
A Performance Optimization Model towards OAuth 2.0

Adoption in the Enterprise

M. Noureddine1, R. Bashroush2

1 Microsoft Corporation, Seattle, USA

Moustafa.Noureddine@Microsoft.com
2 University of East London, London, UK

rabih@uel.ac.uk

Abstract. As Cloud software (Software-as-a-Service) become more and more

ubiquitous, the scale and performance expectations become an important factor

impacting architectural decisions for security protocol adoption. WS-Trust[6]

and WS-Federation[7] are enterprise scale protocols but lacked wide adoption

due to complexity. OAuth 1.0 emerged as an industry standard for unifying

identity management for major SaaS players. However, OAuth 1.0 soon was

proven to fail performance criteria for enterprise adoption. With the

introduction of OAuth 2.0 some of the performance concerns were addressed.

This paper proposes an optimization to OAuth 2.0 for enterprise adoption. This

optimization is achieved by introducing manageability steps to pre-establish

trust amongst the client and the protected resource server. In this model, the

client needs to set up trust with the protected resource server as well as with the

authorization server. These clients are called highly trusted clients. We believe

such optimization makes it feasible to adopt OAuth in the enterprise where

scale and performance are critical factors.

Keywords: OAuth; Access Delegation; Authorization Servers.

1 Introduction

OAuth is a claim-based security protocol that enables users to grant third-party access

to their protected resources without sharing their passwords. OAuth 1.0 [1] was

published in December 2007 and quickly become the industry standard for web-based

access delegation. However, OAuth 1.0 faced lots of challenges to make it into the

enterprise domain mainly due to the lack of performance optimization capabilities

currently on offer by the protocol. Microsoft, Google, and other large organizations

[3] proposed OAuth WRAP (Web Resource Authorization Profiles) to solve the

performance challenges and facilitate adoption by the enterprise. One of the main

optimizations is the introduction of an independent Authorization Server. OAuth

adopted the WRAP recommendation into OAuth 2.0. In this work, we introduce an

additional optimization where the Authorization Server is configured with explicit

authorization table so that access grants are rejected at the Authorization Server

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219372618?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:Moustafa.Noureddine@Microsoft.com

before getting to the protected resource server. This reduces the amount of processing

some popular protected resources servers would have to do and alleviates the risk of

potential threats such as Denial-of-Service (DoS) attacks and Distributed DoS

(DDoS).

In the next section, we discuss the drivers behind the introduction of

OAuth2.0 and present its architecture. In section 3, we argue the modifications

suggested to OAuth2.0 in order to facilitate Enterprise adoption of the protocol.

Section 4 then provides preliminary results from experiments currently being

conducted using the modified version of OAuth2.0. Finally, section 5 rounds off the

paper by providing a preview of planned future work.

2 Introduction to OAuth 2.0

Although OAuth 2.0 is a new protocol, it still retains the overall architecture and

approach established by the previous versions. As large providers started using OAuth

1.0, the community realized that the protocol does not scale well. It required: state

management across different steps; temporary credentials management; and provided

no isolation of the Authorization server from the protected resource itself. In addition,

OAuth 1.0 required that the protected resources’ endpoints have access to the client

credentials in order to validate the request. This broke the typical architecture of most

large providers in which a centralized authorization server is used for issuing

credentials, and a separate server is used for API calls. OAuth 1.0 required the use of

both sets of credentials: the client credentials and the token credentials, which made

the separation very hard [2].

As the deployment of Cloud hosted enterprise software evolves (such as

Exchange Online and SharePoint Online), there is a growing trend for a variety of

applications to access resources through an API over HTTP or other protocols. Often

these resources require authorization for access to such Protected Resources. The

systems that are trusted to make authorization decisions may be independent from the

Protected Resources for scalability and security reasons. The OAuth Web Resource

Authorization Profiles (OAuth WRAP) enable a Protected Resource to delegate the

authorization to access a Protected Resource to one or more trusted authorities.

Clients that wish to access a Protected Resource first obtain authorization from a

trusted authority (Authorization Server). Different credentials and profiles can be

used to obtain this authorization, but once authorized the Client is provided with an

Access Token, and possibly a Refresh Token to obtain new Access Tokens. The

Authorization Server typically includes authorization information in the Access

Token and digitally signs the Access Token. The Protected Resource can verify that

an Access Token received from a Client was issued by a trusted Authorization Server

and is valid. The Protected Resource can then examine the contents of the Access

Token to determine the authorization that has been granted to the Client.

The following figure1below shows the architecture for OAuth 2.0 with an

independent Authorization Server.

Authorization Server
AS1

Protected Resource
PR1

Client
C1

2
Get Token 1

Pre-established Trust

3
Request Resource

(Pass a Token)

Fig. 1. OAuth 2.0 Architecture

3 Enterprise Integration

It is often required for servers to integrate with each other and exchange protected
data. An example of this is the integration with the Microsoft Exchange Server. A
third party may want to develop an application to access its users’ mail boxes (for
archiving or other scenarios that can be monetized). Since the Exchange mailbox is a
highly protected resource with high business impact, it may not want to hand its
mailbox data to any application with a valid token. In a non-enterprise environment,
all you need is a paid account to have access. For example, Amazon may allow
access to its listings for anyone who is willing to pay an integration price, while
Microsoft Exchange Server wants to consider Tokens for applications that have pre-
established trust. Also since Exchange server can host millions of users in the Cloud
in a Shared Tenancy [5] model, request for access with valid tokens can easily burden
the server.

In our proposal, shown in Figure 2 below, we are working on adding a pre-
established trust between the Client (C1) and the Protected Resource (PR1) which can
reduce many of the unwanted requests to the Protected Resource (PR1) shown in
figure 1 above.

Authorization Server
AS1

Protected Resource
PR1

Client
C1

3
Get Token

2
Pre-established Trust

& Synchronized Authorization

4
Request Resource

(Pass a Token)

1
Pre-established Authorization

Figure 2. OAuth 2.0 Modified Architecture

In order to do this, we built an Authorization Server and set up an Authorization

Table as shown in Table 1 below. This table is replicated on the Authorization Server

as well the Protected Resource where Authorization Server can only issue tokens to

C1, and C2 and the Protected Resource can only accept tokens issued by C1, and C2.

Table 1. Authorization Table

Issuer AppliesTo

C1 https://PR1.com

C2 https://PR2.com

C3 https://PR3.com

During trust establishment (Step 1 in Figure 1 above), the Protected Resource
(PR1) sets this table. In return, the Authorization Server will only issue tokens to
Issuers in the table. If, for example, C3 comes with a request, it will not be granted a
token since it does not have an entry in the table, in other words, C3 needs to be
provisioned to be trusted by the protected resource PR1 in order for the Authorization
Server to issue tokens.

A second optimization we have designed is the introduction of additional
parameters to the Token itself. In this optimization, we added the AppliesTo
parameter. When C1 requests a Token from AS1, it will be receiving a token with

https://pr1.com/
https://pr2.com/
https://pr3.com/

AppliesTo parameter addressed to PR1 so that C1 cannot play the Token to any other
protected resource. This provides an additional layer of security by ensuring that AS1
is only issuing tokens with pre-established handshake between the client and the
protected resource and reduces the number of unwanted attempts to authenticate. For
example PR1 can build an interface to allow only clients request with pre-established
trust and thus rejecting many of the unwanted claims without putting additional load
on the protected resource. In the example above, the token will be addressed to
Https://PR1 and cannot be played to any other server. This ensures that the token

was intended for this protected resource. All tokens without the matching AppliesTo
parameter will be rejected by the protected resource server PR1. If performance
optimization is a high priority, highly trusted application may be allowed to use a wild
card in the AppliesTo parameter. In this case, the client can reuse the token to play
the token to other protected resources in the enterprise. For example, if a client is
accessing SharePoint server, Exchange Server, and SAP server within the same
enterprise, it may need to issue a single token from the authorization server with
‘AppliesTo = *’, this reduces the round trips the client needs to make to the
authorization server.

3 Conclusion and Future Work

As a consumer centric authentication protocol, OAuth is light-weight, secure, and
simple identity management protocol. With some optimization, it can become
ubiquitous model for enterprise adoption. In this paper we have shown an
optimization that can significantly reduce unwanted authentication claims and
potentially can prevent a DoS type of threat. To better leverage OAuth 2.0 in the
enterprise, we proposed two optimizations, one by requiring pre-established
authorization table between the client and the protected resource, and the other one by
allowing highly trusted clients to play tokens to more than one protected resource
within a single enterprise and thus reducing the round trips a client needs to make to
the authorization server.

In future work, we plan to show how the two modifications suggested were
proven useful using a case study. In order to do so, we want to simulate Exchange
Server accepting tokens for clients requesting access to their mailboxes. The clients
will have to pre-register trust with Exchange Server. Additional optimization we plan
to introduce include caching tokens and reusing them on behalf of other users trusted
by the client within the valid lifetime of a token.

References

1. OAuth 1.0, http://oauth.net/core/1.0/#anchor1

2. OAuth, http://tools.ietf.org/html/draft-hardt-oauth-01#page-14

3. OAuth WRAP, http://tools.ietf.org/html/draft-hardt-oauth-01

http://oauth.net/core/1.0/#anchor1
http://tools.ietf.org/html/draft-hardt-oauth-01#page-14
http://tools.ietf.org/html/draft-hardt-oauth-01

4. Wang Bin, Huang He Yuan, Liu Xiao Xi, Xy Jing Min: Open Identity Management
Framework for SaaS Ecosystem. In: ICEBE 09 Proceedings of the 2009 IEEE
International Confernece on e-Businness Engineering.

5. Ye Hu, Johnny Wong, Gabriel Iszlai and Marin Litoiu: Resource Provisioning for Cloud
Computing. In: Proceedings of CASCON 2009, November 2009.

6. WS-Trust, http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html

7. WS-Federation, http://msdn.microsoft.com/enus/library/bb498017.aspx

http://docs.oasis-open.org/ws-sx/ws-trust/200512/ws-trust-1.3-os.html

