
A Framework to Support Collaborative Software Development and Reusability 

 

Y. Arafa, C. Boldyreff, M. Dastbaz 

School of Computing, IT and Engineering 

University of East London 

London, UK 

{y,arafa;c.boldyreff,m.dastbaz }@uel.ac.uk 

 

 
Abstract—This paper motivates and sets out a framework for a 

high-level approach to software component integration. The 

approach provisions for smooth integration, management and 

scalability. It builds on the concept of SaaS (Software as a 

Service) and the annotation of software components with 

formal specifications that instruct interoperability through a 

unified interface. This work is part of ongoing research on the 

Pandora1 project. 
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I.  INTRODUCTION 

Component-based system development is by nature open 
and extensible, and must support data exchange from a 
diverse range of sources. This opens way to problems of 
identifying appropriate components, and their corresponding 
data exchange format and pattern. Consequently, 
incorporating systems must agree on shared representations 
with the expected interoperability and functionality 
specifications for successful integration. Typical component-
based integrations inherently experience one or all of the 
following problems [3, 4, 7, 11, 13]: 

• Requirements mismatch and interoperability issues 
between components. 

• Difficulty finding components. 

• Functionality assumption Conflicts. 

• Overall functional break down with the slightest 
perturbation to API constructs and/or their Inputs-
Outputs-Preconditions-Effects (IOPEs). 

• Problematic to scale when additional or constituent 
data or components are required, making upgrades 
or expansion difficult to readily implement. 

• Increased maintenance problems as system 
complexity increases. 

The above challenges are unlikely to be overcome 
without significant improvement to the underlying 
development environment and infrastructure. The success of 
the component-based integration process, hence, relies on 
both functional and non-functional considerations. Develop-
ment considerations should include the following [5, 3]: 

• Well-defined component interrelationships. 

• Unified interoperability mechanism between 
components. 

• Common understanding of the data exchanged. 

• Common understanding of component functionality 
and goals. 

A promising solution is to make use of ontologies. 
Ontologies provide a well-founded mechanism for the 
representation and exchange of structured information [18]. 
Information about components, their services and their 
Inputs-Outputs-Preconditions-Effects (IOPEs) can 
accordingly be formulated in agreed and dedicated service 
ontologies. Ontology-based techniques provide a means to 
describe, and reason about functionality and how to interact 
with other software entities regardless of their technical 
origins. We introduce an ontology-based approach for 
specifying the goals of components, and the properties 
relevant for deployment and assembly in diverse 
applications.  

The following sections outline this approach based on a 
service-oriented model that uses ontologies to formally 
characterise components and describe their interfaces, 
specifying possible interconnections between them and 
provisioning for semantically annotating data objects that 
may be exchanged. The approach aims to mitigate 
difficulties arising from component integration and their 
adaptation into heterogeneous distributed systems.  

II. BACKGROUND 

A. Service-Oriented Architectures (SOA) 

Service-oriented architectures are principally designed to 
resolve the complexity described in the previous section. In a 
SOA, services are defined by as a set of well-defined 
interfaces, which are generic in nature; along with a schema 
for the input required by the service to function correctly and 
a description of the output produced. The inherent nature of 
SOAs is that services work with an extensible schema and 
thereby can cope with various different types of other 
services that it may interact with [12].  

Continued success of SOA-based applications built for 
the Web have shown encouraging results that service 
ontologies used to describe Web services and their 
availability have managed to alleviate many of the problems 
of service integration [4, 7, 10, 12] by providing formal 
means for the following [11]:  

• Creation of complex, realistic, and scalable networks 
of component inter-relationships 

• Distribution of autonomous controls and monitors 
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• Dynamic modification of the component execution 
structure 

• Adaptation and evolution of the overall systems 
using the services. 

B. Service Oriented Models 

The Service-Oriented Model (SOM) is a relationship 
model described by the W3C Web Services Architecture 
Group and is created to explicate the relationship between 
the services an entity provides and requests. The model is 
considered the underpinning for developing service 
architectures [6] and facilitates for loosely coupled software 
components to be integrated within other software systems.  

The fundamental elements in the model are that of goal 
state (states of some service or resource that is required by 
other software entities or individuals that may intend to use 
the service), service (“an abstract resource that represents a 
capability of performing tasks”), task (“an action or 
combination of actions that is associated with a desired goal 
state”), role (defines a set of related tasks carried out and 
identified by message properties) and agents (which are 
“capable of and empowered to perform the actions 
associated with a service on behalf of its owner”) [15].  

Component-based software engineering and service-
oriented software engineering are two of the most widely 
used engineering paradigms among the current software 
development community. Despite being developed 
separately, both paradigms have much in common, resulting 
in that in many cases bijective concepts are labelled 
differently [3]. Service-oriented software bears many 
similarities to traditional software components, in such they 
are autonomous or semi-autonomous entities with explicit 
and succinct interfaces that are distinctly designed with 
reusability and modularity in mind. The distinguishing point 
is predominantly the requirement for standard communicat-
ion models, since such services are geared for the web. 

The model serves as a useful reference map in 
considering the elements of service oriented architectures 
and a rigorous approach to developing them. The mechan-
isms defined by the SOM offer means to implement the 
functionality and focus on the service dynamics and 
substitutability. 

C. Components as Services 

A typical view of components is that they implement one 
or more provided interfaces, where an interface is a contract 
of functional behaviour. In this sense, interfaces provided by 
components are very similar to service interfaces. This 
makes components an ideal candidate for implementing 
services, where a service has a provided interface. 

SOMs are actually based on a simple component model 
[2], where a service encapsulates a coherent set of 
operations. A central objective of component development is 
the separation of computation and operability or 
interoperability. Computational aspects are abstracted by 
interfaces with well-defined descriptions. These descriptions 
are made public and formulate the means for interaction 
between different entities.  

Considering components as services that provide an 
independent function or process, the Pandora integration 
architecture will build upon the concept of SaaS (Software as 
a Service). Components will be described in terms of the 
service they provide, the API interface name and the IO 
parameters and functional conditions required. This 
information will be annotated into a dedicated component 
ontology. Using ontologies may allow the dynamic assembly 
of software and round-up into a mash-up tool. This approach 
provides the mechanism to support technology independent 
software component invocation through the annotation of 
component services. Providing leeway for component 
developers to focus on the functional processes required 
from the services. 

III. ONTOLOGY-BASED APPROACH TO INTEGRATION  

The impetus for using an Ontology-based approach to 
integration is to provide a formal means for effectively 
connecting disparate components and mitigating inevitable 
problems both at the development phase, as well as possible 
future system upgrade or expansion phases.  

Integrating different components presents integration 
implementers with problems on two levels: the 
interoperability of components from different platforms and 
vendors; and possible application conflicts resulting from 
integrating them. Consequently, integration demands 
consistent representations of data exchange, unified 
interfaces between software entities, and an effective 
approach that enables integrated components to function 
across various platforms [1, 8]. It is hence necessary to build 
an infrastructure for integration, which is based on such 
robust conceptual models. We argue that ontologies are a 
promising means to achieve these conceptual models, since 
they can be used to promote common understanding, and 
they can be used as basis for comprehensive information 
representation and communication [10,17]. 

A. Service Ontologies 

Ontologies classifying and describing services are called 
Service Ontologies. OWL-S [15] supplies a core set of 
ontology concepts for describing the properties and 
capabilities of Web services in “unambiguous”, “computer-
interpretable” form. OWL-S mark-up of services is designed 
to support the automation of Web service operation, which 
includes: automated Web service discovery, execution, 
interoperation, composition and execution monitoring [15]. 

There are existing conceptual models for describing 
services such as WSMO, WSDL-S, SWSF, SAWSDL. Like 
OWL-S, these models also address the semantic nature of 
web service descriptions thereby making an effort to 
automate the web service life cycle [2]. 

In OWL-S, and as delineated in Figure 1, a service is 
described by specifying a function name, the inputs required, 
the output of the service and its target address for execution. 
Service ontologies supplement Web service application 
development by providing the information required to enable 
automated services discovery, the execution and assembly of 
composite web service applications. The idea is to annotate 
services, enabling the automation of the service life cycle. 



B. OWL-S 

The OWL-S service ontology is classified into three 
categories: Profile, Model, and Grounding. A service 
component is actually an instance of the service and is linked 
to these categories by different properties. 

 

 

Figure 1.  Basis for the Pandora Component Ontology (OWL-S [15]). 

The profile describes the functionality a service can 
provide and details on the input and output requirements for 
that service, as well as any preconditions and effects the 
service may have as constraints. Input specifies the actual 
input parameters required for invoking the web service 
successfully; output specifies the outcome produced from the 
service execution that a requesting client expects and 
receives; preconditions define the constraints that need to be 
satisfied for successful execution; and effects describe the 
state of the service after execution. 

The service model describes how the service should work 
in order to achieve its functionality. It describes atomic 
processes, composite processes and the message composition 
involved in invoking the service. Atomic processes are the 
processes that undergo direct execution requiring a set of 
specified input parameters; whereas composite processes are 
those processes that involve the execution of a combination 
of different services. 

Service grounding describes how services are invoked. 
Grounding defines the network protocols, data and exchange 
formats needed in order to execute the service successfully. 

Although OWL-S is intrinsically developed to define and 
describe Web-service ontologies, it is suitable to define the 
Pandora components as services provided even if the end 
product is not web-based. We are designing the overall 
Pandora integration architecture as a SOA, considering a 
SaaS (Software as a Service) solution, where components are 
services. Therefore, the OWL-S specifications could also 
apply to component descriptions. 

C. A Component-Service Ontology 

The Component Service Ontology can now loosely be 
defined in terms of the following along the guidelines set out 
by W3C in [16]: 

• A classification of re-usable components according 
to the functions they provide. 

• A mechanism for rigorously describing, identifying 
and integrating within heterogeneous systems both 
during design and at runtime. 

Effectively, the proposed ontology will be a description 
of the Pandora component APIs and include the details 
necessary to invoke and use the implemented components. 
The components themselves will reside in a common 
repository of services that is updated throughout the Pandora 
system development phase, as well as when or if future 
upgrades to the Pandora system occur.  

D. Component Descriptors 

The following table outlines the descriptors that will be 
produced for each of the outer-level Pandora components. 
The descriptors are required in order to compile an ontology 
of component services. We have included details based on 
the OWL-S specifications and the technical requirements 
necessary for integration purposes. However, the list as of 
the time of writing this document may not be exhaustive and 
could require future updates as development progresses.  

The information required for each component that is 
developed on the Pandora project is defined in Table 1 
below. The information shall be provided in tabular form, 
which will be parsed into OWL-S RDF format for use by the 
Component Middleware. 

Category Service category the component 
belongs to.  

Class For native lang APIs include class 
component belongs to 

Identifier Component construct or API name 
Description Text describing the functionality or 

service component provides. 
Author(s) Partner/ individual developer(s) 
Version Number 
Creation Date Date 
Modified Date Date 
Location URL location of component if 

applicable. Otherwise, local assumed. 
Progr. Language Java, C++, C#,  
OS Platform Windows, Mac, Linux 
Input List of input (if any) require by the 

component, along with data types. 
Output List of output (if any) produced by the 

component, along with data types. 
Precondition List of conditions that should hold 

prior to the service being invoked.  
Result Condition List of statements that should hold 

true if the service is invoked 
successfully. e.g. “Package being 
delivered”  

TABLE I.  COMPONENT DESCRIPTORS TABLE TYPE SYLES 

IV. DESIGNING FOR EXTENDED FUNCTIONALITY AND 

USE  

Development projects are usually produced with the 
intention of possible future scalability. The integration 



proposal supports the seamless integration for future 
extension to a development environment by describing 
parameters and functionality and a mediator that will 
manipulate the integration and seamless flow. Continuous 
collaborative development may require the addition of 
further components. Using a service-oriented architecture 
and an ontology-based approach to component descriptions 
provisions for the semantic integration of software 
components, we aim to assist in the dynamic assembly of 
additional components and plug-ins in future versions of 
overall system.   

Accordingly, the high-level approach to component 
integration as proposed in this document will support the 
following: 

• Dynamic adaptation across development languages. 

• Simple, unified component invocation through the 
Pandora Mediator. 

• Querying component availability and validating the 
execution process. 

• Elegant exception handling.  

• Component code changes or evolution and recover 
accordingly, supporting modular component 
development. 

A. An Integration Framework  

The Pandora system architecture uses a component-based 
design relying on the concept of component decoupling. This 
is a strong principle of SOAs, which emphasises creating 
components that are self-contained and have a clear 
separation of concerns. There is a separation between the 
function of individual components and the operation of the 
Pandora system as a whole. Each component has distinct 
functional behaviour that can be utilised by other 
components through well-defined interfaces. Component 
interfaces and behaviour descriptions will be advertised in an 
agreed Pandora service ontology.  

The architecture will be built as a SaaS (Software as a 
Service) solution. The following principles govern the design 
of the overall integration architecture. They reflect the 
requirements for service oriented and distributed 
environments in order to provision for the seamless 
integration of the Pandora system components:  

Service Oriented: providing a description of component 
services that include aspects of communication, structure, 
and processing logic. This includes service reusability, 
decoupling, abstraction, autonomy, and discoverability.  

Distributed: applied to the architecture middleware, 
which supports the management of possible distributed 
components transparently such that the execution process 
can be scaled across a number of physically disperse servers.  

Semantic annotations: providing rich and formal 
description, based on OWL-S, of components and 
behavioural models defined in the Pandora Component 
ontology, which enables scalable and seamless 
interoperation, discovery, reusability assembly.  

B. A Conceptual Overview 

A conceptual view of the integration framework is 
illustrated in Figure 2. Based on the principles outlined 

above, the framework uses ontologies for application 
integration on the component interface level by 
characterising components, specifying possible 
interconnections between them and provisioning for 
semantically annotating data objects that may be exchanged. 
A component mediator is used to process the ontologies and 
facilitate interaction between disparate components, thus 
enabling integration at run-time. 

Key to this approach is a design pattern that is domain 
independent facilitated through the definition of a Pandora 
Middleware. The middleware deals with the transition from 
static, hardcoded interfaces between components to dynamic 
interfaces via the middleware. The middleware then becomes 
a universal interface used by individual components in an 
overall assembled system. The idea is that components are 
no longer directly interconnected, but do so via the Pandora 
Middleware, thereby becoming accessible to all in a uniform 
manner.  

The proposed ontology will be utilised by the Pandora 
Middleware to direct component integration. Any changes to 
component interfaces and/or behaviour descriptions will be 
maintained in this ontology. The Middleware will be able to 
handle integrity problems if there are conflicts between the 
advertised component interfaces and those expected by 
individual components by looking up the ontology. The 
middleware will degrade overall system functionality 
gracefully by alerting requesting components to the required 
format if mismatches occur. 

 

Figure 2.  Conceptual View of Ontology-based Component Integration. 

The Component Mediator makes use of specially 
constructed component adapters and data wrappers, 
alongside a service ontology to enable software components 
interoperability through service-sharing.  

The Middleware is the core of the architecture providing 
the main intelligence for integration and interoperation. It 
consists of a number of components (middleware services) 
where each component provides certain functionality within 
an execution process. Each component exposes its 
functionality through a number of interfaces, thus the 
functionality of the component could be deployed by other 
components through these interfaces.  

The framework does not mandate that all components 
must interact via the middleware. Indeed, components of a 
common category may directly interact with each other 
without the need for middleware mediation. This may be 



particularly useful for components that are part of a pre-
assembled package. However, scalability of the components 
within the package cannot be supported by the middleware 
and must be handled externally.  

The components that represent the middleware services 
include functionality for component discovery, selection, 
managing interoperability and run-time execution, data and 
process mediation, exception handling and resource 
management. In addition, the middleware shall be 
implemented to operate in a distributed manner on a number 
of physical servers connected using a shared message space. 
Shared spaces provide a messaging abstraction for 
distributed architectures, as well as supporting the scalability 
of the integration process [7].  

C. The Pandora Middleware 

The middleware architecture is an internal 
communication mechanism for an architecture that relies on 
an events-based model. The overall architecture of the 
middleware is structured into four main parts: an Event Bus, 
a Component Mediator, an Execution Manager and a 
Resource Manager. This section describes the overall 
middleware architecture and briefs on how its various 

components interoperate. Figure 3 shows a high-level 
depiction of this architecture. 

1) Event Bus 
The Event Bus maintains and manages invoked 

components and sequences of requests for component 
services. It combines event driven and service-oriented 
approaches to request handling and management, so as to 
facilitate seamless, persistent interoperability of components 
across heterogeneous platforms.  

The Event Bus serves as the first-line of interaction for 
components. Once a request for a service has been initiated, 

an event is created and placed on the bus with a time stamp, 
a sequence number, a priority and a process state. It 
subsequently passes request information to the Component 
Mediator for appropriate handling; then once invoked 
successfully, it is placed back on the bus with an available 
state. Execution and data exchange can now begin. 
Execution is managed with the support of the Execution and 
Resource Managers. 

Once components are available, their services are 
accessible to all other requests that can satisfy the defined 
preconditions. The Event Bus further uses the Component 
Mediator to enable seamless interoperability between 
deployed components.  

2) Component Mediator 
The Component Mediator makes use of specially 

constructed component adapters and data wrappers, 
alongside a component (service) ontology, to enable 
component interoperability. Its functionality includes 
validated component invocation, messaging and data 
transformation. 

The Component Mediator also has the role of reconciling 
integration conflicts that may occur when trying to invoke a 
requested component. It can deal with the reconciliation of 

message exchange patterns on the component descriptions as 
defined in the Component Ontology.  

The Component Mediator consists of the following: 

Request Handler 
Requests are instigated by components requiring 

particular services at run-time or when initialising the 
Pandora system. Requests are initially received by the Event 
Bus and passed on to the Component Mediator where the 
Request Handler initiates the process of validation and 
invoking requested services. 

Figure 3. Integration Middleware Architecture 



Requests are made through a unified API call to the 
Event Bus that includes the necessary parameters that satisfy 
a service’s IOPE requirements.   

Component Lookup 
This provides a component discovery mechanism that 

seeks to find the required component service description(s) 
that match the goal specified by the requester. It returns a 
best-match component service that satisfies the supplied 
requirements. It may return a “not found” string indicating 
the requested service component is either not available or 
that the information supplied is not correct, in which case the 
results pass through the Exceptions Handler for elegant 
system error handling. 

Future versions of the system may provide more than one 
component that provides the same service. The difference in 
this case would be their IOPE and possibly other processing 
variations. In this situation a list of component services will 
be returned. This necessitates the introduction of a new 
middleware component capable of intelligently selecting the 
most appropriate service for the requester. However, at this 
stage and for the purposes of the current Pandora system 
integration requirements, only the aforementioned 
functionality will be supported. 

Component Adapter 
The Component Adapter is used to map an abstract 

interface to another object, which has the required functional 
role, but a different interface. An example of use is to one 
component that uses Java.  

Runtime Validator 
The Runtime Validator makes sure that a requested 

components service is available, that it can be located at the 
URL specified in the Component Ontology, that all the 
IOPEs are satisfied correctly and that the component itself is 
executed and is running correctly. 

Data Wrapper 
The Data Wrapper helps in data heterogeneity problems 

that may occur during the lifecycle of all component 
interaction at runtime. The Wrapper transforms instances of 
input and output to and from services to the format expected 
by each component service. It does so by wrapping data into 
the format required as defined in the Language specification 
described in the Component Ontology.  

Exceptions Handler 
The Exceptions Handler has the simple role of elegantly 

capturing errors that may arise from any component and 
sending back an error message wrapped in the appropriate 
format to the service requester.  

3) Execution Manager 
The Execution Manager is responsible for the intelligent 

routing in order to reliably connect and coordinate the 
interaction of services across components and maintain 
transactional integrity. It supports the Event Bus in handling 
the events and controlling a complex series of interrelated 
events. It consists of a Communications Handler that is 
responsible for inter-component messaging that enables 
message exchanges among component/event services.  

4) Resource Manager 
Initially, the Resource Manager handles the repositories 

of components and ontologies, which are in persistent 
storage. It is responsible for proving an interface for 
querying and storing to the database storage used by the 
middleware. Future implementations will handle other 
resources required by the Pandora system. 

V. CONCLUSION 

We have proposed an integration approach using a 
common, unified API interface that utilises the Pandora 
middleware functionality to handle distributed component 
interoperability. This will allow for components to 
seamlessly interact and exchange common knowledge spaces 
and data. The service oriented approach to the design and the 
implementation of the middleware will allow integration 
flexibility and system scalability as the project progresses 
and subsystems and modules are evolved. The aim is to 
assist in the dynamic assembly of additional components and 
plug-ins in future versions of a development system. The 
proposed integration framework described herein can be 
applied to evolving developments in any software system 
integration activity.  
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