
A Framework to Support Collaborative Software Development and Reusability

Y. Arafa, C. Boldyreff, M. Dastbaz

School of Computing, IT and Engineering

University of East London

London, UK

{y,arafa;c.boldyreff,m.dastbaz }@uel.ac.uk

Abstract—This paper motivates and sets out a framework for a

high-level approach to software component integration. The

approach provisions for smooth integration, management and

scalability. It builds on the concept of SaaS (Software as a

Service) and the annotation of software components with

formal specifications that instruct interoperability through a

unified interface. This work is part of ongoing research on the

Pandora1 project.

Keywords-Software as a Service, Service Ontology

Application, Component Reusability.

I. INTRODUCTION

Component-based system development is by nature open
and extensible, and must support data exchange from a
diverse range of sources. This opens way to problems of
identifying appropriate components, and their corresponding
data exchange format and pattern. Consequently,
incorporating systems must agree on shared representations
with the expected interoperability and functionality
specifications for successful integration. Typical component-
based integrations inherently experience one or all of the
following problems [3, 4, 7, 11, 13]:

• Requirements mismatch and interoperability issues
between components.

• Difficulty finding components.

• Functionality assumption Conflicts.

• Overall functional break down with the slightest
perturbation to API constructs and/or their Inputs-
Outputs-Preconditions-Effects (IOPEs).

• Problematic to scale when additional or constituent
data or components are required, making upgrades
or expansion difficult to readily implement.

• Increased maintenance problems as system
complexity increases.

The above challenges are unlikely to be overcome
without significant improvement to the underlying
development environment and infrastructure. The success of
the component-based integration process, hence, relies on
both functional and non-functional considerations. Develop-
ment considerations should include the following [5, 3]:

• Well-defined component interrelationships.

• Unified interoperability mechanism between
components.

• Common understanding of the data exchanged.

• Common understanding of component functionality
and goals.

A promising solution is to make use of ontologies.
Ontologies provide a well-founded mechanism for the
representation and exchange of structured information [18].
Information about components, their services and their
Inputs-Outputs-Preconditions-Effects (IOPEs) can
accordingly be formulated in agreed and dedicated service
ontologies. Ontology-based techniques provide a means to
describe, and reason about functionality and how to interact
with other software entities regardless of their technical
origins. We introduce an ontology-based approach for
specifying the goals of components, and the properties
relevant for deployment and assembly in diverse
applications.

The following sections outline this approach based on a
service-oriented model that uses ontologies to formally
characterise components and describe their interfaces,
specifying possible interconnections between them and
provisioning for semantically annotating data objects that
may be exchanged. The approach aims to mitigate
difficulties arising from component integration and their
adaptation into heterogeneous distributed systems.

II. BACKGROUND

A. Service-Oriented Architectures (SOA)

Service-oriented architectures are principally designed to
resolve the complexity described in the previous section. In a
SOA, services are defined by as a set of well-defined
interfaces, which are generic in nature; along with a schema
for the input required by the service to function correctly and
a description of the output produced. The inherent nature of
SOAs is that services work with an extensible schema and
thereby can cope with various different types of other
services that it may interact with [12].

Continued success of SOA-based applications built for
the Web have shown encouraging results that service
ontologies used to describe Web services and their
availability have managed to alleviate many of the problems
of service integration [4, 7, 10, 12] by providing formal
means for the following [11]:

• Creation of complex, realistic, and scalable networks
of component inter-relationships

• Distribution of autonomous controls and monitors

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219372768?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

• Dynamic modification of the component execution
structure

• Adaptation and evolution of the overall systems
using the services.

B. Service Oriented Models

The Service-Oriented Model (SOM) is a relationship
model described by the W3C Web Services Architecture
Group and is created to explicate the relationship between
the services an entity provides and requests. The model is
considered the underpinning for developing service
architectures [6] and facilitates for loosely coupled software
components to be integrated within other software systems.

The fundamental elements in the model are that of goal
state (states of some service or resource that is required by
other software entities or individuals that may intend to use
the service), service (“an abstract resource that represents a
capability of performing tasks”), task (“an action or
combination of actions that is associated with a desired goal
state”), role (defines a set of related tasks carried out and
identified by message properties) and agents (which are
“capable of and empowered to perform the actions
associated with a service on behalf of its owner”) [15].

Component-based software engineering and service-
oriented software engineering are two of the most widely
used engineering paradigms among the current software
development community. Despite being developed
separately, both paradigms have much in common, resulting
in that in many cases bijective concepts are labelled
differently [3]. Service-oriented software bears many
similarities to traditional software components, in such they
are autonomous or semi-autonomous entities with explicit
and succinct interfaces that are distinctly designed with
reusability and modularity in mind. The distinguishing point
is predominantly the requirement for standard communicat-
ion models, since such services are geared for the web.

The model serves as a useful reference map in
considering the elements of service oriented architectures
and a rigorous approach to developing them. The mechan-
isms defined by the SOM offer means to implement the
functionality and focus on the service dynamics and
substitutability.

C. Components as Services

A typical view of components is that they implement one
or more provided interfaces, where an interface is a contract
of functional behaviour. In this sense, interfaces provided by
components are very similar to service interfaces. This
makes components an ideal candidate for implementing
services, where a service has a provided interface.

SOMs are actually based on a simple component model
[2], where a service encapsulates a coherent set of
operations. A central objective of component development is
the separation of computation and operability or
interoperability. Computational aspects are abstracted by
interfaces with well-defined descriptions. These descriptions
are made public and formulate the means for interaction
between different entities.

Considering components as services that provide an
independent function or process, the Pandora integration
architecture will build upon the concept of SaaS (Software as
a Service). Components will be described in terms of the
service they provide, the API interface name and the IO
parameters and functional conditions required. This
information will be annotated into a dedicated component
ontology. Using ontologies may allow the dynamic assembly
of software and round-up into a mash-up tool. This approach
provides the mechanism to support technology independent
software component invocation through the annotation of
component services. Providing leeway for component
developers to focus on the functional processes required
from the services.

III. ONTOLOGY-BASED APPROACH TO INTEGRATION

The impetus for using an Ontology-based approach to
integration is to provide a formal means for effectively
connecting disparate components and mitigating inevitable
problems both at the development phase, as well as possible
future system upgrade or expansion phases.

Integrating different components presents integration
implementers with problems on two levels: the
interoperability of components from different platforms and
vendors; and possible application conflicts resulting from
integrating them. Consequently, integration demands
consistent representations of data exchange, unified
interfaces between software entities, and an effective
approach that enables integrated components to function
across various platforms [1, 8]. It is hence necessary to build
an infrastructure for integration, which is based on such
robust conceptual models. We argue that ontologies are a
promising means to achieve these conceptual models, since
they can be used to promote common understanding, and
they can be used as basis for comprehensive information
representation and communication [10,17].

A. Service Ontologies

Ontologies classifying and describing services are called
Service Ontologies. OWL-S [15] supplies a core set of
ontology concepts for describing the properties and
capabilities of Web services in “unambiguous”, “computer-
interpretable” form. OWL-S mark-up of services is designed
to support the automation of Web service operation, which
includes: automated Web service discovery, execution,
interoperation, composition and execution monitoring [15].

There are existing conceptual models for describing
services such as WSMO, WSDL-S, SWSF, SAWSDL. Like
OWL-S, these models also address the semantic nature of
web service descriptions thereby making an effort to
automate the web service life cycle [2].

In OWL-S, and as delineated in Figure 1, a service is
described by specifying a function name, the inputs required,
the output of the service and its target address for execution.
Service ontologies supplement Web service application
development by providing the information required to enable
automated services discovery, the execution and assembly of
composite web service applications. The idea is to annotate
services, enabling the automation of the service life cycle.

B. OWL-S

The OWL-S service ontology is classified into three
categories: Profile, Model, and Grounding. A service
component is actually an instance of the service and is linked
to these categories by different properties.

Figure 1. Basis for the Pandora Component Ontology (OWL-S [15]).

The profile describes the functionality a service can
provide and details on the input and output requirements for
that service, as well as any preconditions and effects the
service may have as constraints. Input specifies the actual
input parameters required for invoking the web service
successfully; output specifies the outcome produced from the
service execution that a requesting client expects and
receives; preconditions define the constraints that need to be
satisfied for successful execution; and effects describe the
state of the service after execution.

The service model describes how the service should work
in order to achieve its functionality. It describes atomic
processes, composite processes and the message composition
involved in invoking the service. Atomic processes are the
processes that undergo direct execution requiring a set of
specified input parameters; whereas composite processes are
those processes that involve the execution of a combination
of different services.

Service grounding describes how services are invoked.
Grounding defines the network protocols, data and exchange
formats needed in order to execute the service successfully.

Although OWL-S is intrinsically developed to define and
describe Web-service ontologies, it is suitable to define the
Pandora components as services provided even if the end
product is not web-based. We are designing the overall
Pandora integration architecture as a SOA, considering a
SaaS (Software as a Service) solution, where components are
services. Therefore, the OWL-S specifications could also
apply to component descriptions.

C. A Component-Service Ontology

The Component Service Ontology can now loosely be
defined in terms of the following along the guidelines set out
by W3C in [16]:

• A classification of re-usable components according
to the functions they provide.

• A mechanism for rigorously describing, identifying
and integrating within heterogeneous systems both
during design and at runtime.

Effectively, the proposed ontology will be a description
of the Pandora component APIs and include the details
necessary to invoke and use the implemented components.
The components themselves will reside in a common
repository of services that is updated throughout the Pandora
system development phase, as well as when or if future
upgrades to the Pandora system occur.

D. Component Descriptors

The following table outlines the descriptors that will be
produced for each of the outer-level Pandora components.
The descriptors are required in order to compile an ontology
of component services. We have included details based on
the OWL-S specifications and the technical requirements
necessary for integration purposes. However, the list as of
the time of writing this document may not be exhaustive and
could require future updates as development progresses.

The information required for each component that is
developed on the Pandora project is defined in Table 1
below. The information shall be provided in tabular form,
which will be parsed into OWL-S RDF format for use by the
Component Middleware.

Category Service category the component
belongs to.

Class For native lang APIs include class
component belongs to

Identifier Component construct or API name
Description Text describing the functionality or

service component provides.
Author(s) Partner/ individual developer(s)
Version Number
Creation Date Date
Modified Date Date
Location URL location of component if

applicable. Otherwise, local assumed.
Progr. Language Java, C++, C#,
OS Platform Windows, Mac, Linux
Input List of input (if any) require by the

component, along with data types.
Output List of output (if any) produced by the

component, along with data types.
Precondition List of conditions that should hold

prior to the service being invoked.
Result Condition List of statements that should hold

true if the service is invoked
successfully. e.g. “Package being
delivered”

TABLE I. COMPONENT DESCRIPTORS TABLE TYPE SYLES

IV. DESIGNING FOR EXTENDED FUNCTIONALITY AND

USE

Development projects are usually produced with the
intention of possible future scalability. The integration

proposal supports the seamless integration for future
extension to a development environment by describing
parameters and functionality and a mediator that will
manipulate the integration and seamless flow. Continuous
collaborative development may require the addition of
further components. Using a service-oriented architecture
and an ontology-based approach to component descriptions
provisions for the semantic integration of software
components, we aim to assist in the dynamic assembly of
additional components and plug-ins in future versions of
overall system.

Accordingly, the high-level approach to component
integration as proposed in this document will support the
following:

• Dynamic adaptation across development languages.

• Simple, unified component invocation through the
Pandora Mediator.

• Querying component availability and validating the
execution process.

• Elegant exception handling.

• Component code changes or evolution and recover
accordingly, supporting modular component
development.

A. An Integration Framework

The Pandora system architecture uses a component-based
design relying on the concept of component decoupling. This
is a strong principle of SOAs, which emphasises creating
components that are self-contained and have a clear
separation of concerns. There is a separation between the
function of individual components and the operation of the
Pandora system as a whole. Each component has distinct
functional behaviour that can be utilised by other
components through well-defined interfaces. Component
interfaces and behaviour descriptions will be advertised in an
agreed Pandora service ontology.

The architecture will be built as a SaaS (Software as a
Service) solution. The following principles govern the design
of the overall integration architecture. They reflect the
requirements for service oriented and distributed
environments in order to provision for the seamless
integration of the Pandora system components:

Service Oriented: providing a description of component
services that include aspects of communication, structure,
and processing logic. This includes service reusability,
decoupling, abstraction, autonomy, and discoverability.

Distributed: applied to the architecture middleware,
which supports the management of possible distributed
components transparently such that the execution process
can be scaled across a number of physically disperse servers.

Semantic annotations: providing rich and formal
description, based on OWL-S, of components and
behavioural models defined in the Pandora Component
ontology, which enables scalable and seamless
interoperation, discovery, reusability assembly.

B. A Conceptual Overview

A conceptual view of the integration framework is
illustrated in Figure 2. Based on the principles outlined

above, the framework uses ontologies for application
integration on the component interface level by
characterising components, specifying possible
interconnections between them and provisioning for
semantically annotating data objects that may be exchanged.
A component mediator is used to process the ontologies and
facilitate interaction between disparate components, thus
enabling integration at run-time.

Key to this approach is a design pattern that is domain
independent facilitated through the definition of a Pandora
Middleware. The middleware deals with the transition from
static, hardcoded interfaces between components to dynamic
interfaces via the middleware. The middleware then becomes
a universal interface used by individual components in an
overall assembled system. The idea is that components are
no longer directly interconnected, but do so via the Pandora
Middleware, thereby becoming accessible to all in a uniform
manner.

The proposed ontology will be utilised by the Pandora
Middleware to direct component integration. Any changes to
component interfaces and/or behaviour descriptions will be
maintained in this ontology. The Middleware will be able to
handle integrity problems if there are conflicts between the
advertised component interfaces and those expected by
individual components by looking up the ontology. The
middleware will degrade overall system functionality
gracefully by alerting requesting components to the required
format if mismatches occur.

Figure 2. Conceptual View of Ontology-based Component Integration.

The Component Mediator makes use of specially
constructed component adapters and data wrappers,
alongside a service ontology to enable software components
interoperability through service-sharing.

The Middleware is the core of the architecture providing
the main intelligence for integration and interoperation. It
consists of a number of components (middleware services)
where each component provides certain functionality within
an execution process. Each component exposes its
functionality through a number of interfaces, thus the
functionality of the component could be deployed by other
components through these interfaces.

The framework does not mandate that all components
must interact via the middleware. Indeed, components of a
common category may directly interact with each other
without the need for middleware mediation. This may be

particularly useful for components that are part of a pre-
assembled package. However, scalability of the components
within the package cannot be supported by the middleware
and must be handled externally.

The components that represent the middleware services
include functionality for component discovery, selection,
managing interoperability and run-time execution, data and
process mediation, exception handling and resource
management. In addition, the middleware shall be
implemented to operate in a distributed manner on a number
of physical servers connected using a shared message space.
Shared spaces provide a messaging abstraction for
distributed architectures, as well as supporting the scalability
of the integration process [7].

C. The Pandora Middleware

The middleware architecture is an internal
communication mechanism for an architecture that relies on
an events-based model. The overall architecture of the
middleware is structured into four main parts: an Event Bus,
a Component Mediator, an Execution Manager and a
Resource Manager. This section describes the overall
middleware architecture and briefs on how its various

components interoperate. Figure 3 shows a high-level
depiction of this architecture.

1) Event Bus
The Event Bus maintains and manages invoked

components and sequences of requests for component
services. It combines event driven and service-oriented
approaches to request handling and management, so as to
facilitate seamless, persistent interoperability of components
across heterogeneous platforms.

The Event Bus serves as the first-line of interaction for
components. Once a request for a service has been initiated,

an event is created and placed on the bus with a time stamp,
a sequence number, a priority and a process state. It
subsequently passes request information to the Component
Mediator for appropriate handling; then once invoked
successfully, it is placed back on the bus with an available
state. Execution and data exchange can now begin.
Execution is managed with the support of the Execution and
Resource Managers.

Once components are available, their services are
accessible to all other requests that can satisfy the defined
preconditions. The Event Bus further uses the Component
Mediator to enable seamless interoperability between
deployed components.

2) Component Mediator
The Component Mediator makes use of specially

constructed component adapters and data wrappers,
alongside a component (service) ontology, to enable
component interoperability. Its functionality includes
validated component invocation, messaging and data
transformation.

The Component Mediator also has the role of reconciling
integration conflicts that may occur when trying to invoke a
requested component. It can deal with the reconciliation of

message exchange patterns on the component descriptions as
defined in the Component Ontology.

The Component Mediator consists of the following:

Request Handler
Requests are instigated by components requiring

particular services at run-time or when initialising the
Pandora system. Requests are initially received by the Event
Bus and passed on to the Component Mediator where the
Request Handler initiates the process of validation and
invoking requested services.

Figure 3. Integration Middleware Architecture

Requests are made through a unified API call to the
Event Bus that includes the necessary parameters that satisfy
a service’s IOPE requirements.

Component Lookup
This provides a component discovery mechanism that

seeks to find the required component service description(s)
that match the goal specified by the requester. It returns a
best-match component service that satisfies the supplied
requirements. It may return a “not found” string indicating
the requested service component is either not available or
that the information supplied is not correct, in which case the
results pass through the Exceptions Handler for elegant
system error handling.

Future versions of the system may provide more than one
component that provides the same service. The difference in
this case would be their IOPE and possibly other processing
variations. In this situation a list of component services will
be returned. This necessitates the introduction of a new
middleware component capable of intelligently selecting the
most appropriate service for the requester. However, at this
stage and for the purposes of the current Pandora system
integration requirements, only the aforementioned
functionality will be supported.

Component Adapter
The Component Adapter is used to map an abstract

interface to another object, which has the required functional
role, but a different interface. An example of use is to one
component that uses Java.

Runtime Validator
The Runtime Validator makes sure that a requested

components service is available, that it can be located at the
URL specified in the Component Ontology, that all the
IOPEs are satisfied correctly and that the component itself is
executed and is running correctly.

Data Wrapper
The Data Wrapper helps in data heterogeneity problems

that may occur during the lifecycle of all component
interaction at runtime. The Wrapper transforms instances of
input and output to and from services to the format expected
by each component service. It does so by wrapping data into
the format required as defined in the Language specification
described in the Component Ontology.

Exceptions Handler
The Exceptions Handler has the simple role of elegantly

capturing errors that may arise from any component and
sending back an error message wrapped in the appropriate
format to the service requester.

3) Execution Manager
The Execution Manager is responsible for the intelligent

routing in order to reliably connect and coordinate the
interaction of services across components and maintain
transactional integrity. It supports the Event Bus in handling
the events and controlling a complex series of interrelated
events. It consists of a Communications Handler that is
responsible for inter-component messaging that enables
message exchanges among component/event services.

4) Resource Manager
Initially, the Resource Manager handles the repositories

of components and ontologies, which are in persistent
storage. It is responsible for proving an interface for
querying and storing to the database storage used by the
middleware. Future implementations will handle other
resources required by the Pandora system.

V. CONCLUSION

We have proposed an integration approach using a
common, unified API interface that utilises the Pandora
middleware functionality to handle distributed component
interoperability. This will allow for components to
seamlessly interact and exchange common knowledge spaces
and data. The service oriented approach to the design and the
implementation of the middleware will allow integration
flexibility and system scalability as the project progresses
and subsystems and modules are evolved. The aim is to
assist in the dynamic assembly of additional components and
plug-ins in future versions of a development system. The
proposed integration framework described herein can be
applied to evolving developments in any software system
integration activity.

ACKNOWLEDGMENT

This paper is a product of research and development on
the Pandora project. Pandora is co-funded by the European
Commission under the mixed call on ICT and Security.

REFERENCES

[1] Athanasiadis, I., Rizzoli, A. and Janssen, S. (2009) “Ontology for
Seamless Integration of Agricultural Data and Models.” 3rd Intl Conf
on Metadata and Semantics Research (MTSR’09): 282-293.

[2] Booth, D., H. Haas, et al. (2004). "Web Services Architecture - W3C
Working Group Note 11 February 2004." Online:
http://www.w3.org/2002/ws/arch/.

[3] Breivold, H., Larsson, M. and Vasteras, R. (2007). “Component-
Based and Service-Oriented Software Engineering: Key Concepts and
Principles”. 33rd EUROMICRO Conference on Software
Engineering and Advanced Applications: 13-20.

[4] Bukhres, O. and C. J. Crawley (1996). “Failure Handling in
Transactional Workflows Utilizing CORBA 2.0” 10th ERCIM
Database Research Group Workshop on Heterogeneous Information
Management.

[5] Castro, R., P´erez, A., Garc´ıa, O. and Nixon, N. (2008) “Towards a
component-based framework for developing Semantic Web
applications” ASWC, Lecture Notes in Computer Science
(5367/2008):197-211.

[6] Dong, J., Sun, Y. and Yang, S. (2005). “OWL-S Ontology
Framework Extension for Dynamic Web Service Composition” ” 11th
International Conference on Software Engineering & Knowledge
Engineering (SEKE 06}: 544-549.

[7] Hogg, T. and Huberman, B. (1991). "Controlling Chaos in
Distributed Systems." IEEE Transactions on Systems Management
and Cybernetics 21: 1325-1332.

[8] Falbo, R., Guizzardi, G., Duarte, K., and Natali, A. (2002):
“Developing Software for and with Reuse: An Ontological
Approach,” Conference on Computer Science, Software Engineering,
Information Technology, e-business and Applications (CSITeA-
02):477-488.

[9] Iqbal, A., Ureche, O., Hausenblas, M. and Tummarello, G. (2009)
“LD2SD: Linked Data Driven Software Development”, 21st

International Conference on Software Engineering and Knowledge
Engineering (SEKE 09): 240-245.

[10] Jin, D. and Cordy, J. (2005) “Ontology-Based Software Analysis and
Reengineering Tool Integration: The OASIS Service-Sharing
Methodology.” 21st IEEE International Conference on Software
Maintenance (ICSM'05): 613-616.

[11] Fowler, M. (2003). "Components and the World of Chaos." IEEE
Software 3(3): 83-85.

[12] Mandell, D. and McIlraith, S. (2003): "A Bottom-Up Approach to
Automating Web Service Discovery, Customization, and Semantic
Translation," 12th International World Wide Web Conference
Workshop on E-Services and the Semantic Web (ESSW '03): 89-96.

[13] Madiajagan, M. and Vijayakumar, B. (2006): "Interoperability in
Component Based Software Development." World Academy of
Science, Engineering and Technology (22): 68-76.

[14] OpenSimulator, online: http://opensimulator.org/

[15] OWL-S, online: http://www.ai.sri.com/daml/services/owl-s/1.2/

[16] W3C, Ontology Driven Architectures and Potential Uses of the
Semantic Web in Systems and Software Engineering, 2006, online:
http://www.w3.org/2001/sw/BestPractices/SE/ODA/.

[17] Wallace, J. and Hannibal, B. (2008). “Software and Hardware System
Integration and Intelligent Automation using Ontology-based
Knowledge Representation Technology,” International Conference on
Artificial Intelligence, World Academy of Sc. (IC-AI08):475-483.

[18] Ye, J., Coyle, L., Dobson, S. and Nixon, P. (2007). Ontology-based
Models in Pervasive Computing Systems. Knowledge Engineering
Review 22(04), pp. 315-347.

