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Abstract

Reliable networks that provide good service quality are expected to become
more crucial in every aspect of communication, especially as the information
transferred between network users gets more complex and demanding and
as malicious users try to deliberately degrade or altogether deny legitimate
network service. The Cognitive Packet Network (CPN) routing protocol pro-
vides Quality of Service (QoS) driven routing and performs self-improvement
in a distributed manner, by learning from the experience of special packets,
which gather on-line QoS measurements and discover new routes. Although
CPN is generally very resilient to network changes, it may suffer worse per-
formance during node failures caused by network threats, such as network
worms. Here we evaluate the performance of CPN in such crises and compare
it with the Open Shortest Path First (OSPF) routing protocol, an industry
standard and widely used in Internet Protocol networks. We also improve
it by introducing a failure detection element that reduces packet loss and
delay during failures. Our experiments were performed in a real networking
testbed.

Key words:

1. Introduction

The need for network stability and reliability has led to the growth of
autonomic networks that use QoS driven approaches to provide more stable
and more reliable communications. These approaches aim to provide QoS
even under various network challenges such as congestion and network fail-
ures [10, 6, 13]. In [6] the author uses the expected QoS to select paths to
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their destination and proposes randomised routing policies which can improve
QoS. The Cognitive Packet Network (CPN) is a QoS-based routing proto-
col and has been shown to adapt quickly to varying network conditions and
user requirements [21]. Contrary to conventional mechanisms, it is the users
rather than the nodes that control the routing, by specifying their desired
QoS criteria and the network tries to route each one of them individually
based on his/her needs. CPN was also proposed for ad hoc networks which
provides dynamic discovery of paths that offer both low-delay and energy
efficiency [13]. CPN has been evaluated extensively under normal operating
conditions and has proven to be very adaptive to network changes such as
congestion. Here we investigate the performance of CPN under catastrophic
node failures caused by the spread of network worms.

The paper is organised as follows: Section 2 provides a brief overview of
the CPN routing protocol. In Section 3, we present previous work evaluating
the performance of CPN. In Section 4, we introduce a failure detection ele-
ment in the CPN mechanism which improves its performance. In Section 5
we present experiments we conducted specifically for network node failures
propagated as network worms and generated by a failure emulator of our
design. We conclude in Section 6 with a summary of our contributions and
suggested future work.

2. Overview of CPN

CPN is an adaptive packet routing protocol that addresses QoS by using
adaptive techniques based on on-line measurements [14, 17, 15, 12, 7, 27].
It is a distributed protocol with which users, or the network itself, declare
their QoS Goals, such as minimum Delay, maximum Bandwidth, minimum
Packet Loss, minimum Variance of the packet delay, maximum Security Level
in a path, minimum Power Consumption in a wireless node, or a weighted
combination of these. It is designed to perform self-improvement by learning
from the experience of special packets that constantly probe the network.

More specifically, it makes use of three types of packets; smart packets
(SP) for discovery, source routed dumb packets (DP) to carry the payload
and acknowledgement (ACK) packets to bring back information that has
been discovered by SPs, and is used in nodes to train neural networks and
produce routing decisions. The role of SPs is to explore the network and
discover the best routes, according to a QoS goal, for each source-destination
pair in the network. At each hop SPs are routed according to the experiences
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of previous packets with the same goals and the same destination. The term
“goal” is used instead of “QoS specifications” to emphasize the fact that there
are no QoS guarantees and that CPN provides a best effort service [30]. The
decisions of the SPs are based on a learning algorithm. In order to explore
all possible routes, at some hops, each SP makes a random routing decision,
with a small probability (usually 5%). To avoid overburdening the system
with unsuccessful requests or packets which are in effect lost, all packets have
a life-time constraint based on the number of nodes they have visited.

Several algorithms have been used in CPN as learning and decision tech-
niques in order for SPs to find satisfactory routes from source to destination
based on the desired goals. As far as the decision process is concerned, Ran-
dom Neural Networks (RNNs) [5] are mainly used. The RNN is a biologically
inspired neural network model which is characterised by the existence of posi-
tive (excitation) and negative (inhibition) signals in the form of spikes of unit
amplitude that circulate among nodes and alter the potential of the neurons.
Each neuron can be connected to another neuron and each connection is char-
acterized by an excitatory or inhibitory weight [20]. The state of a neuron,
which represents the probability that the neuron is excited, has been proven
to satisfy a system of nonlinear equations with a unique solution. Therefore,
in a CPN network, at each node a specific RNN that has as many neurons
as the possible outgoing links, could represent the decision to choose a given
output link for a smart packet. The arrival of SPs triggers the execution of
RNN and the routing decision is the output link corresponding to the most
excited neuron.

As far as the learning process used with RNN, the algorithm that even-
tually prevailed in the implementations of CPN is Reinforcement Learning
(RL). RL is used to change neuron weights in order to reward or punish
a neuron according to the level of goal satisfaction measured on the corre-
sponding output. Therefore the decisional weights of a RNN are increased
or decreased based on the observed success or failure of subsequent SPs to
achieve the goal. Thus RL will tend to prefer better routing schemes, more
reliable access paths and better QoS.

3. Previous Work on Performance Evaluation of CPN

The performance of the CPN routing protocol has been extensively in-
vestigated for variety of performance metrics in normal operating conditions,
but not in the presence of node failures [10, 27]. Below we present the ex-
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perimental work conducted in the past in order to evaluate the performance
of CPN. All performance evaluation work has been carried out in a real
networking testbed, running CPN as a module of the Linux kernel.

3.1. Adaptability

CPN’s ability to adapt to changing network conditions, such as changes
in traffic load, link failures, or buffer overflows has been experimentally eval-
uated in [18]. The experiments showed that CPN managed to find new routes
in order to avoid obstructing traffic that was introduced in some of the links
used by the data traffic and also avoided links that where under failures.
Another issue studied experimentally in [18] was the effect of the ratio of
SPs on overall performance, which was was further investigated in [16]. The
experiments concluded that in order to achieve the best performance for the
data packets (DPs) the percentage of SPs that should be sent for discovery
is 10% to 20% of the data packets’ rate. Going beyond these values does not
significantly improve the QoS values for DPs. One must bear in mind that
in CPN, SPs and ACKs are not full sized Ethernet packets, but are actually
10% of the DPs’ size. If 20% of SP traffic is added, this will result in 14%
traffic overhead, when ACKs are generated by both DPs and SPs, and only
4% of traffic overhead when ACKs are only generated in response to SPs.
Additionally it was shown that a small number of SPs can suffice to initially
establish a connection.

3.2. QoS Goals

The experiments in [19] show that CPN can implement distributed adap-
tive shortest-path routing and approximately find shortest paths. Extensive
experiments compare the shortest-path CPN, where the QoS goal is the min-
imum hop count, with a CPN routing using minimum-delay and a version
where routing is based on a combination of hop count and forward delay.
The experiments, conducted under low, medium and high background traf-
fic, show that the use of criteria more complex than the shortest number of
hops, can provide better overall quality of service.

The choice of a “goal” and “reward” function for packetised voice ap-
plications is discussed in [15], where experiments conducted for ”voice over
CPN” are presented. The performance of CPN is detailed via several mea-
surements showing that the resulting QoS is better than when using IP in
identical conditions. Measurements indicating how the CPN protocol can
respond to different QoS goals are also presented in [12, 30]. Composite goal
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functions which take into account both delay and packet loss are proposed. In
[30], the measurements suggest that CPN networks effectively adapt routing
behaviour to the QoS goal that is specified.

The use of delay as a QoS goal implies the collection of timestamps along
packets paths, which add overhead to the packets, especially in long paths.
Therefore, the authors of [24] have implemented a composite QoS goal metric
which consists of path length and buffer occupancy of nodes to achieve traffic
balancing and to identify low-delay paths in a network. Experimental results
in a wired testbed and wireless ad hoc simulations show that a routing goal
that combines path length and buffer occupancy in nodes offers the advantage
of producing approximately the same performance as that of using delay, but
with less packet overhead.

3.3. Routing Oscillations

Although oscillations are generally considered as a weakness of a net-
work, performance evaluations in [22] indicate that routing oscillations do
not severely degrade performance as would be expected, and high perfor-
mance can still be obtained. The authors of [22, 11] study the way that
oscillations can be controlled. Two different parameters that affect oscilla-
tions are considered: the use of probabilistic path switching, which can be
used both to make path switching more asynchronous and to vary the rate
at which switching decisions are made, and the introduction of a decision
threshold which will only allow path switching if the gain expected from
switching exceeds a certain minimal value. Both of these control schemes
are easy to implement and provide an effective way to limit oscillations and
their negative consequences.

3.4. Realistic environments

A set of experiments which demonstrate how CPN performs in a realis-
tic environment of a 46-node test-bed have been presented in [23]. CPN’s
performance was compared to that of an industry standard routing protocol,
the Open Shortest Path First (OSPF) routing protocol, the current industry
standard and widely used in Internet Protocol networks. A 46-node test-bed
was used, the topology of which represents a real-world topology, the Swiss
Education and Research Network (SWITCHlan), which is used by univer-
sities and some education sites in Switzerland. The administrators of this
network provided the authors of [23] with details on their 46-router back-
bone, complete with bandwidth, OSPF costs, and link-level delays. Because
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the cost of each link is proportional to its delay, OSPF routing converges
to the minimal delay path, giving a baseline for comparison. The experi-
ments show that the routes CPN computes are as good as those computed a
priori using administrator-defined costs. Furthermore, the paper gives exper-
imental results showing that RNN with RL can autonomously learn the best
route in the network simply through exploration in a very short time-frame
and demonstrates that the CPN protocol is able to adapt to changes in the
network environment quickly, by switching to a new optimal route in the
network.

4. Enhancing the Failure-Awareness of CPN

Currently, each CPN node detects failures by sending “hello” messages
to its neighbours. This way a neuron (link) is excluded from a decision only
if one of a node’s neighbours is under failure. Thus, CPN does not take
into consideration failures which could be further away and can influence the
selection of a specific link. Additionally, the weights of the RNNs in a node
are updated only when an ACK packet returns to it. Therefore, if a node
which is part of a selected route suffers a failure, the ACKs returning to the
source through that same route will never reach the source and the weights
of the neurons corresponding to the links that are affected by the failure
will never be punished. To prevent this, CPN nodes route a fraction of the
SPs randomly, so that sudden changes of any kind could be discovered. But
even with this technique, in some failure scenarios it may need considerable
numbers of random SPs before the decision of a node changes. For example, if
the neuron which corresponds to the node/path under failure was previously
chosen a lot of times, and thus has a much higher weight than the rest of the
neurons, it might need a big number of random SPs to discover another path.
Thus, if that neuron was the most excited, the subsequent source-routed data
packets will continue to follow the path under failure and will be lost until
a new path is discovered. In this section we propose a detection mechanism
that makes the neurons of CPN more failure-aware.

In our scheme, which was first introduced in [28], a neuron can be consid-
ered under failure even if the first hop neighbour node is not under failure,
because it may be part of a path that has failed. More specifically, at each
RNN and for each neuron i, the timestamp of the last SP and the last ACK
that used it, are stored. If no ACK has been received after sending the last
SP:
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timestamp of last SP going through i− ε < timestamp of last ACK coming through i (1)

then the link is considered “under failure” and the neuron corresponding
to this link is considered “expired”. Expired neurons do not participate in
the calculation of the excitatory probabilities and the subsequent decisions
of the RNN. The value of ε may be different for each neuron and may depend
on the average delay between the node and the destination, under normal
conditions. The neuron is just ignored and its weights do not change so that
they can be used again either after the failure restoration or if another path
is discovered that bypasses the failure.

5. Performance evaluation of CPN under node failures propagating
as a network worm

5.1. Network worms

Network worms are malicious self-replicating and self-propagating appli-
cations that exploit system vulnerabilities of some operating systems and
spread through networks. Their defining characteristic is their ability to
achieve high infection rates; they can spread and saturate a network very
quickly. The results of such attacks could be mild, such as the printout
of a message or more serious such as deleting or modifying system files,
reducing the system performance, or causing total failure to the infected
machines. From the service quality perspective and according to the extent
of the spread, the latter could lead to serious agitation for the users of the
network, due to information loss and delays.

Network worms use a number of different methods to identify new targets
for infection; for example, many worms scan randomly generated IP addresses
to locate vulnerable hosts (random scan), or scan the IP address space based
on the route information in a network (routable scan), or acquire a target
address table from the DNS server (DNS scan), or create a pre-generated tar-
get list which includes vulnerable hosts and then try to infect the computers
listed there (hit-list scan) [29, 26, 32]

As for the study of the propagation of network worms, several models
have been proposed, many of which are inspired by the propagation models
of infectious diseases [26]. In the Simple Epidemic model (SEM) each host
is in one of the two states: susceptible or infectious and once infected by
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a virus, the host remains in the infectious state forever [26, 2]. Unlike the
SEM model, in the Kermack-Mckendrick (KM) model the host maintains one
of three states: susceptible, infectious or removed [26, 4]. When an infected
host is immunised it is removed from the whole system and does not take into
consideration situations where susceptible and infected hosts are patched to
resist the worm. The Susceptible-Infectious-Susceptible (SIS) model assumes
every host has the same possibility of being infected repeatedly even if they
have recovered but does not take into account the situation that the infected
hosts are patched or updated to be immune from the worms [26, 1].

The Two-Factor model is the extension and supplement of SEM and KM
and considers more external factors and anti-worm measures [26, 31]. One
factor is the dynamic countermeasures taken by ISPs and users and the other
is the slowed down worm infection rate because rampant propagation of worm
causes congestion and troubles to some routers. It does not consider though
the patching of the infected hosts. The Worm-Anti-Worm model takes into
account the existence of an antagonistic worm and considers two types of
worms, the malicious worm and an oppositional one, which can detect, clean
and patch the hosts infected by the malicious worms[26]. It does not consider
though the states of the antagonistic worm after it enters the susceptible
hosts.

The patching effect and the ability to resist specific worms while being
susceptive to others is addressed in [8, 9]. The author, inspired by biological
viruses, proposes a probability model for populations of agents (computer
software) and viruses (computer worms) that interact in the presence of an
anti-viral agent. Both agents and viruses can belong to different strains. If a
virus survives the effect of the anti-viral agent it belongs to a different strain
from the one it started in, and its ability to survive future encounters or infect
healthy agents is modified. Similarly, an agent which remains healthy after
an encounter with a virus will belong to a new strain and this will impact
its future behaviour. Also, an antiviral agent can be made up of a mix or
cocktail, with different proportions of agents that target different strains of
the virus.

In our experiments, the failures are spread according to the Analytical
Active Worm Propagation (AAWP) model. This is a discrete-time and con-
tinuous state deterministic approximation model, proposed by Chen et al.
to model the spread of active worms that employ random scanning [3]. In
the AAWP model, a node can be in one of the following states: infected,
immunised, vulnerable. In our present application we have assumed that
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all hosts can reach (infect or immunise) each other directly (the topology
of the network is irrelevant). At each scan, the “worm” randomly chooses
another host of the population and if it is immune nothing happens. If it is
vulnerable it becomes infected and if it is already infected, it does not get re-
infected. We assume that the infection delay time between two consecutive
infection attempts represents the time required by a computer worm to find
a server through random IP scans, regardless of whether the host is already
infected or still vulnerable. So, a computer cannot infect other hosts before
it is infected completely. In our implementation, the time the worm needs to
infect a machine, called the infection delay time, is a random value within a
predetermined range, but the emulator could be extended so that the infec-
tion delay time could be subtracted by a more complex model which takes
into account the distance between the infected node and the node it tries to
infect, the degree of network congestion and other such parameters. When
a node is infected it is considered under failure but it can still infect others.
Finally, in order to capture the patching impact on the worm propagation, we
dynamically immunise some hosts, which, after some time, start immunising
others (infected or simply vulnerable) randomly. The time a newly immu-
nised node has to wait before it starts immunising others is again a random
value. The scanning mechanism used is the random scanning mechanism but
others could be used, such as local subnet and topological scanning.

5.2. Failure Emulator

Emulating failures in a controlled and reproducible manner is vital for the
evaluation of the resilience of a network to failure scenarios. For this reason
we have developed such an emulator. It can emulate the failure of specific
links or nodes. This is achieved by disabling some or all Ethernet interfaces of
a node which are connected to the network, so that no traffic can go through
that node. The failure can then be restored by enabling these interfaces. The
failure propagation can be random, according to a probability distribution or
a pattern. Here, we consider failures that propagate according to the AAWP
model.
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Figure 1: Snapshots of the failure emulator at the beginning of the failure spread and after
the failures have spread throughout the network.

5.3. Configuration of the experiments
The experiments were conducted on a 46 node testbed (figure 2). The

topology of the testbed represents the real SWITCHlan network topology1.

1The Swiss Education & Research Network (SWITCHlan) network provides service
in Switzerland to all universities, two federal institutes of technology and major research
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In order to make the environment more realistic we used actual details of the
46-router backbone, complete with bandwidth, OSPF costs, and link-level
delays which were given by the administrators of the SwitchLAN network to
the authors of [23]. We have also configured IP routing using quagga 0.99.3
with the OSPF costs of the SwitchLAN network so that the routes in our
testbed should be exactly the same as those used in the real Swiss backbone.
Because the cost of each link is proportional to its delay, OSPF routing
converges to the minimal delay path, giving a baseline for comparison.

Figure 2: Realistic topology with artificial delays. The thickness of the links represents
their delay. The grey and thinner lines are low-delay links, while the darker (blacker) and
thicker ones denote higher delays

There are three Source-Destination (S-D) pairs that correspond to three

institutes, http://www.switch.ch/network/
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users in the network. Each user generates UDP traffic at constant bitrate of
6Mbps. At the beginning of the experiment all nodes are vulnerable except
the sources and destinations. All the sources and destinations are immune so
that they will not suffer a failure. Each experiment lasts for 120s. The failure
propagation starts 10s after the start the experiment and its duration varies
according to the scanning rate. The higher the scanning rate the more the
number of infected nodes, and therefore the longer the network will operate
in difficult conditions and experience congestion. More analytically:

• The number of machines that are already infected at the start of the
“worm’s” propagation is 1.

• The scanning rate varies within the range [0.05, 0.1, 0.2, 0.3, 0.4, 0.5,
0.6, 0.7] scans/s, which corresponds to 1 node being scanned every [10,
5, 3.33, 2.5, 2, 1.67, 1.43] s respectively.

• The duration of the experiment is 120s.

• The worm propagation starts at the 10th second.

• A newly infected node has to wait for a given delay before it starts in-
fecting others. In our experiments that delay is a random value between
15 and 20s.

• When a node is infected it is considered to be under failure, traffic
cannot go though it (Ethernet interfaces are disabled) but it can still
infect others.

• The patching process starts at the 70th second (60s after the start of
the failure propagation) and the patching rate is equal to 0.5 node/s.
Finally, before it starts immunising others, a newly immunised node
has to wait a random value between 15 and 20s.

5.4. Experimental results

In the figures presented next we compare the performance of CPN to
that of OSPF routing protocol and to our proposed failure-aware CPN. Each
experiment was conducted 10 times and the values presented are the average
of these runs. The values missing in the delay graphs are due to the fact that
at those points, most of the network nodes were under failure and there was
no route connecting at least one user’s source and destination. This is also
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confirmed by the loss graphs since at those points the packet loss is equal to
100%. Having 100% packet loss in some cases is not unrealistic. It is due to
the fact that we have a relatively small testbed and the effects of the failure
spread in such a network lead to the saturation of the network by the failures
and thus it is very probable that there is no path between the source and the
destination of a user, which in turn leads to total loss of the data packets.
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Figure 3: Average Packet Loss and Average Delay for all 3 users when
scanning rate = 0.05 nodes/s
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Figure 4: Average Packet Loss and Average Delay for all 3 users when
scanning rate = 0.1 nodes/s
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Figure 5: Average Packet Loss and Average Delay for all 3 users when
scanning rate = 0.2 nodes/s
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Figure 6: Average Packet Loss and Average Delay for all 3 users when
scanning rate = 0.3 nodes/s
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Figure 7: Average Packet Loss and Average Delay for all 3 users when
scanning rate = 0.4 nodes/s
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Figure 8: Average Packet Loss and Average Delay for all 3 users when
scanning rate = 0.5 nodes/s
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Figure 9: Average Packet Loss and Average Delay for all 3 users when
scanning rate = 0.6 nodes/s
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Figure 10: Average Packet Loss and Average Delay for all 3 users when
scanning rate = 0.7 nodes/s
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Figures 3-10 show the average packet loss and delay of all three users
throughout the duration of the experiment.It is evident that by using CPN
we have significantly less packet losses than when using OSPF. Also, packet
losses are further reduced when we use the failure-aware version of CPN. The
fact that with CPN and especially with the failure-aware CPN the network
has reached 100% losses less times, means that it had detected and avoided
the failures more quickly and had found paths between the sources and the
destinations when OSPF could not. As far as the delay is concerned, both
versions of CPN have kept the delay values lower than the OSPF. The failure-
aware CPN manages to keep the delay values in the same levels, if not better,
with the current CPN. In all cases the CPN protocol, on average, performs
better than OSPF and our failure-aware CPN has generally improved the
performance of CPN in respect to packet loss and has kept delay in the same
levels. This is more obvious in the summarised results presented next.

5.4.1. Result summary

Below we summarise the previous results of all the scanning rates into
one figure for the average packet loss and one figure for the average delay for
all users in the network.
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Figure 11: Average Packet Loss and Average Delay for all users when scanning rate =
[0.05 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7] nodes/s

Figure 11 presents the average packet loss and delay for all three users.
As expected the average packet loss increases as the scanning rate increases
since the infected nodes increase. The results show that, on average, the
QoS of the users is significantly improved when using the failure-aware CPN.
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Users lose less data during the experiment while the delay is kept on more
or less the same levels. This means that failure-aware CPN has detected and
avoided the failures more quickly than both the current CPN and OSPF.

6. Conclusions

In this paper we evaluated the performance of the CPN routing protocol
in the presence of network worms which cause node failures. We provided
experimental results showing the resilience of CPN and its comparison with
the IP protocol. The experiments were conducted in a real testbed and the
results demonstrate CPN’s ability to guide the network during a crisis by
adapting quickly to the network changes without significantly affecting the
QoS provided to the users of the network. We have also described a failure
detection element which is shown to further improve the performance of CPN
during failures.

Further work could include experimental evaluations in scenarios of worm
propagations based on epidemiological models or mathematical models de-
rived from empirical data. Also, we acknowledge that we conducted the
experiments in a testbed that is relatively small in the context of epidemics.
In order to investigate epidemics we need a significantly larger network by
using for example PlanetLab nodes [25]. Furthermore, the failure detection
component proposed in section 4 could be further improved by finding the
optimal time a node has to wait until it considers a link part of a failed
path. Finally, the failure emulator described in section 5.2 can be used to
identify the real-time network parameters that could proclaim the existence
of a computer worm before it actually spreads throughout the network.
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