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Abstract

The process of fixing software bugs plays a key role in the maintenaticiies of a soft-
ware project. ldeally, code ownership and responsibility should beed@among developers
working on the same artifacts, so that those introducing buggy code cisold@ntribute to
its fix. However, especially in FLOSS projects, this mechanism is not cleadgngtood: in
particular, it is not known whether those contributors fixing a bug areahemtroducingand
seedingt in the first place.

This paper aims to study this issue, by analysingciam-centraFLOSS project, which
hosts part of the Thunderbird, SeaMonkey, Lightning extensions andifsl projects from
the Mozilla community. The analysis is focused at the level of lines of codetarss the
information stored in the source code management system.

The results of this study show, at first, that in 80% of the cases, the Xing-fctivity
involves source code modified by at most two developers. It also emingiethe developers
fixing the bug are only responsible for 3.5% of the previous modificationstbrtas affected:;
this implies that the other developers making changes to those lines could hdeehagfix.
We conclude by stating that, in most of the cases the bug fixing processim-centrals not
carried out by the same developers than those sesaledhe buggy code.

1 Introduction

One of the most recognised advantages of the Free/Libre/Gperce Software (FLOSS) de-
velopment model is its reliance on an open process: anyonelome to contribute; the ma-
jority of developers can focus on modularised, limited &t within a very large and complex
system; and few core developers are generally experts eraleareas of the source code, in a
well accepted layered model (the “onion model” [Mockus et2002]). These layers have been
connected to actual responsibilities; core developersildhocus on the main, more important
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features, while experimental versions should be implegteand tested by contributors on the de-
velopment fringes [Goldman and Gabriel, 2004]. Also, thyta of such model have been related
to a shift in productivity: a recurring finding within FLOSSngirical research has shown that
most of the development work is achieved by a small amounewgéldpers, in a typical Pareto
distribution [Koch, 2009].

The combinations of all the findings above have various, atcompletely understood, ef-
fects. In some cases, a strategritoriality will emerge among developers “owning” certain parts
of the code, and becoming more and more proficient in thosenj@e, 2004, Robles et al., 2006].
In other cases, the very nature of the FLOSS developmentamifilat contributors join and then
leave without necessarily halting the project [Robles andZ&lez-Barahona, 2006], but resulting
in abandoned code and orphaned lines [Izquierdo-Cortazdr, @009].

Finally, certain developers will need to be active in manaigce activitiescorrectivemainte-
nance fixing bugs in various parts of the code, for instancensource code is first introduced by
developers with a low knowledge of the project (junior deyelrs);perfectivemaintenance, for
instance when new improved features are needed but thaalrgdgvelopers have left the project
and abandoned their contributions [Adams et al., 2088§ptivemaintenance, for instance when
adaptations are needed, but the source code has been atmatiib a programming language dif-
ferent from the main one supported by the project, so theentidevelopers do not have enough
skills in that language. Although in specific FLOSS commiesithere is the shared expectation
that the original contributor will support his/her modulgspecially in highly modular FLOSS
projects, as Moodle or Drupal [Capiluppi et al., 2010]), tlatility of contributors and the pro-
cess of bug-fixing need to be clarified with respect of whooihticed a certain bug, and who
contributed the code to fix it. Examining and determining phheportion of errors that are fixed
by different developers than those who introduced the eaald provide a first approach to better
understand the bug-fixing process in the specific FLOSS cantiasi being studied.

In order to tackle this problem, the present study analyBescbde base contained within
the comm-centraproject, a Mercurial Software Configuration Management (SCM) repogiof
Mozilla components (Thunderbird, SeaMonkey, the Lighgnextension and Sunbird). Given the
number and ID of each fixed bug, this research evaluates wihiahges have been performed,
and by who, in the process of fixing the specific bug. The objedf this research is to evaluate
patterns of bug-fixing activities within this FLOSS commiynin order to detect, if any, the most
recurrent and relevant scenarios among developers fixigg &nd those seeding the problem in
the first place.

This paper makes two main contributions:

1. ldentifying bug-fixing and bug-seeding committéhe detection of those commits that have
fixed a bug is crucial to determine the previous changes tukt place toseedthat bug.
Using the source code lines that were handled by committetdracing their history back
make possible to know who previously handled those linesisTit is possible to trace the
changes in the SCM that made possible the birth of a potent@l Im addition, it has been
detected the existence of exceptional large movementses In just one commit what may
provoke distortions in the results and were left as operarebajuestions.

Thttp://hg.mozilla.org/ conm central



2. Characterization of bug-seeding activignce the bug-seeding commits have been detected,
it is also interesting to know how many developers have bearived in those commits that
later has been raised as a bug. With this approach, we aragaklgow the number of
people that added or modified a piece of source code beforasitdstected as an issue by
the community.

The paper is organized in the following sections: sectiom&yzes the related work and the
background for the study; section 3 and 4 introduce the igdenused to extract data from the
Mercurial SCM based on they diff tool. Section 5 presents the main results found after usiag t
proposed methodomme-centrglwhile section 6 raises a set of threats to validity. Finaétgtion 7
concludes the paper with pointers towards further work.

2 Background and Related Work

This section reports on the related work and the existingdets: it is reported here in order to
show how this research builds on, compares to or complenegigsng approaches and results.

This paper uses thdiff tool to identify changes between revisiowlff is provided by several
source code management systems, and its basic algorithivekagheoretically and extensively
explained ( [Ukkonen, 1985, Miller and Myers, 1985, Myer3886]). This tool basically collects
two revisions of a file (or revisions of the same directorydl d@inreturns the differences found
between them. Its main goal is to look for “plain” differesceetween two files: however, its
implementation contains both a way to identify the “actudifferences between two files, and
a facility to ignore “apparent” differences (e.g., spadedgentations, newlines, etc). The GNU
implementation of this algorithm is explained in [MacKemeit al., 2002]: this paper uses the
“unified” format of thediff algorithm to retrieve all the differences between each wwisions of
the source code found at the Mercurial repository ofdbem-centraproject. Other researchers
used thediff tool in their approach when retrieving data from FLOSS répass (specifically
CVS and Subversion [Canfora et al., 2007, Zimmermann et @620

Previous studies have made use both of SCM repositories gnuiéssages left by develop-
ers, as a way to determine whether an observed activity igdiking process or not. Focus has
been given to how developers should know precisely how ¢hiseing carried out (i.e., the pro-
cess) and by whom (i.e., the responsibilities [Guo et all020 Some authors [Kim et al., 2008,
Sliwerski et al., 2005] have worked at this level; howevenas to become clear that some FLOSS
communities are more effective than others in documentingthaer a commit is fixing an existing
bug, orif it is a more generic maintenance activity. The enéstudy is only based on the Mozilla
Community, since within this community, it is relatively gae (compared to other communities)
to determine if one of its commits is related to a bug in the BragKing Systems. In this commu-
nity, and within the SCM recorded activities, most of the catsmealing with bug fixes (or related
to an open bug report) are tagged with an initial word "bug”®ug”. In some rare occasions,
these have been detected to be generic features and notigsal&dcross-validation is performed
below, in order to visualise the precision and recall of #pproximation, and it is shown that the
above mismatch represents a minor number of occurrences.
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Figure 1: Scenarios of committers and lines changed. Limatsaire introduced in a given fix time
(t-1) are later (t) detected as being part of a bug-fixing catmmhus, the set of lines that are
being handled in (t) could have been previously introducgthle same developer (A), partially
introduced by the same developer or introduced by a difteteveloper.

Similarly to previous studies [Kim et al., 2008iwerski et al., 2005], this research is per-
formed at the granularity level of source lines, which pded a way of handling the ambiguity of
working with commits. When considering the committer A whaef»a certain bug, and the lines
she modifies, some of these lines could have been introdudigdf partially by the same com-
mitter, or introduced by different committers without therficipation of A (pictured in Figure 1).
Extending these two basic scenarios, we could find furthemasgos:

e the same set of lines was modified in a previous commit by threesdeveloper A (only);
¢ the same set of lines was modified in a previous commit by ardifit developer B (only);

e the same set of lines was modified by more than one developd{&+...), including the
same developer A fixing the bug;

e the same set of lines was modified by more than one develop&+B+...), but excluding
the developer fixing the bug;

In terms of relating the bug-fixing process and its respolits#s, some authors have dealt
with the idea of who should be fixing a certain bug [Kagdi et2008, Ma et al., 2009] based on
previous changes of the same file, or at least slices of thegesaintroduced in a file. Another
approach used to deal with the same problem has been adadptesl lavel of the bug tracking
system. In a study based on the development of Microsoft Wirsdvista and Windows 7, it has
been found that the number of reports “opened” by one deeelapd initially “assigned” to her
development team tend to be fixed more quickly than bugs thatssigned to another development
team [Guo et al., 2010]. Finally, it has also been reported $specific FLOSS communities try
and reinforce a per-contributor sense of responsibiliyhighly modular projects (as for instance



Moodle or Drupal), for example, it is a shared expectatiotiivithe community that the original

contributor will support his/her modules [Capiluppi et 2010] and keep them in sync with the
evolution of the core system [Hao-Yun Huang and PanchalQROEinally, other authors have

dealt with the idea of looking for bug-fixing patterns in tleeisce code [Pan et al., 2009] analyzing
the different revisions provided by a given SCM system, beufing on the semantics of the
source code. In other words, they are aware of several confimpatterns such as "addition of

precondition check” or "different method call to a classtamee”. However, at the level of the

source code, and to the best of our knowledge, no studies@itaidetermine if developers that
fixed the bug are the same than those who introduced the begdesan undertaken.

3 Assumptions and Definitions

3.1 Assumptions — SZZ algorithm

This paper makes use of the SZZ algorith'ﬁli\[\/erski et al., 2005], whose main goal is to de-
termine the origin of a bug, by identifying the bug-fixing carits, and by using diff tool. The
authors of this algorithm assume that the lines that have fe@eovef modifiedin the bug-fixing
commit are the ones where the bug was located. Thus, traeicigthe origins of those lines (by
means of theannotatecommand in the SCM), the authors could reach the origins dettioes,
and admittedly, the origins of the bug. Generally speakimg first modification or the addition of
thosemodifiedor removedines can be accounted as the origin of that bug. The opesadization

of the algorithm used in this paper is slightly differentt based on the same assumption: the lines
affected in the process of fixing a bug are the same one tlgihated orseededhat bug.

3.2 Definitions

This study is based on (and could be extended to other) psojgdch make use of a distributed
SCM system calleVlercurial. For each of the analyzed projects, the log provided by e&tieo
named SCMs was analysed. For this purpose, the definitionsinisleis empirical case study are
the following:

e Commit(or revision): change to the source code submitted to the S@e®. This up-
dates the current version of the tree directory with a newofehanges. Such changes are
generally summarized ingatchwhich is a set of lines with specific information about the
affected files, but also about the affected lines.

e Committer person who has rights to commit to a specific SCM repositayck allowed to
make changes. The Mercurial case presents some pecegatitie developers working as
maintainers and uploading changes to the main branch offesitory are not registered
by the Mercurial SCM. Thus, all of the changes are initiallpsidered as uploaded by the
original authof. Thus, through this paper, the concept of developer, cotanor author

2 For more information regarding this issue, the Mercuriabsite offers a set of third part extensions where this
issue could be solvetht t p: / / mer curi al . sel eni c. com wi ki / Usi ngExt ensi ons



will be considered as synonyms. Nevertheless, dependirigeoS8CM, those concepts are
slightly different.

Bug-fixing committhis is a special type of commit where issues reported bgratavelopers
have been fixed. In the comm-central repository this is gdlyereported in the title of a
commit by referencing a “bug” or a “Bug”.

Line: this is the basic piece of information of this study and they generally handled by
committers. These lines could bdded- new line,modified- modification of some part of
that line andemoved there is a deletion of that line.

Bug seeding-commitgiven a commit, and the output of thgy diff command, it is pos-

sible to obtain a complete picture of the lines that were dddeodified or removed, but
also about the committer, the date and which files were hdndlbis is necessary both to
track which lines have been changed for fixing a bug, and tktwehich committers have

provided changes to the same set of lines in previous comrkitgure 2 shows how the
latter identification has been achieved. In the examplefaler{ght), three sets of lines can
be recognised (“set of lines 1”, “set of lines 2” and “set ofels 3”): the first two sets are
affected by changes, the third has been unchanged throughou

COMMITS AFFECTING LINES

Committer A Committer C
.
T 1 T
1]
0 2 4 6 8
FILE CURRENTLY AFFECTED
.
MODIFICATION ! SET OF LINES 1
:
SECTION
SET OF LINES 3
ADDITION STUDIED
CODE
MODIFIEATION SET OF LINES 2
\ 4

ADDITION

U

Figure 2: Identifying previous changes and committers

Tracking back the history of each set in the database, weldea@know that “set of lines
1” was added in commit number 1 and then modified in commit rembb With respect to
“set of lines 27, they were added in commit number 5 and latedifired in commit number
7. With respect to the authorship, we know that the “set @&difh” was added by a developer
named A. The modification of “set of lines 1” and the additidrite “set of lines 2” was
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done by the same committer, named C and finally, in commit hgéswere made on the
"set of lines 2” by developer C. In this specific figure, othemeoits might have happened,
but they have not modified or removed the set of lines we aerdasted in. Specifically,

commit number 2, 3, 4 and 6 took place, but none of them modifiedtudied sets of lines.

Empirical Approach and Operationalization

As the main goal of this research, this paper aims to ideatiiy characterise the bug-fixing and
bug-seeding activities in FLOSS communities. From a manmalgeerspective, the bug-seeding
activity could be useful to clarify how and when the buggyrseuwcode has been introduced into
the repository, how developers deal with this, and whicbréfieeds to be applied and by who. In
addition, specific sub-questions were formulated to aehileg main goal of the paper:

1. How are the bugs imomm-centrarecorded and referred to by developers? What is the

accuracy and consistency of recording such bug-fixing médron?

Rationale: from the maintenance point of view, it is necessary to stualy the community
records which issues have being fixed. The empirical approsed in this paper is based on
the information provided by the log message left by the deeis when fixing a bug. This
information depends on the analysed community (i.e., Negziland it could be recorded
differently in other communities.

. How can one define tHaug-fixingandbug-seedingctivities when tracking the same set of

lines?

Rationale: this question is related to the detection of bug-seedimgroits that later were
classified as “buggy” by the community. And more specificaligw they are detected by
means of the differences found between each pair of re\asiothe source code.

. Are there specific events in the activity log that could @@ the correct tracking of such set

of lines? How to avoid that such events interfere with thekireg of a given set of lines?

Rationale. Some events in the community could force to move huge diestf source
code to another repository (e.g., in case of migrationgactering (e.g., when changing
loads of methods names), license requirements (e.g., wignating to another license) or
others. These factors can cause large peaks to be visumlitiegl evolutionary trends, that
could artificially skew the results.

. Are there recurring patterns of bug-fixing among the dgwels of thecomm-centratom-

munity?

Rationale: this questions aims to study the behaviour of developerewixing bugs and
try to look for specific patterns of bug-seeding activityislistill not well understood how
bugs are being introduced in the source code and if thosdapmrs that usually introduce
issues are the same ones in charge of fixing them. Anotheesiieg question is the one
related to how many people are usually introducing chargtsetsame piece of source code
that later is found to be “buggy”.



4.1 Understanding thediff output

Past research studies have focused on source code lines iways, either by using the source
code management system (SCM) hosting the project, or by finshikbading the source code
from the repository, and then using th#f tool provided by the operating systems. In the first
case, it is necessary to download the SCM and later use th&odlfprovided within, but most
researchers avoid that mostly due to the bottleneck repiesdy the network. In the latter, one
has to download the source code for all the revisions of alfitas contained in a software system.
Using a distributed SCM such as Git or Mercurial (instead aéditional SCM, as CVS or SVN),
the bottleneck of the network is removed and the correspgrainalysis becomes much faster. As
documented in section 6, this approach still holds somddins, that have to be addressed in
the threats to validity.

A diff is a summary of the changes undertaken between twq &led stored in a SCM system.
The diff command compares the files line by line and summsaurike differences in a specific
format. Below, the partial output of a unified diff format betn two commits (12 and 13) in the
comm-centratepository is shown. This example is not specific from thes®gode since this is
a special file to build the project, however it is simple erfotmbe easily understood.

diff -r f1...1d -r Ob...f7 suite/build. nk

--- alsuite/build.nk Fri Jul 25 11:32:27 2008
+++ b/suite/build.nk Fri Jul 25 11:51:57 2008
@ -43,6 +43,10 @@

TI ERS += app

+i f def MOZ_COWPOSER
+tier_app _dirs += editor/ui
+endi f

+

i fdef MOZ_ CALENDAR
MOZ_EXTENSI ONS += webdav
endi f

The hg diff command, by default, shows the diff between two revisiomsguthe unified for-
mat: the diff format starts with two-lines header where thgional file name is preceded by — —
and the new file is preceded by + +. After this, there are one or more change hunks (usually
named aschunk$ which contain information related to the differences ie file. Those lines
which were added starts with-a character, those removed starts with-aharacter and those
which were neither added, nor removed starts with a spacactea “ ”. Finally, if a line is modi-
fied, this is represented as added and removed, so this charlbappear adjacent to one another.
Thus, if a set of adjacent lines are modified, the old revisibthe lines will show several lines



beginning with—, adjacent to the new revision of the lines, and beginnin@ wit In the previous
example, four lines have been added in a file called “build.mke values between “@ @ repre-
sents the position of those lines in that file before and #fiechange). For more information it is
recommended to read the reference [MacKenzie et al., 2002].

4.2 Retrieving Information from diff Files

A freely available tool has been used to retrieve inforrmatrom consists of several steps that are
specified in the following list:

1. Downloading the SCMthe BlameMe tool is specifically designed to work with Git oeM
curial repositories. These are distributed SCM and proJidaf ¢he change history locally.
This is an advantage if compared to other centralized SCMsa&sI€VS or SVN since there
is an actual and huge difference in terms of time (avoidirgabttleneck represented by the
network access).

2. Collecting Commitsas seen above, the velng command provides a special command to
check differences between two revisiohg; diff. This has been used to interact between the
program and their Mercurial repository.

3. Parsing the revisionsthe tool is launched using the previously downloaded rémgsand
storing all the differences in a MySQL database. For thippse, each of the lines is stored
together with its reference to its file and the position it fila (specifically, there is a list
per file, and each node is the position in that file for a givae)li If a new set of lines are
detected to be added or removed, those are directly addee specified position (explained
in section 4.1.

4.3 Case Study

The proposed method has been applied to describe the bug-fixocess at the level of source
lines using thecomm-centraproject and its Mercurial repository. As mentioned, thisastory
contains the source code of Thunderbird, SeaMonkey, Lightextension and Sunbirfd

The use of the Mercurial repository (after the migratiomir€VS) started on the 22th of July,
2008 and it has been studied till the 20th of July, 2010 (iveo years of source code history).
Considering the whole life of the project until the start abtktudy, 5,982 commits were studied
and the differences between revisions have been stored yS8M database. In this database, we
have stored information of 4,973,038 changes to the sowde rgarding added, modified and
removed lines.

The case studies presented in this paper are based on theendés between two revisions
of the source code, and specifically focused on the bug-fixamgmits. The commits studied are
2,969 out of an overall 5,982 commits; the total amount c#sinonsidered are 2,912,866.

SHowever, as addressedlin t ps: / / devel oper. mozi | | a. or g/ en/ comm cent r al , this only includes
a subset of the code required to build those projects.



5 Results

This section provides the results of the empirical studyquared on the comm-central repository,
in three parts: first, the study of how to properly detect bumg commits is reported, detailing

on the precision and recall in such process. Second, the @fsdealing with large commits is

presented and addressed. Third, the approach of deteciiafiding and bug-seeding committers
is clustered in several scenarios, and finally the resultsagh scenarios are proposed.

5.1 Identifying bug-fixing commits

This first part of the research aims to validate the log messagovided by theomm-central
community, and to understand the consistency and rellbiitheir records with regards to bug-
fixing activities. To achieve this purpose, we developedrmapigcal approach and then checked
how many false positives and false negatives we obtained &oplying it. The approach used is
as follows:

1. Given 3,000 bug-fixing commits, and a confidence level &%9%he random sample was
sized in 100 commits. From each of those, the log messagestvaeyed and the log message
inspected.

2. A simple heuristic, based on the observation of the logsamgs and used by another pa-
per analyzing the Mozilla community [Kim et al., 2008] waseds This heuristic consists
of the selection, as commits fixing an issue, those fittingfélewing regular expression:
“(p| B)ug. +" .. This regular expression will filter all of the commit messagvhich start with
the key word “Bug” or “bug”.

3. The log message of those random selection of commits wasatig inspected to evaluate
whether they refer to real bugs, either checking the unaylyource code or by parsing the
relative Bug Tracking System.

In order to evaluate the precision and recall of such appration, the constituent parts are as
follows:

(TP) True positive: 78

(FP) Fal se positive: 7

(TN) True negatives: 6

(FN) Fal se negatives: 9

Total commts: 100

Therefore we evaluated:

e Positive predictive valuel'P/(TP + FP) =78/(78 +7) = 91,7%
e Negative predictive valuel' N/(FN +TN) = 40%

e Sensitivity =TP/(TP + FN) = 78/78 + 9 = 89, 65%



e Specificity =T'N/(FP+TN) =6/7+6 = 46,15%

Since thePrecisionactually coincides with the positive predictive, and fRecall coincides
with the sensitivity, we conclude thatecision = 91,7% andrecall = 89,65%. One further
aspect to notice is that out of 200 random commits, 85 havevtind “Bug” or “bug” in their title,
and 76 out of 100 are actually containing code that dealsaviihg. The implications of this initial
finding are discussed later.

5.2 Dealing with very large commits

As reported in previous studies, software systems, and nuigteably FLOSS systems, display
at times high (and isolated) peaks of activity. In some dmecases, it has been possible to
detect a very large amount of source lines (e.g., more of 808tecoverall system) being moved
within FLOSS projects [Canfora et al., 2007, Fendez-Ramil et al., 2009, MacLean et al., 2010,
Hindle et al., 2008]. This means that in some changes, onedetatt huge changes reaching
million of lines. From a maintenance or evolutionary poihview, this is hardly accountable as a
maintenance activity. However, this problem has not bele@mtato account by [Kim et al., 2008],
whose analysis is one of the pillars for this study.

Also in the study of theeomm-centrakepository, it has been found that a small number of
commits (no more than 10% of the total set) handles seveoaltnds (in some cases hundreds
of thousands) of lines in just one commit. Apart from exceqpdil cases where developers indeed
modified a vast amount of source lines, the peaks could alsadmed by automatic bots, changes
in the licenses, or by accidental removal and addition of@®wode. As an example of such
distortions, figure 3 shows the number of aggregated nunflsenwved line$. The figure depicts
a situation of common removal of lines, but in some specifromits, we can see how suddenly a
large set of lines is removed (for example, close to id 723 20d).

In order to deal with such distortions, the commits fully argmlly affected by those changes
were removed from the sample: given an overall number of288b lines and 2,969 commits
detected in the bug-fixing process, the sample was theredoigced to 731,941 lines and 1,747
commits. In summary, the four largest commits (IDs 0; 1,0827; 5,213 and 5,383 and the
lines affected, were removed from the sample.

5.3 Identifying bug-fixing and bug-seedingcommitters

In order to detect the bug-fixing committers, and the dewalepealing in the past with the same
section of code (as per the scenarios in Figure 1), this psgess the same assumption formulated
in [Kim et al., 2008]: in a bug-fixing commit, one has to corgidnly the “set of lines” removed
or modified in that commit (see Figure 2), instead of the wtiitde or set of files, committed in
the transaction.

4This figure only shows those commits where at least one lireeremmoved.
5t should be noticed that the commits listed here are reahsitsnwhile the aforementioned, 723 or 4,200 are ids
and they do not correspond to real revision numbers in the SCM
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Figure 3: Aggregated number of removed lines detected iAfiairgy commits

This algorithm is named as th&ZZalgorithm” and fully detailed inf"gliwerski et al., 2005]:
considering the set of lines modified in a bug-fixing comnhig &lgorithm focuses on the previous
commit in time (i.e., “one step back”) where all the lines utlk set were modified: in this way,
it is possible to obtain the latest commit where each line pragiously modified (Figure 2), and
correlating it with their actual committer (Figure 1). Thesamption of the algorithm, also used in
this paper, is that the bug was actually introduced in thatipus commit.

Using this approach, the total number of developers dealitiy either bug-fixing commits
or bug-seeding commits were evaluated. Overall, 450 @iffecommitters have committed once
to the Mercurial repository: of those, 287 are authors oéast one bug-fixing commit, and 383
are authors of at least one bug-seeding commit. This seemegaie that specific developers are
dedicated to fix bugs: in addition, it is worth to mention ttre Mozilla community has identified
the Thunderbird project as “core” project, in which senievelopers will peer review the commits
made by others. This may distort the dataset used in this geygeopen another set of questions,
for instance linking those policies with the outcomes ofpihgject.

In order to visualise at first the summary of results, Figushdws the density chart of the
bug-seeding developers: since most of the values are thtatthe left-side of the chart, only
1 or 2 developers are involved in 80% of the cases (1,392 olif7ef7 commits overall). More
specifically, 1,035 bug-fixing commits (60% of the overalingde) involve just one developer
previously seeding the lines, but only 7% of the total sedithed (50k out of 747k lines).

Based on this initial set of results, the two scenarios shawiigure 1 were further divided
into three more scenarios: one previous developer (cayexi0% of the sample), two previous
developers (covering an additional 20% of the sample) aeddkt of them (covering the rest of
the 20% of the sample). This provides a final list of six sciEsar

S1 - bug-fixing and bug-seeding commits made by committer A,;
S2 — bug-fixing commit made by A, bug-seeding commit made by B;

S3 — bug-fixing commit made by A, bug-seeding commit made by ARBmhly;
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Figure 4: Density chart of number of committers involved vaoges at (t-1) to lines bug-fixed at t

| | Overall| Same Comm| Diff. Comm. |

Commits|| 1,035 62 973
Lines 50,078 973 49,348

Table 1: One previous committer

S4 — bug-fixing commit made by A, bug-seeding commit made by B@rmauhly;
S5 — bug-fixing commit made by A, bug-seeding commit made by AnB athers;

S6 — bug-fixing commit made by A, bug-seeding commit made by B, €ahers;

5.4 Analysis of Scenarios

Scenarios S1 and S2 Table 1 focuses the analysis on the bug-seeding commits ioypstt one
committer, which correspond for some 60% of all the bug-fpaommits. The summary in the ta-
ble distinguishes whether the author of the bug-fixing conmsrihe same committeSBame Comm.
column, e.g., scenario S1) or a different omeffi Dev. column, e.g., scenario S2) who seeded
those buggy lines. Results show that, in terms of developedvied, the bug-fixing process is
performed by different committers from those seedind thg thor only 6% of these commits (62
out of 1,035) the bug-fixer is the same and the only one inebirghe bug-seeding activity (e.g.,
scenario S1). In all the other cases, a different committes iAvolved in the fixing of lines that
were seeded by B (e.g., scenario S2).

written down in the method part



| | Overall | S3 (A+B) [ S4 (B+C)]
Commits| 357 43 314
Lines 15,581 | 7,052 (6,834 + 218) 8,529

Table 2: Commits: two previous committers

Scenarios S3 and S4 When considering a maximum of two bug-seeding committersas
found that only 357 commits comply with the requirementscér@arios S3 and S4. Table 2 shows
the results differentiated for S3 and S4: 43 out of 357 commiere seeded fully or partially
by the same committer who finally fixed the bug. In terms ofdim@andled, 6,834 lines were
co-changed with another committer and submitted by the sammamitter A, while 218 were co-
changed with A but committed by another committer B. Thesalt®provide another point of
view of the community: generally speaking, it seems thattrobthe commits where two people
have previously participated were mostly handled by pedjferent from those who fixed the
bug. However, in 43 commits, the same committer was foundatogipate in the changes. This
raises another question related to the quantity of sourde bandled by other committers than the
one who fixed the bug. In that case, we realized that just a 3¥tabsource code (218 lines) was
really handled by someone different: this shows similanltsgo the S1 and S2 scenarios, where
just one committer was found.

As visible in the same table, most of the bug-seeding comanésby other two developers
(B+C), but only half of the source code is handled in the pracess

Scenarios S5 and S6 The last two scenarios comprise the commits with upitprevious com-
mitters handling the source code. Table 3 shows the numlmamomitters found for each commit.
For instance, for the first row, the values show that ther ammits where the same committer
fixes and seeds the bug together with others (Scenario S titere are 128 commits where that
committer did not participate at all (and different peomeded those lines). Albeit more commit-
ters could be possible, the thresholdl6fcommitters reaches 98% of the total sample of commits
analyzed (1,717 out of 1,747 commits). Figures 5 (left agttjishow the absolute and relative
number of commits for the values presented in table 3. Inr€iguleft, the x-axis are divided
by the number of previous developers involved in the setnadithat in the current commit were
modified or removed. The y-axis represents the number oflaiescommits detected. We can see
how figure 5 (left) shows that most of the commits were presiphandled by people totally dif-
ferent from the ones who were later dealing with the bug-fixdammit. Figure 5 (right) adds extra
information in order to check the relative percentages ohstalues, and to conclude that, in all
of the cases, more than a 60% of the total bug-seeding corhatta different committer than the
one who made the bug-fixing commit. Using relative numbergight out of ten combinations,
the second set of data (commits fixed by A, but not seeded by #hei most general.



Num. Previous Committers S5 (A+B+...) | S6 (B+C+...)|

3 27 (773 + 3,011) 128 (29,246)
4 11 (85 + 441) | 59 (5,010)
5 9 (148 + 696) | 24 (1,840)
6 3(9+253) | 21(2,126)
7 3 (30 + 13,089)| 12 (2,844)
8 3(79+5,207) | 4 (141)

9 5(30+1,328) | 8(3,575)
10 2(11+183) | 6(1,422)

Table 3: Rest of the cases: from 3 to 10 previous committers
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Figure 5: Scenarios and their relevance: S5 refers to thasenits where the same committer
who is fixing the issue, previously participated. S6 referthbse commits where that committer
did not previously participate.

5.5 Finer granularity — Lines affected

In order to study the results at a finer granularity, figure &sube lines to complement the above
results. Depending on the number of bug-seeding committieis figure shows the number of
lines seeded in the various scenarios: for each number wiopie committers detected (x-axis),
the number of seeded lines by the same committer who fixedtitpis shown.

The notation “Same Commmit and Same Committers”, represeat®tative number of lines
that were also previously handled by the same committer wied the issue (Scenarios S1, S3 and
S5 - A also previously participated). With the notation "Sa@ommit and Diff Committers*” the
figure shows the Scenarios S1, S3 and S5, but discardinghésepreviously modified by the bug-
fixing committer. Finally, the notation "Rest of them®, is thggregation of the rest of Scenarios
(S2, S4 and S6), where the committer who fixed the bug did riq@usly participate at all.

As a results from this figure, it can be seen how for all of theesalexcept in two previous
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Figure 6: Scenarios and their relevance — Lines affected
developers), the committer who has fixed a bug has not paatid at all in seeding that bug.

5.6 Discussion

The analysis of the Mozilla community, and of ttemm-centraproject, has shown few interest-
ing insights: given the specificity of this community, ane firocess that was put in place at the
maintenance level, generalising such findings could belgnaditic. Nonetheless, these observa-
tions provide an initial set of results to characterise tg-fixing and bug-seeding activities in the
Mozilla community, to be used as a baseline to be comparadsigaher FLOSS projects.

Overall bug-fixing activity:it has been found that some 50% of all the commits are detected
as fixing bugs: considering that the precision of detectingrtixing commits proved substantially
high, this is an impressive amount. Nonetheless, this valdargely dependent on the policy
applied by the Mozilla community when submitting changethtsource code: this policy alone
could lead to an overrating or underrating of the results.

Bug-fixing and territoriality: the main result found, that bug-seeding committers ardyrare
also bug-fixing committers, somehow conflicts with what isrfd in the FLOSS literature: strong
“territorial” developers, and specific responsibilitifstioe developers over their source code have
been observed from previous works [German, 2004], [Capilepal., 2010]. However, it seems
that the concepts of “source code territorialifyand “bug-fixing territoriality” are based on dif-
ferent assumptions: for the vast majority, bugs are fixed therodevelopers than the ones who
introduced or seeded such bugs.

Bug-fixing and individual rolestegarding the bug-seeding activity, it was found that eaebep
of source code modified in a bug-fixing commit is previouslydified mostly by one developer.
From a system perspective, this reflects the result that finegyency distributions in software are
power-law (e.g., many changes are handled only once, andédogl@veloper, while few changes are
handled more often and by several developers); from a maiaagerspective, this result shows

6 Pieces of source code (i.e.: methods or files) managed byomelyleveloper.



that developers usually fix bugs that were introduced byratbeelopers. This could either reflect
the presence of specific bug-fixing developers, or a moreedhactivity of bug-fixing, where
newcomers tend to fix bugs left open by other developers @t ,€2004]. Furthermore, focusing
on Scenarios 3 or 4, there is a 80% of probability that a seddotig-fixing commit was introduced
by at most two developers. This again shows that in most of#ises, pieces of source code are
by definition a valuable piece of knowledge. Some authore likalt with the idea ofoncepts
when developing software, and it seems that working at thel lef methods or functions is the
best way to understand previous changes made by others.stitg here is to match pieces of
source code and methods to check this hypothesis.

Bug-seeding and movement of code:the granularity of commits, Scenarios 5 and 6 have
shown that bug-seeding commits were handled by severai (bvaens of) committers. A possible
explanation could be related to the observed huge moveroétitees in bug-fixing commits: it
could be found that for a given commit, several people prestio participated in such a bug-
seeding commit.

6 Threats to Validity

Generally speaking, any empirical study like this is boumdiany threats to their validity. It has
been claimed that studying FLOSS projects from an empipoait of view could raise several
threats that should be considered [Fernandez-Ramil et0&l8]2 Among them, we can find those
related to the data extraction, the granularity of the strdyow mature is the selected projects.

Construct Validity At first, the heuristic used to obtain bugs from the SCM log ragss is far
from be perfect. As seenin [Kim et al., 2008], the selectibloums (even for those projects studied
in the Mozilla community) are based in a corpus and some aif@antic data which improve the
data obtained. Also, as addressed by [Chen et al., 2004yzanglthe SCM logs could be error
prone. However, after manually checking 100 commits withhburistic used, the percentages of
error were very low. This is due to the selection of a projeatrf the Mozilla community which
generally shows good practices by precisely pointing tobilng tracking system for almost each
change in the source code.

Second, most of the work is based on the analysis bydifietool provided by the Mercu-
rial SCM. Although this is a reliable tool, we have detectethedimitations in the use odliff
to retrieve the authorship and other related data. As aseédeby [Canfora et al., 2007] and
[Zimmermann et al., 2006], we could obtain wrong indicasion the number of actual changes
in the source code after a commit. One of the main reasonkdsetchanges could be some move-
ments of data from one directory to another, or some merges flifferent branches. In order to
deal with them, most of the big spikes, as aforementioneds waamoved.

Finally, it is worth to mention that the large additions afds are an issue which has not been
resolved in this paper. Future revisions following a comaffiécting thousands of lines may lead
to the wrong conclusions, by showing that most of the work dase by just one committer,
although this could be just a distortion of few commits.



Internal Validity = The tools and script used could present some minor bugs taatffect the
results. However, they have followed a validation procekatwnakes the results reliable enough.
After the initial development and after several tests, d fimanual study of several commits was
carried out and in all of the cases the comparison betweeinfinenation in the database and the
SCM matched in a 100% of the cases. However, the tools used @sé some errors in the future
that could not have been taken into account yet .

External Validity The selected project is not large enough to represent thelbweimber of
FLOSS projects. However, we present a first initial step &cdbe the bug-fixing process based
on the Mercurial SCM. As further work, the authors want to egt¢he analysis at least to the
whole Mozilla community.

7 Conclusion and Further Work

This paper has presented an empirical analysis afohem-centraFLOSS community, in order to
detect whether the bug-fixing activity among developerdacba modeled into patterns and recur-
ring scenarios. This community was selected for the cagrsigtand reliability of their messages
into the SCM repository, in particular the messages dealiitly the bug-fixing activities. With
these characteristics, this community and their data cdevegaged to shed important hints on
how FLOSS developers proceed to the very needed correctii@enance, and more importantly,
whether the bug-fixing committers are the same who congibtd introduce and seed the bug in
the first place.

As a first result, we could confirm the reliability and consisty in referencing the bug-fixing
commits within thecomm-centracommunity, with a precision larger th&9%: this produces
very accurate results in terms of tracking the actual bugdixommitters, and the lines that were
modified in the process. It also forms a basis of good prazticat will be leveraged in future
works when studying the larger Mozilla community (an ordémtagnitude larger in terms of
activity and committers).

Secondly, we proposed a method to define and track both thébnog and the bug-seeding
committers: given the set of lines affected by the bug-fixaognmit, the set of previous revi-
sions was studied in order to detect which committers wenaadlg “seeding” such bug without
contributing to its removal or fixing.

Thirdly, we proposed an approach to avoid the distortiorpofi®us data: it was observed that
thecomm-centratommunity produces high peaks of activity [MacLean et &1 @ Canfora et al., 2007,
Fernandez-Ramil et al., 2008]. This problem was been raigdHim et al., 2008]: what we did
to tackle the issue was to remove the five largest commits;iwdlione were responsible of over
2M lines modified, added or removed. We proposed that relseegshould remove at least three
main cases: 1- Initial import of commits, 2- Huge removaldafed by addition of lines of code,
3- Huge addition followed by removal of lines. In all of thosa&ses, the results could be directly
influenced.

Furthermore, we proposed to use thi provided by the SCM as a way to let us know author-
ship at the granularity of a line: other works such as [Canébia., 2007, Zimmermann et al., 2006,



Kim et al., 2008] have used another different approach td wih the idea of following the life
of a line. Several difficulties emerge when trying to track whole lifecycle of these lines, but not
at the level of going a step back in their history. Thus, using tool could be a faster and more
effective way of determining the authorship of each line.

Finally, with respect to the results, it was shown how theexiive maintenance is being carried
out by people on theomm-centracommunity. We have detected that less than 5% of the bug-
fixing commits were handled by who first introduced the change“seeded” the bug. With
respect to these results, in most of the cases the commiitteised in the bug-fixing process are
not the same as those initially seeding the bug. These semdtvastly different and unexpected if
compared with corporate software development, where dpeet “opening” a bug are most likely
to also be responsible for its fixing and closure.

As further work, the authors would like to address two opeestgjons (related to the GQM
approach) that could be easily answered using the samestdtast of all, the central idea of ths
paper is related to the fixing process and if the committezsfizing their own bugs. However,
we have not studied if those committers are aware that in s@ses they have been introducing
errors in the source code, or at least the seed of a future ®ogcking how many of them have
been working in a given time-window after the detection otig bould provide another insight of
the bug-fixing process.

Another similar idea is related to the seed of the bug. We baea how given a commit fixing
a bug we could trace when the involved source code was prayiadded or modified and, thus,
who was the “bug-seeder”. However we do not fully understdnedcauses. For instance, we
could trace if that developer modified a piece of source wkbeeusually does not work, if the
commit modified a file that was lately several times modifiéd, committer submitted a change
in a programming language not usual to her or some otherlpliéss.
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