
 
 

 

 

Abstract—This paper outlines the development of a cross-
correlation algorithm and a spiking neural network (SNN) for 
sound localisation based on real sound recorded in a noisy and 
dynamic environment by a mobile robot. The SNN architecture 
aims to simulate the sound localisation ability of the mammalian 
auditory pathways by exploiting the binaural cue of interaural 
time difference (ITD). The medial superior olive was the 
inspiration for the SNN architecture which required the 
integration of an encoding layer which produced biologically 
realistic spike trains, a model of the bushy cells found in the 
cochlear nucleus and a supervised learning algorithm. The 
experimental results demonstrate that biologically inspired 
sound localisation achieved using a SNN can compare 
favourably to the more classical technique of cross-correlation.  

I. INTRODUCTION 
NE of the key functions that the ears and auditory 
pathways perform is the ability to determine the point of 
origin of a sound source. It is a powerful aspect of 

mammalian perception, allowing an awareness of the 
environment and permitting mammals to locate prey, 
potential mates and predators [1]. The neural components of 
sound localisation are complicated, as the location of a 
stimulus can only be determined by combining input from 
both ears [2].  

Mammalian sound localisation is determined with a 
combination of binaural cues; ITDs, which are processed in 
the medial superior olive (MSO) for low frequency sound-
signals and interaural intensity differences (IID), which are 
processed in the LSO for high frequency sounds (> 2 kHz) 
[3].  Both the LSO and MSO are located within an area of 
the auditory system called the superior olivary complex [3]. 
The combination of ITD and IID processing is better known 
as the “duplex theory of sound localization” and was first 
devised by Thompson and Rayleigh [4-5]. In this paper there 
is a focus on sound localisation by means of ITD, defined as 
the different points in time at which a sound from a single 
location arrives at each individual ear [6].  From this time 
difference, the brain can calculate the angle of the sound 
source in relation to the head [7].  

The ITD cue works most effectively for sounds greater 
than ~200 Hz to about 1.5 kHz in humans since the sound 
wavelengths are wide and sound intensity is not discernibly 
weakened by the size of the head [8]. Low frequency sound 
 

Manuscript received January 5, 2011. This research is supported under 
the Centre of Excellence in Intelligent Systems (CoEIS) project, funded by 
the Northern Ireland Integrated Development Fund and InvestNI.  

The authors are with the Intelligent Systems Research Centre, School of 
Computing and Intelligent Systems, University of Ulster, Magee Campus. 
(phone: +44 (0)28 71675166; email: j.wall@ulster.ac.uk).  

waves have a wavelength that is greater than the diameter of 
the head; therefore each ear receives the sound wave at a 
different point in time. For example, if a sound signal 
originates to the extreme left of the head, it will reach the left 
ear first and after a time delay which is specific to the 
azimuthal angle of the sound source it will then reach the 
right ear, generating the ITD. ITDs occur at both the onset of 
the sound and throughout the duration of the sound, known 
as onset ITDs and ongoing ITDs respectively [9].  

The ITDs in continuous and periodic sounds produce 
interaural phase differences (IPD), i.e. differences in the 
phase of the sound wave that approach each ear. The fibers 
of the auditory nerve which respond best to low frequencies 
produce spike trains which are time locked to the signal’s 
sine curve, meaning that the intervals between spikes is a 
period of the curve or a multiple of that period. This feature 
of the auditory nerve is called phase-locking and is important 
in sound localisation for extracting the ITD from the sound 
arriving at each ear; it also occurs in bushy cells of the 
cochlear nucleus and can only occur at low frequencies, [2].  

In 1948, Jeffress created a theoretical computational 
model to show how ITD works in mammals to determine the 
angle of origin of a sound signal [10]. This is one of the 
earliest and most durable models of binaural hearing 
developed and is used to this day as a basis for binaural 
hearing research. It was quite remarkable considering how 
little was known at the time about the structure of the 
auditory system. The model involved three distinct theories: 
1. The inputs to the binaural cells are phase-locked and 

thus retain accurate timing information. 
2. A set of delay lines vary the axonal path lengths 

arriving at the neuron. 
3. An array of coincidence detector neurons fire 

maximally when presented with coincidental inputs 
from both ears; these coincident inputs only occur when 
the ITD is exactly compensated for by the delay lines.  

The fundamental importance of Jeffress’ model and why it 
has become the prevailing model of binaural sound 
localisation is its ability to depict auditory space with a 
neural representation in the form of a topological map, even 
though Jeffress himself acknowledged the simplicity of his 
model.  

One of the earliest studies of the MSO was that of 
Goldberg and Brown in 1969 which showed that MSO 
neurons were most responsive to low frequencies and 
extremely sensitive to ITDs [8]. Also of significance was 
their finding that the spike output of MSO neurons varied 
with ITD, affirming them to be one of the most temporally 
sensitive neurons in the nervous system. They also showed 
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that differing neurons of the MSO were most sensitive to a 
particular ITD, called their “best ITD”, which depended on 
the time delay of their inputs, i.e. neurons fired maximally 
only when their inputs passed a delay which allowed their 
inputs to arrive in coincidence at the neuron. Consequently, 
Goldberg and Brown gave weight to Jeffress’ simple model 
for processing ITDs over twenty years later. Many other 
researchers continued in this vein, producing findings which 
supported and augmented Goldberg and Brown’s work [8, 
11-14].  

The research presented in this paper builds on earlier work 
in biologically inspired sound localisation where the input 
consisted of experimentally derived HRTF data from an 
adult domestic cat [15-16]. We feel that it is beneficial to 
extend this research to be applicable to the area of mobile 
robotics, and the research presented in this paper is a proof 
of concept for this overall aim which establishes that a 
biologically inspired SNN can compare favourably in its 
sound localisation ability to the more classical methodology 
of cross-correlation. Mobile robotics provides the ideal 
platform for the development of a human-like auditory 
system which can operate in a dynamic and noisy 
environment. In this paper, two different approaches for 
sound localisation are presented and their ability to perform 
accurate sound localisation compared; a classical method in 
the form of cross-correlation and a biologically inspired 
method using SNNs influenced by the Jeffress model. Both 
methodologies record sounds in a dynamic and noisy 
environment using a mobile robot.  

The paper is organised as follows. Section II outlines the 
experimental setup and the two methodologies used, cross-
correlation and SNNs. Section III presents the results 
obtained from each methodology, discusses and compares 
these results and also draws a comparison to the state of the 
art. Finally, Section IV presents the conclusions.  

II. METHODOLOGY 

A. Robotic Framework 
A Pioneer 3-DX mobile robot with a pair of stereo omni-

directional microphones placed 30cm apart was used in the 
robotics arena of the Intelligent Systems Research Centre at 
the University of Ulster. A Vicon motion tracking system 
was used to model both the robot and the sound source with 
accurate positional data using reflective markers and high 
speed cameras. These models were used to determine the 
actual angle of the sound source in relation to the mobile 
robot using coordinate geometry with the inverse of the 
Cosine rule, see Figure 1: 
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Knowing the actual angle allows the accuracy of both the 
cross-correlation algorithm and the SNN to be determined.  

The sound source was placed at a distance of 1.5m from 
the robot and the robot was rotated to record a low frequency 
(400 Hz) two second pure tone at seven different angles in 
the range of ±60° in steps of 20°. The sound samples were 

recorded at a sampling rate of 88.2 kHz and the maximum 
rise time for each individual sound sample was 50 ms. This 
limited range of angles and single pure tone frequency were 
used as the work presented in this paper is a proof of concept 
towards the development of a human-like auditory system 
implemented on a mobile robot. Ten recordings were made 
at each angle to produce an input dataset for both the cross-
correlation algorithm and the SNN. Figure 2 shows an 
example of a pure tone sound recorded by both the left and 
right microphones, where the sound originates from a -60° 
angle. These recordings resulting from a simple pure tone 
sound source are extremely noisy and this demonstrates the 
difficulty their processing with either the cross-correlation 
algorithm or the SNN will be. 
 

 
Fig. 1: Use the inverse of the Cosine rule to determine angle θ2 which 
enables you to determine angle θ1, where L is the position of the left 
microphone; R is the position of the right microphone; C is the centre point 
between the two microphones and S is the sound source. 
 

 
Fig. 2: Two second recording of sound signal at sampling frequency of 88.2 
kHz for each microphone, g(t) and h(t), at -60°. 
 

B. Sound Localisation by Cross-Correlation 
Both the cross-correlation algorithm and the SNN were 

developed in Matlab. The recorded signal was read into 
Matlab producing a waveform for each microphone, g(t) and 
h(t), and the sampling frequency (f=88.2 kHz). The sampling 
frequency provides the time interval t for each sample 
within the waveforms:  

 1
t

f
 (1) 

The cross-correlation function is then applied to the two 
waveforms producing an offset  which corresponds to the 
number of samples within either of the waveforms, g(t) and 



 
 

 

h(t), which will cause full correlation, i.e. cause the two 
wave-forms to be in phase with one another. Cross-
correlation is applied to the two waveforms, g(t) and h(t): 

1
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where T is the length of the sample. Figure 3 plots the cross-
correlation function for an angle of -40°, showing the offset   

of 59 samples. The offset corresponds to the maximum 
value in the cross-correlation function. From this offset , 
the ITD can be determined: 

 *ITD t  (3) 
 and thus the azimuthal angle θ of the original sound source: 

 1 *
sin airC ITD

c
 (4) 

where airC is the speed of sound, 343.477m/s, and c is the 
distance between the two microphones in metres.  It should 
be noted that the ITD is calculated across the entire sound 
signal, and not just at the onset of the signal. 
 

 
Fig. 3: Cross-correlation function for -40° and the resulting offset σ of 59 
samples 
 

The accuracy of the estimated angle produced by the 
cross-correlation algorithm can vary depending on the 
sampling rate used when recording the sound signals. The 
ITD is calculated based on the offset which corresponds 
to the number of samples within either of the waveforms 
which will cause full correlation; and the time interval t of 
each sample within the recorded signal vectors. The range of 
offsets produced by the cross-correlation function varies 
greatly in regards to differing sampling rates used. When one 
second of data was recorded using three differing sampling 
rates, 8 kHz, 44.1 kHz and 88.2 kHz, the number of 
estimated angles that could be calculated differed greatly.  

Figure 4 demonstrates that only six different angles can be 
estimated when the sampling rate of 8 kHz is used; 26 
different angles with a sampling rate of 44.1 kHz; and 53 
angles with a sampling rate of 88. 2 kHz. It is for this reason 
that all recordings made in these experiments used a 
sampling rate of 88.2 kHz in order to achieve the greatest 
level of granularity.  

C. Sound Localisation by Spiking Neural Networks 
In contrast to the cross-correlation method, using networks 

of spiking neurons to generate the azimuthal angle is more 
biologically inspired as they are based on the modelling of  

 

 
Fig. 4: Range of estimated angles is dependent on the sampling rate used 
when recording the sound signals.  
 
the interconnecting system of neurons in the auditory 
pathway and they take individual spikes as input which 
allows for spatio-temporal information to be included in the 
computation [17]. The SNNs outlined in this paper use the 
same waveforms, g(t) and h(t), as the cross-correlation 
algorithm and use a learning algorithm to classify these 
inputs to angles of location.   
 

 
Fig. 5: SNN architecture for angles originating from the range -60 to 0° (left 

network) 
 

 
Fig. 6: SNN architecture for angles originating from the range 0° to 60° 

(right network) 
 

Reflecting the bilateral symmetry of the nervous system, 
there are two SNNs; the topology of the left network 
corresponding to angles in the range of -60° to 0° can be 
seen in Figure 5; and the right network relating to the angles 
0° to 60° in Figure 6. For the duration of this section, 
processing of the left network will be described as both 
networks have identical processing; they can be considered 
as mirror images of one another. There is a unique ITD for 
each angle in the positive or negative range which is 
dependent on the distance between the two ears/microphones 



 
 

 

and the speed of sound [8], i.e. the ITD for each angle ± is 
the same. This is the reason why angles in the range of -60° 
to 0° are not processed together with angles in the range of 
0° to +60°, as to do so would cause confusion when the SNN 
is being trained to produce an estimated angle as output. It is 
also the reason why an output neuron for 0° can be placed in 
both networks.  

The input waveforms, g(t) and h(t), from the left and right 
microphones pass through the input layer which consists of 
Ben’s Spiker Algorithm (BSA); a spike encoding 
methodology which uses a convolution filter optimised for 
encoding by a genetic algorithm [18-19].  BSA converts the 
sound signals into biologically realistic phase-locked spike 
trains, which are then routed through a bushy cell neuron. 
This can be seen in Figure 7, where the output of the BSA 
algorithm and the output of the bushy cell layer for a portion 
of the waveform g(t) are plotted. 

Knowledge of the bushy cells in biology is limited, 
however it is known that the main function of these cells is to 
maintain the phase-locked signal and to minimise noise. In 
the network, spike trains such as those in the centre panel of 
Figure 7 proved difficult to train due to their bursting nature 
and erroneous spikes which are not phase-locked to the 
waveform. Therefore, the role of the bushy cell layer in this 
network is to remove any erroneous spikes in the spike train 
(i.e. to remove noise), and to transform the phase-locked 
bursts to single spike instances. 

 
Fig. 7: The waveform g(t) as it is encoded into a spike train by the BSA 
algorithm and then routed through the bushy cell layer 
 

This processing was implemented using a LIF neuron. All 
LIF neurons in the network are modelled by [20]:  

 ( )mem in syn
dv

v R I t
dt

 (5) 

where τmem refers to the membrane time constant of the 
neuron, v is the membrane potential and Rin is the membrane 
resistance, driven by a synaptic current Isyn(t). The phase-
locked single spike output in place of a burst was achieved 
through selection of an appropriate neuron threshold and 
refractory period. The parameters are fixed for every bushy 
cell in the network, i.e. the same parameters are used for 
every angle with which the network was trained and tested. It 
is not the time of the first spike in each resulting spike train 
that is important when the two spike trains synchronise at the 
output neurons; each individual spike is necessary for the 

sound localisation process to be achieved, i.e. the ITD is not 
extracted just at the onset of the stimulus but across the 
length of the stimulus. The delay structure causes the two 
spike trains to become coincident at the output layer, each 
spike in the left spike train will then be in coincidence with a 
spike in the right spike train, causing maximum output.  

 
Fig. 8: Pre and postsynaptic neurons with interconnecting delay lines d1 to 
dm, and weights w1 to wm, from [21].  
 

Figure 8 shows how the multiple delay structure, similar to 
the graded series of delays found in the biological MSO, is 
used in this model; where tpre is the presynaptic spike time; di 
are the axonal delays; wi are the weights; and tpost is the 
postsynaptic spike time. The output spike from neuron A is 
passed to i interneuron connecting pathways, each with their 
own weight wi, where (i = 1, m).  

Each delay line is connected to every output neuron, also 
modelled by LIF neurons, producing sixteen synaptic 
connections in the output layer; the synaptic weights are 
identical before training begins. Therefore, every output 
neuron will receive both in-phase and out-of-phase inputs for 
every angle. The objective of the trained network is to 
associate each delay to a particular output neuron. For 
example, the first delay will become associated with the first 
output neuron, and so on. To do this the post-trained weight 
on the connection between the associated delay and output 
neuron must be larger than the weights on any of the other 
connections also providing stimulus to that output neuron. 
Ultimately, the association of particular delay lines within 
the delay structure to particular output neurons is specified 
by the training algorithm alone, and is not a matter of 
network design.  

A multiplicative form of Supervised Hebbian Learning 
(SHL) using STDP windows was employed [22]; the 
multiplicative form was found to produce more stability 
during the training period. During training the following 
behaviour occurs: 

1. Determine whether the current output neuron is being 
supervised or not. 

2. If it is supervised, the positive part of the STDP window is 
used to increase the weights on the synapses between the 
supervised output neuron and the appropriate delay lines 
providing the current input.  

3. If it is not supervised, the negative part of the STDP 
window is employed to decrease the weights on the 
synapses between the non-supervised output neuron and 
any delay lines providing the current input.  

This training algorithm proved successful in producing the 
desired output of the network, i.e. the appropriate output 
neuron has the highest firing frequency when its associated 
input data is routed through the network.  



 
 

 

The final weights on the synapses between the delay line 
connections and each output neuron at the end of training are 
bimodal, i.e. the delay which is associated with an output 
neuron after training has the largest weight and the weights 
associated with any other delays are much lower. This 
distribution of weights allows the fully connected SNN with 
a generic delay structure to produce the desired angles with 
the accuracies outlined in the next section.  

III. RESULTS 

A. Simulated Data 
An initial experiment was carried out to test the cross-

correlation algorithm using a set of simulated waveforms 
from the MIT dataset [29]. These are a set of HRTF 
measurements from a KEMAR dummy head microphone 
which represent the left and right ear impulse responses from 
a Realistic Optimus Pro 7 loudspeaker mounted 1.4 metres 
from the KEMAR. Impulse responses are available for 710 
different azimuthal positions with elevations between -40° 
and +90°. A left impulse response for -90° can be seen in 
Figure 9.  

 
Fig. 9: Left and right impulse responses from a sound source at -90° 
 

 
Fig.10: Results of cross-correlation algorithm when presented with HRTF 
impulse responses convoluted with a waveform 

 
These impulse responses were convoluted with a single 

channel waveform to produce a set of left and right simulated 
data in the range of ±90° in steps of 10° at an elevation of 0°. 
Convolution is a mathematical way of combining two 
waveforms to generate a third waveform: 

 ( ) ( ) ( 1 )
j

w k u j v k j  (6) 

where w(k) is the new waveform, u(j) is the impulse response 
and v(k) is the original waveform. The results of this 
experiment can be seen in Figure 10 and show that the cross-
correlation algorithm is very successful at producing the 
azimuthal angle.    

B. Experimental data 
The next experiments involved utilising the waveforms 

recorded by the mobile robot in a noisy and dynamic 
environment. Initially, the cross-correlation algorithm was 
tested with the entire two second low frequency (400 Hz) 
waveforms. Ten waveforms for each angle in the range of 
±60° in steps of 20° were presented to the algorithm. Table I 
outlines the resulting mean and standard deviation of the 
estimated angles. It is clear to see, that this classical 
methodology is proficient in its ability to perform sound 
localisation on real sounds, achieving a mean error of ±3.3°. 

 
TABLE I 

MEAN  AND STANDARD DEVIATION RESULTS OF CROSS-CORRELATION 
ALGORITHM  

 Cross-Correlation  
Actual 
Angle 

Mean 
Estimated Angle 

Standard 
Deviation 

-60° -58.95° ±0.00° 
-40° -47.07° ±0.57° 
-20° -20.52° ±0.53° 
0° +1.34° ±0.47° 
+20° +17.14° ±0.38° 
+40° +35.11° ±0.86° 
+60° +54.54° ±1.41° 

 
For computational efficiency, a sample of each two second 

low frequency waveform was presented to the SNN. This 
sampling related to approximately 70 ms of the sound 
stimulus; the sample was taken from the half way point of 
each waveform. Again, ten waveforms for each angle in the 
range of ±60° in steps of 20° were presented. In order to 
directly compare the two methodologies, the ten waveforms 
for each angle were also presented to the cross-correlation 
algorithm. Table II outlines the resulting mean and standard 
deviation of the estimated angles for both methodologies. 

 
TABLE II 

MEAN AND STANDARD DEVIATION RESULTS OF CROSS-CORRELATION 
ALGORITHM AND SNN 

 
 Cross-Correlation Spiking Neural Network 

Actual 
Angle 

Mean 
Estimated 

Angle 

Standard 
Deviation 

Mean 
Estimated 

Angle 

Standard 
Deviation 

-60° -67.01° ±15.88 -59° ±3.06° 
-40° -55.32° ±18.33° -43° ±17.67° 
-20° -20.57° ±2.06° -23° ±6.74° 
0° +1.04° ±1.06° 0° 0° 
+20° +17.69° ±0.84° +20 0° 
+40° +37.15° ±1.92° +60° 0° 
+60° +55.82° ±1.95° +60° 0° 
 



 
 

 

The results show a mean error of ±4.75° for the cross-
correlation algorithm and ±3.8° for the SNN. When 
presented with a limited sample of each waveform (70 ms), 
the SNN performs with a higher accuracy. Furthermore, 
considering that all ten samples for +40° classified 
incorrectly for the SNN, the fact that the mean error is still 
low suggests that the SNN methodology has considerable 
potential for performing both accurate and biologically 
inspired sound localisation. Establishing that a biologically 
inspired SNN can not only compare favourably but improve 
on the classical methodology of cross-correlation for limited 
samples of the sound stimulus is important for the overall 
aim of this research, i.e. incorporating a human-like auditory 
system within a mobile robot.  

In order to carry out this research, an important step was 
to know and understand the state of the art. With the 
knowledge of these existing techniques, it was possible to 
formulate ideas which would advance said techniques in a 
more biologically inspired way. Table III outlines and 
compares these techniques. It is difficult to make direct 
comparisons between the results achieved in this research 
and the work outlined by other researchers. This is due to the 
many different methods that are used for sound localisation 
modelling. However, based on the combination of the 
classification results, the biologically inspired SNN based 
architecture and the use of a learning algorithm; we feel that 
this research advances the work in this field. 

IV. CONCLUSION 
This paper presents a comparison between two 

methodologies for sound localisation; a classical cross-
correlation method and a biologically inspired SNN. Real 
sounds recorded by a mobile robot in a noisy and dynamic 
environment are used as input to both models. The cross-

correlation method produces satisfactory results with a mean 
error of ±3.3° when presented with the entire waveform. 
However, when a limited sample of the stimulus was 
presented to both the cross-correlation algorithm and the 
SNN, mean errors of ±4.75° and ±3.8° were achieved 
respectively. This suggests that the SNN is more adept at 
producing accurate angles of location with a more limited 
input stimulus. Furthermore, the SNN technique also 
compares favourably to the state of the art.  

Future work is planned which will involve extending the 
SNN to take different types of sound as input, from pure 
tones of different frequencies to complex sounds such as 
speech. A control system for the mobile robot based on the 
azimuthal outputs of the SNN will be developed. 
Additionally, issues associated with the encoding of spike 
trains and the noise reduction of the original waveforms will 
also be investigated. Future experiments will also outline 
how the SNN accuracy is affected by different environments; 
and the comparison between the cross-correlation algorithm 
and the SNN will be discussed against many more factors 
rather than just performance accuracy. Such factors will 
include reverberation levels, robustness to noise and the 
computational complexity of the two methodologies.  
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