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Abstract: This research work presents a new and efficient design methodology for the specification, 

development and manufacture of permanent magnet synchronous motors (PMSMs). In this paper a 
genetic algorithm based design optimisation technique for PMSMs is presented in which the multi-

criteria considered in the optimisation are the electromagnetic performance, the thermal performance 

and the material cost. Models have been developed for each criterion in order to calculate the 

objective vector. A software tool called PMSM Analyser was developed to assist the motor 

design methodology. The optimisation algorithms and the electromagnetic, thermal and cost 

models were integrated and interfaced using this software. The programme is demonstrated 

for the design of a 12 slot 10 pole PMSM. The design parameter vector contains stator bore 

diameter, stator tooth thickness and stator back iron thickness. For the base design the outer 

diameter of the stator is 180mm and the stack length of the motor is 90mm. The base design 

refers to the design before optimisation and the optimal design refers to the design with 

optimised dimensions. The optimisation programme predicts significant 

improvements over the baseline design and experimental results are presented which indicate good 

agreement with the predictions of the programme. The new approach has been used successfully in 

the development and design of a PMSM with a stall torque of 125Nm, rated torque of 75Nm at 
1500r/min and output power of 12kW. The strengths of the design methodology are summarised with 

the genetic algorithm optimisation, innovative multi-objective handling and design models for the 

various disciplines of PMSM development. 
 

 

1. Introduction: 
 

The genetic algorithm was developed and 

inspired by the natural selection of living 

beings which is a very successful organising 

principle for optimising individuals and 

populations of individuals. The genetic 

algorithm is not the only algorithm inspired 

by natural selection. The genetic algorithm 

was mainly developed by (Holland, 1975). 

Evolutionary strategies, were developed in 

Germany by (Rechenberg, 1973) and 

(Schwefel 1981). (Fogel, et. al., 1966) used 

evolutionary programming as a learning 

process aiming to generate artificial 

intelligence. These natural selection 

processes inspired methods or algorithms 

which are called evolutionary algorithms. If 

it is possible to mimic natural selection, then 

the optimisation task can be carried out 

more successfully. The design of a system 

using a selected design vector is analogous 

to an individual who is fighting for survival 

within a larger population. Only the fittest 

survives and fitness is assessed by the 

objective function value. 

As stated previously, the gradient based 

methods suffer from inaccuracies in 
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estimating the gradient and finding local 

optima only whereas the enumerative method 

is time consuming. Gradient based methods 

and enumerative methods are therefore not 

robust. The genetic algorithm on the other 

hand is a robust method (Holland, 1975) and 

it differs from the traditional methods as 

follows (Goldberg, 1989). 

• GAs work with a coding of the parameter 

set, not the parameters themselves. 

• GAs search from a population of points, 

not a single point. 

• GAs use an objective function, not 

derivatives or other auxiliary knowledge. 

• GAs use probabilistic transition rules, not 

deterministic rules. 

• There can be multiple solutions for a given 

problem using GAs and alternative 

solutions can be selected for solving in a 

problem. 

In view of these desirable features, the GA 

has been selected as the optimisation tool to 

support this research and is explained in 

detail in the following section.  
 

2. A Detailed Description of the 

Genetic Algorithm: 
 

2.1. Basic Principles: 

 

Fig. 2.1 shows a flow chart of how the genetic 

algorithm works in a single population. 

At the start, a population is randomly 

initialised and its fitness is calculated. The 

genetic algorithm uses three operations to 

create a new generation, sometimes referred 

to as offspring or children from the parents. 

They are reproduction, mating or crossover 

and mutation. 

Based on the fitness of individuals they are 

selected for further operations. Copying the 

individuals, based on the objective values, 

into a new generation is called reproduction 

which is an artificial version of the natural 

election. The higher the objective value, 

there is a better reproduction. Selected 

individuals are then recombined or mated 

randomly, after this they are mutated. Their 

fitness is calculated and inserted into the 

population which produces a new 

generation. These activities are repeated 

until the stopping criterion is met. 

 

Fig. 2.1: Generic genetic optimisation flow chart 

 

To obtain better results or for special problems, 

the multi-population evolutionary algorithm, as 

shown in Fig. 2.2, can be applied. 
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Fig. 2.2: Generic genetic optimisation flow chart 

- multi-population 

 

2.2. Reproduction: 

 

Which individuals and how many individuals 

have to be selected for recombination is 

determined by reproduction. At first 

individuals have to be assigned with fitness. 

The objective function value is not directly 

used by the GA but is converted to a fitness 

value which is a function of the objective 

value. The following methods can be used for 

fitness assignment. 

• Proportional fitness assignment 

• Rank-based fitness assignment 

• Multi-objective ranking 

Based on the fitness of individuals they can 

be selected for mating in the following ways: 

• Roulette-wheel selection 

• Stochastic universal sampling 

• Local selection 

• Truncation selection 

• Tournament selection 

Fitness assignment by scaling (proportional 

fitness assignment) Scaling can be linear or 

non-linear. Linear scaling is just the 

proportional value of the objective value. If 

the objective function value is negative, then 

it is first offset to make it positive and then it 

is scaled. In non-linear scaling a non-linear 

function of the objective function value is 

offset, if required, and then linearly scaled to 

achieve the fitness. For most of the 

optimisation problem fitness assignment by 

scaling is sufficient, but in this case, the 

optimisation sometimes suffers from 

stagnation and premature convergence which 

are not desirable. Stagnation occurs when the 

selective pressure is small. Selective pressure 

means the probability of the best individual 

being selected compared to the average 

probability of selection of all the individuals. 

Premature convergence occurs where 

reproduction has caused the search to narrow 

down too quickly (Matlab Documentation, 

2005). These undesirable effects can be 

improved by sigma-scaling (Hancock, 1994) 

in which the required offset is calculated 

from the average and standard deviation of 

fitness values of the population. 

A generalised multi-objective evolutionary 

optimisation process (Fonseca) is shown in 

Fig. 2.3. 

 

Fig. 2.3: A generalised multi-objective 
minimisation 

The evolutionary algorithm (EA) produces 

new solutions based on the cost of the 

current solutions evaluated by a decision 

maker (DM). 

Based on how the optimisation and decision 

making are combined, multi-objective 

minimisation can be categorised in three 

ways. 

• Priori articulation of preferences: The 

decision maker combines all the objectives 

into a scalar cost function, so that the 
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problem can be handled as if it was a single-

objective optimisation. 

• Posteriori articulation of preferences: A set 

of non-inferior solutions will be presented to 

the decision maker and a compromised 

solution will be selected by the decision 

maker. 

• Progressive articulation of preference: At 

each step of the optimisation, partial 

preference information is supplied to the 

optimiser by the decision maker. 

2.2.1. Weighted sum method: In this 

method objectives are multiplied by weights 

and added together to produce a single 

objective function. 

The advantage of an objective function is 

that it can be controlled by its weight. The 

main problem is to determine the weights 

corresponding to each objective. The 

solution depends on the weights used. 

2.2.2. Min-max method: In this method 

maximum difference between the objectives 

and their target values (optima or demand 

level) is minimised. This method can also be 

used in goal programming. In all 

aforementioned methods, the solution is a 

single point solution. In practical problems 

decision makers (DM) often need 

alternatives for decision making as some of 

the objectives conflict with each other. Also, 

if the objectives are noisy and 

discontinuous, these methods do not work 

very well and are very sensitive to the 

weights or the demand level. The methods 

require prior knowledge of each objective to 

decide the weights or demand values. 

2.2.4. Multi-objective ranking: For ranking 

the individuals in the population, multi-

objectives have to be compared between 

individuals, and based on the comparison 

the individuals have to be ranked. Then 

linear or non-linear ranking can be applied 

to assign fitness values to the individuals. 

2.2.5. Pareto-ranking: In a minimisation 

problem, if x, y are two solution vectors, 

then if x and y are not dominating each 

other, they are called Pareto optimal 

solutions. The space formed by the objective 

vectors of Pareto optimal solutions which 

are non-dominant to each other is known as 

the Pareto optimal front. Any final design 

solution should preferably be a member of 

the Pareto optimal set. 

In ranking, the Pareto-optimal solutions are 

normally regarded as equivalent and equal 

rank is given. The rank of an individual within 

the population r depends on the number of 

individuals Nd dominating this individual 

(Fonseca). Instead of giving equal ranking to 

Pareto-optimal solutions, they can be 

differentiated and ranked. 

• Extreme cases can be ranked lower. For 

example a motor design which produces a 

lower cogging torque than others so that it 

cannot be dominated by other solutions but the 

cost is extremely high, has to be ranked lower. 

• In optimisation problems there are some 

objectives which are more important than 

others. By taking account of this fact the 

Pareto-optimal solutions can be ranked. 

• Some objectives need not be minimised or 

maximised. They need to satisfy only the 

minimum requirement. For example in a 

motor design, back e.m.f. does not need to 

be maximised. As long as it is above the 

required value, then the design is acceptable. 

So inequalities (constraints) can be set for 

some objectives and Pareto-optimal 

solutions can be ranked based on these 

inequalities. 

In determining the Pareto-optimal solutions 

in the multi-objective optimisation, a normal 

evolutionary algorithm may converge at a 

single solution (premature convergence), 

and this is called genetic drift. It is important 

in these cases that special methods are used 

to maintain population diversity. 
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Fitness sharing (Fonseca), (Horn and 

Nafpliotis, 1993) can be used to overcome 

genetic drifting. In this method individuals 

which are closer to another individual are 

lowered in their fitness level. 

There are several methods developed for 

searching non-dominated individuals in a 

population based multi-objective 

optimisation. (Scaffer, 1984, 1985) 

described a method called the Vector 

Evaluated Genetic Algorithm (VEGA) in 

which sub-populations were selected from 

the whole population according to 

objectives. After shuffling the sub-

populations together, crossover and 

mutation was applied. As the population 

evolved, non-dominated individuals were 

identified. One of the problems reported in 

the VEGA method was called speciation 

(Fonseca). Speciation can be minimised by 

employing the Non-Dominated Sorting 

Algorithm (NSGA) method (Goldberg, 

1989), (Fonseca), (Deb, 2001). 

(Fourman, 1985) described a method called 

lexicographic ordering in which individuals 

are compared pair by pair. The objectives 

are assigned priorities. The most important 

objective is compared first. If the objective 

is similar for both individuals then the 

second most important objective is 

compared and so on. 

2.2.6. Constraints handling: The optimisation 

constraints can be equality or inequality 

constraints. However, for the motor design, 

only inequality constraints occur and only these 

will be considered and discussed in this work. 

GAs do not have explicit objective constraints, 

but constraints can be handled as follows: 

• implicitly via the fitness function with a 

penalty for violation 

• via the selection operator with rejection of 

constraint violators. 

If the constraints are violated, then the 

solution is not feasible and it can be rejected 

by the selection operator. This is suitable 

where the constraints are rigorous (hard 

constraints). If the constraints are soft, then 

the fitness of the solutions can be degraded 

in relation to the degree of violation (Black, 

1993). This method is called the penalty 

method. 

(Powell and Skolnick, 1993) proposed a 

method in which the objective function was 

rescaled to less than one if it is feasible, and 

greater than one if it is not feasible, hence in 

the ranking and fitness assignment a feasible 

solution is allocated a higher fitness level. 

2.2.7. Selection for recombination: After 

assigning fitness to individuals a partial set 

of the population can be selected for mating. 

One selection scheme called ‟roulette wheel 

selection‟ can be thought of as follows: A 

wheel with an arrow indicator is segmented 

proportional to fitness or selection 

probability of individuals in the population. 

The wheel is rotated a number of times 

equal to the number of individuals that have 

to be selected. In each rotation the individual 

indicated by the arrow indicator will be 

selected. In the software implementation, a 

random number generator is used instead of 

a rotation of the wheel. 

Another method called Stochastic Universal 

Sampling can be thought as follows: A 

roulette wheel as described above is used 

with more than one arrow indicator equal in 

number to the number of individuals that 

have to be selected. The indicators are 

equally spaced. The wheel is rotated only 

once. The individuals indicated by the 

arrows are selected. 

Local selection (Voight, et. al., 1991), 

truncation selection (Blickle and Thiele, 1995) 

and tournament selection (Goldberg and Deb, 

1991) are the other common selection methods. 
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2.3 Recombination: 

In recombination two individuals are used to 

create a new individual by combining the 

characteristics (variables) of them. The 

recombination can be discrete recombination or 

real valued recombination. Binary 

recombination is also a discrete recombination. 

2.4 Mutation: 

The offspring are mutated after the 

crossover with specified probability. 

Mutation can be real or binary. 

2.5. Re-insertion 

Once offspring are created by reproduction, 

recombination and mutation, they have to be 

inserted into the current population to create 

the next generation. The number of offspring 

can be higher or equal or less than the 

population size. The insertion scheme 

depends on the selection scheme used. Local 

insertion and global insertion are the schemes 

used in the insertion corresponding to 

selection and global selection respectively. 

3: Application of GA in Motor 

Design Optimisation: 

The optimisation tab in PMSMAnalyser is 

shown in Figure 3.1.  

 
Fig. 3.1: Optimisation tab in PMSMAnalyser 

In this PMSMAnalyser, C++ code the material 

cost/rated torque is defined as the main 

objective function. The minus sign is used to 

defined the optimisation as a minimisation of 

the objective function. Top part of the code 

defines the limits for some other objective 

functions. In this example they are cogging 

torque percentage and 

demagnetisation area. The designs which 

exceeds these limits get low probability to be 

selected for next generation. The genetic 

algorithm (single population) parameters used 

to control the optimisation are as follows: 

• Number of population in a generation 

• Number of generations 

• Cross over probability 

• Mutation probability 

These parameters can be entered through the 

PMSMAnalyser optimisation tab. 

4: Preliminary Optimisation Results: 

The genetic algorithm optimisation of the 

permanent magnet synchronous motors are 

demonstrated in the following sections. 

4.1 Base design 1: 

The design parameter vector contains stator 

bore diameter, stator tooth thickness and 

stator back iron thickness. For the base 

design the outer diameter of the stator is 

180mm and the stack length of the motor is 

90mm. The design has 12 slots and 10 poles. 

The base design refers to the design before 

optimisation and the optimal design refers to 

the design with optimised dimensions. The 

geometry and the winding configuration of 

the base design is shown in Figure 3.2. 

The constraints of this design parameter 

vector are set according to the following 

lower and upper limits: 

• Bore diameter = 95mm - 115mm 

• Tooth thickness = 10.0mm - 16.0mm 

• Back iron thickness = 4mm - 10mm 
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Fig. 3.2: Base design 1. 

The following parameter values are fixed 

and are the same for the base design as well 

as the optimal design. 

• Magnet span angle (electrical) = 1400 

• Magnet thickness = 3mm 

• Air gap = 1.0 mm 

• Stack length = 90mm 

• Stator outer diameter = 180mm 

• Slot fill = 50% 

The genetic algorithm parameters used are 

as follows: 

• Number of generations = 30 

• Number of genes in a population = 15 

• Crossover probability = 0.6 

• Mutation probability = 0.05 

Fig. 3.3 gives stall torque optimisation 

results.  

 
Fig. 3.3: Base design 1- Stall torque 

optimisation 

This optimisation is named as BD1-OR1 

(optimisation run 1). The objective function 

is the stall torque. It can be observed that the 

stall torque was improving during the 

optimisation from Figure 3.3. The optimal 

design is named as BD1-OD1. Figs. 3.4, 3.5, 

3.6, 3.7 and 3.8 give the rated torque and 

active material cost optimisation results.  

 
Fig. 3.4: Base design 1- Rated torque 

optimisation 



Advances in Computing and Technology 

The School of Computing, Information Technology and Engineering, 6th Annual Conference 2011 

 

 

40 

 

 
Fig. 3.5: Base design 1- Rated torque 

optimisation: back e.m.f. 

 
Fig. 3.6: Base design 1- Rated torque 

optimisation: cost/rated torque. 

 
Fig. 3.7: Base design 1- Rated torque 

optimisation. 

 
Fig. 3.8: Base design 1- Rated torque 

optimisation: active material cost. 

The objective function is the ratio between 

active material cost and rated torque. This 

optimisation is named as BD1-OR2. The 

optimisation was defined as a maximisation 

problem by assigning a negative sign to the 

objective function. The optimal design is 

named as BD1-OD2. The rated torque is 

also improving during the optimisation as 

shown in Figure 3.7. But the active material 

cost does not show obvious improvement 

during the optimisation as shown in Figure 

3.8. However the objective function of the 

ratio between active material cost and rated 

torque improves during the optimisation as 

shown in Figure 3.6 but this strengthens the 

fact that defining the objective function as a 

meaningful function of more than one 

objectives gives better optimal design than 

optimising the objectives individually. Also 

in the optimisation OD1-OR2, for the back 

e.m.f. and cogging torque, inequality 

constraints were used. The minimum back 

e.m.f. is defined as 100 V at 1000 r/min. In 

the optimisation, if the back e.m.f. drops 

below 100V, the objective function returns 

to a negative maximum of -1000 regardless 

of the ratio between active material cost and 

rated torque. If the back e.m.f. is above 

100V, then the back e.m.f. does not have 

any effect in the objective function. Similar 

constraint can be set for the cogging torque 
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with a maximum peak to peak cogging 

torque is 1% of the stall torque. Figure 3.5 

shows that the back e.m.f. is increasing 

during the optimisation and more and more 

designs are producing back e.m.f. more than 

100V during the optimisation. Figure 3.9 

shows the cogging torque during the 

optimisation. 

 
Figure 3.9: Base design 1- Rated torque 

optimisation: Cogging torque during 

optimisation 

In Figure 3.4 it can be clearly identified that 

non-dominated solutions intensify along a 

line which is called the Pareto-optimal front. 

Table 3.1 compares the performance 

between the base design and the optimal 

design. 

 

Quantity Base Design Optimal 

Design 

TWS 14.0 12.9 

BIT 8.0 7.1 

Stator ID 

(Bore) 

108 111.8 

Rated Torque 

(Nm) 

39.2 43.5 

Active 

material 

cost 

61.6 63.3 

Cost/Torque 1.57 1.39 

Back emf 101.1 109.3 

Table 3.1: Comparison of base design 1 (BD1) 

and optimal design 2 (BD1-OD1) 

The predicted and measured cogging torque 

are shown in Figure 3.10 and 3.11, 

respectively. 

 
Fig. 3.10: Predicted cogging torque - BD1-OD2. 

 
Fig. 3.11: Measured cogging torque - BD1-OD2. 

The predicted and measured back e.m.f. are 

shown in Figs. 3.12 and 3.13 respectively. 
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Figure 3.12: Predicted back emf - BD1-OD2 

 
Figure 3.13: Measured back emf - BD1-OD2 

5: Conclusion 

The requirement for a multi-objective 

optimisation approach was analysed in terms 

of the design process for a PMSM. Traditional 

methods were investigated and considered in 

relation to their suitability for the application. 

This included gradient based methods, 

artificial neural networks and simulated 

annealing but they did not meet the necessary 

criteria. The genetic algorithm methods were 

considered to provide the optimum solution 

for this application and this technique has 

been adopted for the motor design process. 
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