last column of
Table 2,t = 8.73e− 07).

Attribute Mean
(pre-)

Mean
(post-)

Variance
(pre-)

Variance
(post-)

t − test

(pre- vs
post-)

Office Hours

Commits 271 964 50,954.8 264,659 8.73e-07
Authors 541 1,954 1.89e+05 1.34e+06 3.77e-06
Added lines 17,715 98,608 3.29e+08 6.86e+09 6e-05
Deleted lines 8,845 44,856 9.08e+07 3.37e+09 0.00368
Modified lines 4,704 14,857 2.73e+07 9.25e+07 4.4e-05

After Office

Commits 200 786 2.53e+04 1.33e+05 3.57e-08
Authors 391 1,621 9.41e+04 5.90e+05 3.88e-08
Added lines 10,621 65,393 1.30e+08 2.19e+09 6.03e-06
Deleted lines 6,931 36,519 1.33e+08 1.35e+09 0.00052
Modified lines 2,822 13,147 1.09e+07 5.63e+07 6.04e-07

Late Night

Commits 59 295 2.90e+03 4.08e+04 6.25e-06
Authors 122 699 1.41e+04 3.71e+05 8.30e-05
Added lines 3,433 18,500 2.10e+07 2.42e+08 7.22e-05
Deleted lines 1408 9,936 5.46e+06 7.84e+07 7.41e-05
Modified lines 704 4,766 5.92e+05 1.57e+07 3.36e-05

Table 2 Activity one week before and one week after major releases, clustered by time-slots

Based on such findings, the effort estimation equation in (2), and specifically the
termactivity(t)should be tailored to reflect such differentiation in both the time slots,
and depending on whether the activity is monitored and estimated in the weeks be-
fore or after a major release. A list of equations for the activity could be obtained
as follows, and based on the assumption that the actions of “adding”, “deleting” and
“modifying” lines (or files) are exhaustive of the type of actions perfomed by devel-
opers during the period t (say, hourly, daily, weekly, etc):

activityij(t) = wi
j ∗ f(Add

i
j(t), Delij(t),Modij(t)) (3)

wherei the index indicates whether the activity is observed either“before” or
“after” a release; thej index instead can be used to differentiate between the activity
as seen in the OH, AO and LN slots. Thewi

j terms then become the weights of the
actions performed in a specific week and during a given time slot. They could be
evaluated for instance by running a multi-variate correlation analysis with the added,
deleted and modified lines as response factors, and the number of commits as the
independent factor.
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Fig. 7 Intersections of committers (top) and authors (bottom) grouped by time slots

4 Results – Complexity in Time Slots

The third part of this research focuses on the presence of complexity (measured by
the McCabe cyclomatic index), and its changes within the source files of the Linux
kernel. As reported above, this further study examined the activity:

– of the 23 releases found between April 2005 and June 2010, and
– differentiating the results in “one week before” a release from those “one week

after”, and finally
– clustering each day of activity in the three time-zones: OH,AO and LN.

The analysis was performed only on the “.c” source files and “.h” headers8 that
underwent changes during the pre- and post-release weeks. For each of the commits

8 This was done to properly evaluate the McCabe cyclomatic complexity for source files developed in
the C “procedural” language
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performed in such weeks, it was studied whether the changes pushed by committers
did alter the overall complexity of the affected files. Only the “modified” files were
considered in such evaluation, therefore leaving aside theaddition of new files (which
adds new source code, let aside new complexity). To the best of our knowledge, this
is the first time that an analysis of how single source files changed within subsequent
commits is performed in a large case study.

The results are reported in Table 3: they are clustered around the three time slots
(OH, AO and LN) and summarized in relative terms. Each time slot presents two
series of data, the first (2nd, 4th and 6th columns) depictingthe amount of files which
underwent an increase of complexity, the second series (3rd, 5th and 7th columns)
the amount of files which had a decrease of their overall McCabe cyclomatic number
instead: both series are relative numbers, and divided by the amount of files handled
in the same week. The following observations were made:

1. During the pre-release weeks, the activity during late night hours has been, so far,
the most likely to increase the complexity when modifying the source files. In
other words, changes increased file complexity more often inthe LN slot than in
the OH slot (6 releases out of 23 (70%)). This is also shown in the distribution of
such ratios in Figure 8.

2. On the contrary, during theafter-releaseweeks, the Office Hour slot initially
seeded more complexity into the source files. In more recent releases, instead both
the After Office and the Late Night slots have started to insert more complexity
into files, as compared to the Office Hour slot, signaling again the importance of
such slots in seeding more complexity within modified files.

3. The distributions of source files undergoing increases ofcomplexity is statistically
different in each time slot, when performing a t-test comparison: for instance, the
global amount of files undergoing increases of complexity inthe OH slot presents
statistically relevant differences when comparing the week before9 and the week
after10 a release, when applying the two-tail t-test (1.174E-007).

4. The patterns in thedecreaseof complexity show instead a different perspective:
during the weeks before a release, no major differentiationbetween the various
time slots is visible, each presenting a fluctuating and inconsistent behavior. On
the other hand, the after-release weeks show either an overall increase of com-
plexity, or a decrease, but not both (as seen in the before-release weeks).

Considering the relation for effort estimation in Equation(2), it is possible to
discriminate, within the “activity” term, the portion of such activity devoted to the
increase of complexity, the portion that increases the complexity, and the portion that
does not affect the complexity. Each of the termsactivityOH(t), activityAO(t) and
activityLH(t) can be further expanded in the following:

activityiOH(t) = wIC
OH ∗aICi

OH(t)+wDC
OH ∗aDCi

OH(t)+wWChC
OH ∗aWChCi

OH(t)
(4)

9 Number of source files where complexity increases, during the weekbefore a release: 13, 33, 28, 1,
48, 33, 30, 48, 54, 87, 36, 37, 72, 56, 190, 149, 129, 128, 237, 216, 177, 146, 314

10 Number of source files where complexity increases, during the weekafter a release: 100, 102, 256,
343, 245, 172, 409, 255, 254, 273, 346, 712, 771, 360, 271, 349, 324, 428, 523, 349, 471, 399, 493
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OH AO LN
INCR DECR INCR DECR INCR DECR

2.6.12-pre 0.24 0.15 0.11 0.30 0.00 0.00
2.6.13-pre 0.21 0.13 0.16 0.05 0.23 0.12
2.6.14-pre 0.16 0.22 0.22 0.09 0.18 0.21
2.6.15-pre 0.07 0.20 0.21 0.12 0.40 0.13
2.6.16-pre 0.28 0.11 0.16 0.08 0.13 0.13
2.6.17-pre 0.21 0.16 0.17 0.03 0.38 0.00
2.6.18-pre 0.10 0.03 0.16 0.13 0.20 0.16
2.6.19-pre 0.13 0.12 0.17 0.03 0.22 0.22
2.6.20-pre 0.26 0.13 0.15 0.15 0.42 0.16
2.6.21-pre 0.38 0.13 0.28 0.10 0.13 0.04
2.6.22-pre 0.39 0.07 0.08 0.10 0.15 0.07
2.6.23-pre 0.27 0.14 0.37 0.19 0.38 0.15
2.6.24-pre 0.26 0.14 0.27 0.08 0.27 0.20
2.6.25-pre 0.17 0.08 0.18 0.10 0.22 0.10
2.6.26-pre 0.28 0.13 0.26 0.11 0.40 0.07
2.6.27-pre 0.17 0.09 0.26 0.07 0.24 0.08
2.6.28-pre 0.28 0.11 0.18 0.12 0.29 0.06
2.6.29-pre 0.30 0.13 0.21 0.13 0.38 0.14
2.6.30-pre 0.33 0.13 0.30 0.15 0.16 0.05
2.6.31-pre 0.39 0.16 0.34 0.08 0.15 0.14
2.6.32-pre 0.25 0.11 0.19 0.08 0.29 0.10
2.6.33-pre 0.25 0.19 0.22 0.23 0.27 0.21
2.6.34-pre 0.24 0.11 0.15 0.09 0.12 0.06

INCR DECR INCR DECR INCR DECR

2.6.12-post 0.25 0.13 0.24 0.13 0.05 0.04
2.6.13-post 0.25 0.06 0.16 0.13 0.22 0.05
2.6.14-post 0.16 0.14 0.13 0.09 0.27 0.05
2.6.15-post 0.17 0.08 0.18 0.26 0.20 0.14
2.6.16-post 0.21 0.12 0.24 0.17 0.16 0.14
2.6.17-post 0.24 0.09 0.25 0.14 0.17 0.13
2.6.18-post 0.28 0.14 0.29 0.12 0.22 0.12
2.6.19-post 0.22 0.14 0.17 0.14 0.10 0.18
2.6.20-post 0.20 0.12 0.14 0.09 0.13 0.15
2.6.21-post 0.26 0.14 0.24 0.18 0.16 0.13
2.6.22-post 0.24 0.12 0.20 0.12 0.23 0.13
2.6.23-post 0.21 0.15 0.16 0.22 0.16 0.20
2.6.24-post 0.27 0.13 0.19 0.13 0.24 0.09
2.6.25-post 0.25 0.12 0.19 0.10 0.18 0.12
2.6.26-post 0.25 0.15 0.20 0.12 0.20 0.22
2.6.27-post 0.27 0.15 0.21 0.15 0.25 0.06
2.6.28-post 0.29 0.13 0.22 0.15 0.18 0.10
2.6.29-post 0.22 0.14 0.28 0.14 0.24 0.10
2.6.30-post 0.28 0.14 0.33 0.12 0.20 0.12
2.6.31-post 0.18 0.16 0.16 0.15 0.23 0.09
2.6.32-post 0.29 0.13 0.31 0.19 0.29 0.10
2.6.33-post 0.23 0.12 0.22 0.11 0.30 0.10
2.6.34-post 0.27 0.10 0.22 0.14 0.27 0.12

Table 3 Percentages of files increasing (i.e., “INCR”) or decreasing (i.e., “DECR”) their complexity,
clustered in time slots
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Fig. 8 Portion of files increasing their overall complexity during Office Time (OT) and at Late Night (LN)
divided by time slots

activityiAO(t) = wIC
AO ∗aICi

AO(t)+wDC
AO ∗aDCi

AO(t))+wWChC
AO ∗aWChCi

AO(t)
(5)

activityiLN (t) = wIC
LN ∗aICi

LN (t)+wDC
LN ∗aDCi

LN (t)+wWChC
LN ∗aWChCi

LN (t)
(6)

wherewIC
j , wDC

j andwWChC
j are the weights of the activities for increasing

(IC), decreasing (DC) or without changes (WChC) in the complexity of the source
files during the time slotj. The termsaICi

j(t), aIC
i
j(t) andaICi

j(t) represent the
observed activities of increasing, reducing or not affecting the overall complexity of
files during during the time slotj, with i representing either the week before or after
a major release.

Any FLOSS system needs to be individually evaluated to extrapolate the appro-
priate weights to evaluate the three above activities. In the study of the Linux kernel,
the extrapolated weights were evaluated by averaging the values throughout all the
weeks before and after a release, and are summarised, for theLinux kernel, in Table 4.
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aIC aDC aWChC

Pre-week activity
OH 0.24 0.13 0.63
AO 0.21 0.11 0.68
LN 0.24 0.11 0.64

Post-week activity
OH 0.24 0.13 0.64
AO 0.21 0.14 0.64
LN 0.20 0.12 0.68

Table 4 Weights to complexity, grouped in time slots and clustered in “before” and “after” a major release

5 Issues of Repeatability

Mining software repositories is a complex task in time, but also in tools and datasets
used for retrieving information. Some authors have dealt with the question of repli-
cability in software engineering [24], [25]. In addition, Robles [26] has specifically
pointed out a number of issues when mining software repositories field. In order to
make it possible for other researchers to repeat our analysis, it is necessary to provide
availability to raw data, the processed dataset and the available tools or scripts). The
overall extraction process has been explained in detail in section 2.3 and 2.4. Thus,
this section mostly aims to fill the gaps among the different steps followed in those
sections, and to illustrate the results and the scripts or tools used to retrieved them.

– Is the “raw” data publicly available? – The raw data used in this paper is pub-
licly available in the data sources from the Linux Kernel community, and more
specifically from the SCM system that can be found at the Git repository. The
dates used for this data are the commits available between the dates2005-04-16
15:20:36 and 2010-06-29 10:42:52(and consisting of 200,633 commits). The
repository can be easily downloaded by means of thegit clonecommand line11.

– Is the processed dataset publicly available?– All the processed data can be
found in a MySQL database format and publicly available12. This dataset has
been obtained using the tools and scripts described in next bullets. All the tables
were retrieved by the CVSAnalY tool except:releasecommits, releasedates,
compareandchanges. With respect to the tables releasedates and releasecommits
they were both manually introduced to make the analysis of the data easier, and
they were based on data obtained from the distribution website13. While the other
two tables contain information automatically retrieved bythe use of some scripts
specifically created for this purpose.

– Are tools and scripts used in the study publicly available?– The tools and the
scripts used to perform this study are made available, as follows:

– CVSAnalY: This tool can be found at the Libresoft tools Git repository 14

and it can be downloaded using thegit clonecommand. The version used in

11 git clone git://git.kernel.org/pub/scm/linux/kernel/git/torvalds/
linux-2.6.git

12 http://mastodon.uel.ac.uk/EMSE2011/cvsanaly_kernel26_git.mysql.zip
13 http://www.kernel.org/pub/linux/kernel/v2.6/
14 git.libresoft.es
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this paper comes from the version found at the master branch on the date of
2010-08-27.

– Scripts: Some scripts have been used to retrieved specific data for each of
the bullets specified at the subsections 2.3 and 2.4. However, only for those
bullets where a script was created will be covered in this section. For the rest
of them, an explanation is provided in the respective sections.

• Data pre-parsing:the data pre-parsing information was retrieved by a
modified version of the CVSAnalY tool that is publicly accessible from
the web15

• Added, deleted and modified lines:For this purpose, two tables were
manually created (releasedatesand releasecommitsstoring informa-
tion about each of the pre-release and post-release commitsand dates
involved. For the given week the data is available from the web 16

• Authors and committers:in this case two scripts17 were necessary to
calculate the different number of authors and committers for each of the
releases in the pre and post release periods.

• Extracting the full path of files:as detailed above, a patched version of
the CVSAnalY tool was used for this purpose, and as a cross-validation,
the “git show c | diffstat -p1 -w70” command was used,
in order to evaluate the full path of the files affected in the revision ’c’.

• Evaluating the previous revision of a file:as also detailed above, any file
will undergo one or more modifications, after being added. The list of
such revisions is contained in the “actions” table extracted via the CVS-
AnalY tool, and extracted by an SQL statement18. The immediately pre-
vious commit on the same file is obtained by another SQL statement on
the same tables19. The wrapper scripts to do so are also made available20

• Evaluation of the change in complexity:Given the current (r) and pre-
vious (r’) revision of a file, as detailed above the pmccabe tool 21 was
used on each to evaluate the changes in complexity (“git show r:f
| pmccabe -F”, with the -F switch to illustrate only the overall com-
plexity of a file). All the files affected by commits in the weeks before
and after a major release were analysed in the same way, and the results
stored in the table “compare”. A summary script to evaluate the sum of

15 http://mastodon.uel.ac.uk/EMSE2011/patched_cvsanaly/
16 http://mastodon.uel.ac.uk/EMSE2011/study_given_week/
17 http://mastodon.uel.ac.uk/EMSE2011/set_committers_authors/
18 Given a commitc, the SQL statement is:select files.file name, actions.file id,
actions.commit id, actions.type from scmlog,actions,files
where scmlog.rev = c and scmlog.id = actions.commit id and
files.id=actions.file id

19 Given a commitc on file f, the SQL statement is:select scmlog.rev, scmlog.id from
scmlog,actions where actions.file id = f and actions.commit id < c and
actions.commit id=scmlog.id order by actions.commit id desc limit 1

20 http://mastodon.uel.ac.uk/EMSE2011/previous_commits/
21 Version 2.6
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all such changes in complexity was also produced and then made avail-
able22

6 Related Work – Effort Estimation

As mentioned above, effort estimation models or other measurement-based models
are not generally used within FLOSS communities [4]. Broadly, the problem of soft-
ware effort estimation has been studied for more than 40 years. A survey of software
development cost estimation studies [27] found 304 studiesin this area (and the sur-
vey doesn’t include conference proceedings and concludes in 2004). Reported meth-
ods of estimation include: regression, analogy, expert judgment, work break-down,
function points, classification and regression trees, simulation, neural networks, the-
ory and Bayesian [27].

The measurement and modelling of software productivity is “a difficult and con-
troversial topic” [28]. Some authors have argued in favour of function points [29] as
a measure of work over lines of code [30]. Function points areimplementation de-
pendent (e.g. it is not influenced by the type of programming language, high or low
level). However, it is not always possible to derive function point counts for long-
lived software under continual evolution. Over the years, surveys have confirmed that
the largest portion of human resources applied over the lifetime of a software system
is generally devoted to evolution, not initial development[31]. In spite of this, the ma-
jority of estimation approaches address development projects (e.g., SLIM [32], [33];
COCOMO II [34]). Furthermore, many approaches that addressmaintenance cost es-
timation have been, in one way or another, extrapolated fromapproaches conceived
with initial development in mind, e.g. [35], [36], [37] , [38].

Although effort estimation models specifically oriented tomaintenance activities
have been proposed, e.g. [39], [40], [41], [42], [43], [44],[45], [46], none of these
appear to have been widely taken up by industry. Most approaches are based on mea-
sures of lines of code (LOC), such as LOC added, changed or deleted during mainte-
nance tasks. In the two case studies presented in this paper,we used measures based
on file counts, since in the first system the LOC-based measures were not available.
However, the metrics we used and the approach could also be applied for measures
based on other granularity levels such as LOC, functions, classes and even to function
point counts, if these were available.

Research suggests that estimation models should reflect thedevelopment con-
tinuum as “it is more realistic to think of software engineering as an evolutionary
process where software is continually changed over its lifetime in response to chang-
ing requirements and customer needs” [47]. Estimation models must be continually
refined during the length of a project [48], [49], [50]. However, current estimation
approaches fail to provide precise mechanisms for such continual refinement. Cost
estimation in the evolution context remains an unsolved problem ([51]).

22 http://mastodon.uel.ac.uk/EMSE2011/complexity/
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7 Threats to Validity

This paper has analyzed the Git repository offered by the Linux Kernel community.
One of the main reasons for doing so is because this source code management system
offers extra information about the local date when the actual author23 and the com-
mitter submitted the changes. Like any other empirical study, the validity of ours is
subject to several threats. In the following, threats to internal validity (whether con-
founding factors can influence your findings), external validity (whether results can
be generalized), and construct validity (relationship between theory and observation)
are illustrated.

1. Internal Validity – the following threats have been detected:

– In a common working day, there are main differences among developers.
Some of them could work in office, but some others could work some time
during the mornings, and some more time during the evenings.

– Our methodology can not (yet) be applied in SCM’s such as CVS or Subver-
sion: in their current status, these systems only allow to store the time when a
change is committed to the central server. If these CMS’s will be able (in the
future) to store the time when a change in the source code was done locally by
the author, the same approach described could be extended tothose SCM’s.

– In order to follow the movement or the renaming of files withina Git reposi-
tory, the committers have to issue a specific command (“git commit --follow”),
otherwise the information on where the file was move (or renamed) from
is lost. In the Linux kernel, most of the renamings and movements are de-
tectable, but many have lost such information.

– Occasionally we detected that people were traveling, but had not changed the
time zone in their computer. This contributed some noise to the data.

2. External Validity – the following threats have been detected:

– We have focused our analysis in the Linux Kernel community. Other small
to medium systems might show diverse behaviours both with respect to com-
plexity handling, and in proximity of public releases;

– In general, the complexity of a software artifact is multi-faceted. In this study,
we focused on the complexity of source code, as measured by McCabe’s
cyclomatic complexity of C language functions. The resultson complexity
should not be generalised to other aspects of complexity (organizational com-
plexity, architectural complexity, etc);

– The weights found in the formulas above are only specific to the system under
investigation: the method and the empirical approach to evaluate such weights
can be replicated for other systems. The actual model and weights derived
cannot be applied outside of this study.

3. Construct Validity – the following threats have been detected:

– The results of this paper assume that people in different countries work fol-
lowing the same patterns: of course this assumption should be discounted in
several ways, for instance considering that the holiday systems in different

23 Using the option–pretty=fuller
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European countries and in North America are vastly different, and both are
culturally very different from the holiday schemes in othercountries in Asia
or Africa. This could, in somehow, distort the results, albeit in the case of the
Linux Kernel community, they seem to show a commonofficepatterns, which
facilitate the analysis of the data.

– Also, we have not taken into account if the changes were made over the source
code or were not. A deeper analysis could show more accurate results with this
respect. Since we are measuring activity in the source code,we have studied
the SCM system used by the Linux Kernel community, but it could contain
specific files such as text files which are modified, but are not source code.

– One of the assumptions made for the commits is that any commitis similar to
others during the life-cyle. This is clearly a simplification: commits could deal
with only one, or with many different files and dealing with many thousands
lines of code. The approach of developers to commits and to commits in a
distributed SCM as Git is very diverse: someone could frequently commit
small modifications, someone else could produce very large and infrequent
commits. This paper does not take into account the differentapproaches to
commits, but this nonetheless represents an important aspect to direct future
studies.

8 Conclusion and Further Work

Although a model has been proposed, discussed and accepted for clustering FLOSS
developers into the so called “onion model”, this paper has approached the issue of
characterizing the FLOSS development from the point of viewof “when” contri-
butions are done. FLOSS developers are known to be active in various parts of the
day and week, unlike a traditional 9am-5pm, Monday to Fridaymodel of in-house
software development. It was argued that the Git SCM technology provides a new
support to such requests, since it records when a developer issued a commit com-
mand at her time slot, rather than losing such information byusing the SCM server
local time zone. This delocalised date information was usedin this paper for purpose
of estimating software productivity and effort.

The study on the activity detected in the Linux kernel was compared with what
found in the previous analysis of a commercial system: it wasfound that the tradi-
tional 9am-5pm development time only accounts for some 55% of the overall activity
within the Linux kernel. Other two time slots were found to beuseful to character-
ize the FLOSS development, namely the interval 5pm-1am (theAfter Officeslot),
responsible for some 31% of activity; and the interval 1am-9am (theLate Nightslot),
responsible for some 14% of overall activity. It was therefore argued that a FLOSS
effort estimation model would need to take into account suchdistribution of activity,
by firstly estimating the weights of the various time slots.

The study of the productivity within the Linux kernel showedthat a positive bias
is observed when a major release is due. The analysis of added, deleted and modified
lines shows evident regularities: an increased productivity is always detected in all
the measured attributes after a major release, as compared to the period before such
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releases. Estimating the productivity or effort in such FLOSS systems produces a bi-
dimensional model, by considering the time slot in a day, andthe weeks (before or
after a release) when such effort is modeled.

Finally the study of code complexity has shown that time slots, and the presence
of major releases, contribute differently to the overall increase in complexity within
the Linux kernel: it was found that the Late Night and After Office slots should be
carefully monitored since they more often introduce additional complexity both in
the weeks before and in the weeks after a major release. A further, generic effort
estimation model was developed to model effort as a functionof the actions to reduce
or increase the complexity, that can be generalised to any FLOSS, round-the-clock
project.

With respect to further work, this work could be expanded in three strands: cost
and effort estimation of FLOSS projects, repeatability of FLOSS effort estimation
studies, and comparison of FLOSS communities. A better characterization of the
commit patterns, such as studying each of the developers by their blocks of activity,
and their approach to commits (large and infrequent, or small and more frequent)
could improve estimation models, as well as dividing the effort in the various parts
of the day, and by clustering changes in size buckets (as doneabove, [0-10] lines,
]10-100] lines, ]100-1,000] lines, over 1,000 lines). Furthermore, if a committer is
usually working during theoffice timeand she usually submits a change every two
hours, we could suppose that she has been working for the whole day around eight
hours. Some other patterns could show activity during the weekends. For example,
some developers could submit some changes just during specific days. We suspect
that this kind of patterns is totally different from the aforementioned one. In fact,
in this case, we should measure the real effort in other termsand only taking into
account that day.
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33. L. Farr and H. Zagorski, “Factors that affect the cost of computer programming: A quantitative anal-
ysis,” pp. 59–86, 1964.

34. B. W. Boehm, Clark, Horowitz, Brown, Reifer, Chulani, R. Madachy, and B. Steece,Software Cost
Estimation with Cocomo II with Cdrom. Upper Saddle River, NJ, USA: Prentice Hall PTR, 2000.

35. B. W. Boehm,Software Engineering Economics. Upper Saddle River, NJ, USA: Prentice Hall PTR,
1981.

36. A. Abran and P. N. Robillard, “Reliability of function points productivity model for enhancement
projects (a field study),” inICSM ’93: Proceedings of the Conference on Software Maintenance.
Washington, DC, USA: IEEE Computer Society, 1993, pp. 80–87.

37. W. Li and S. Henry, “Object-oriented metrics that predictmaintainability,” Journal of Systems and
Software, vol. 23, no. 2, pp. 111–122, 1993.

38. J. C. Granja-Alvarez and M. J. Barranco-Garcı́a, “A method for estimating maintenance cost in a
software project: a case study,”Journal of Software Maintenance, vol. 9, no. 3, pp. 161–175, 1997.

39. C. F. Kemerer, “An empirical validation of software cost estimation models,”Commun. ACM, vol. 30,
no. 5, pp. 416–429, 1987.

40. L. C. Briand and V. Basili, “A classification procedure for an effective management of changes dur-
ing the software maintenance process,” inICSM ’92: IEEE International Conference on Software
Maintenance, 1992.

41. H. M. Sneed, “Estimating the costs of software maintenancetasks,” in ICSM ’95: Proceedings of
the International Conference on Software Maintenance. Washington, DC, USA: IEEE Computer
Society, 1995, p. 168.

42. ——, “Measuring the performance of a software maintenance department,” inCSMR ’97: Proceed-
ings of the 1st Euromicro Working Conference on Software Maintenance and Reengineering (CSMR
’97). Washington, DC, USA: IEEE Computer Society, 1997, p. 119.

43. R. K. Bandi, V. K. Vaishnavi, and D. E. Turk, “Predicting maintenance performance using object-
oriented design complexity metrics,”IEEE Transactions on Software Engineering, vol. 29, no. 1, pp.
77–87, 2003.
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