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chapter one 

Rethinking representation
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To demonstrate how this works we can teach these 
rules to a computer using the NetLogo language 
which provides a mechanism for setting up parallel 
computations very simply. The points are described 
using ‘turtles’ – little autonomous computer programs, 
all of whom obey the program set out below:

to repel

ask turtles

[

set closest-turtle min-one-of other 

turtles [distance myself] 

set heading towards closest-turtle

back 1

]

end

To understand this piece of code, first notice that the 
whole thing is wrapped up in the clause:

to repel

do something

end

This is because we are defining how to do something 
for the computer, so here we are setting out how to 
repel. The stuff between the word ‘to’ and the word ‘end’ 
is the actual code. Then comes the phrase ‘ask turtles’. 
Who, you might ask, is doing this asking? The turtles are 
the points in space, they are really a lot of tiny abstract 
computers, and the global overall observer is, in this 
statement, sending out a message to all the turtles to 
run the program enclosed in the square brackets [   ], 
which is the three sentences:

1) set closest-turtle min-one-of other 

turtles [distance myself] 

2) set heading towards closest-turtle

3) back 1

 
The turtles are being told:
 

‘Dear turtles, I would like to ask you to look through 
all the other turtles to find the one whose distance 
away is at a minimum.’

Then they must remember which turtle this is by storing 
its reference in the name ‘closest-turtle’.

Now the turtles are told:

‘Set your heading so that you are pointing towards 
this “closest-turtle”, and back off one step.’

Interestingly we also have to tell the computer to 
address the ‘other’ turtles as in the human language 
description . If we just asked all the turtles this would 
include	myself	(the	one	doing	the	ASKing),	and	we	
would get a value of zero and try to walk away from 
ourselves – not a good idea. This is a good example (the 
first of many) of how we have to SPELL IT  OUT for 
these supremely pedantic machines.

The introduction sets out the initial position of text as 
design representation. Fundamentally the proposition 
is that Chomsky’s dictum – that finite syntax and lexicon 
can nevertheless generate an infinite number of useful 
(well-formed) structures – can be applied to artificial 
languages, and that texts can be written in those 
languages to generate architectural objects, taken to 
mean ‘well-formed’ configurations of space and form. 
This is the generative algorithm and the idea is that 
a generative algorithm is a description of the object 
just as much as the measurement and analysis of the 
object, the illustration of the object and the fact of its 
embodiment in the world.

The position here is that the text we are looking at, 
being an artificial language, usually depends for its 
embodiment on some hardware – the engineering 
product of the Turing machine – and this hardware 
affords some species of representation, from simple 
graphics all the way up to programmable hardware, 3D 
printing and immersive virtual worlds. But this aspect is 
simply an unfolding of the underlying algorithm, which 
is still the original representation. It would be possible 
to orchestrate 300 human beings to obey instructions 
and so act out the algorithm (like synchronised 
swimmers) such as in the following.

Some simple texts

As a very first shot, take the example of representing 
some simple geometric shapes and volumes like the 
circle, the spheroid and other 3D polyhedra, not using 
geometry, but small programs written in a dialect of 
Logo (a venerable Artificial Intelligence (AI) language 
defined by Seymour Papert, whose history is elaborated 
in the next section). 

Triangles and circles
For the 2D case, this can be verified with a simple 
experiment using a program with a large number of 
points in 2D space, initially randomly sprinkled over the 
plane.

Give each point a rule: 

‘Search through all the other points and find the 
nearest one to yourself.’
‘Then move away from this nearest point.’

All the points do this simultaneously. 

Of course the problem is that, in backing away from 
your nearest neighbour, you may inadvertently come 
too close to someone else, but that is ok because 
then you just turn around and back away from them. 
Remember that everybody is doing this at the same 
time. 
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Emergent tessellations
With a suitable repel strength, the points all settle down 
in a triangular pattern because whenever they diverge 
from this grid they are in an unstable situation and will 
always fall back into the triangular lattice. The point to 
note is that these wiggles are not in the algorithm (all it 
states is the backing off  principle outlined above). What 
would one expect from such an algorithm? At fi rst sight 
perhaps just aimless wandering; however, it does in fact 
settle down as if pulled into alignment by some ‘force’ 
not implied by the two lines of code. This is an example 
of ‘emergence’ – the idea that the program, by operating 
continuously in parallel, engenders a higher order 
observation, which could be characterised as a simple 
demonstration of the principle that the triangular lattice 
is the least cost-minimum energy equilibrium point 
for a 2D tessellation, with each point equidistant to six 
others. Here also is our fi rst example of an algorithm 
which possessed epistemic independence of the model 
(in this case the code of the repel algorithm) from the 
structural output running the algorithm. In other words 
the stable triangular tessellation (the structural output 
of the program) is not explicitly written in the rules; 
which is an example of distributed representation.

Distributed representation
This is also the fi rst example of many that illustrates 
the notion of distributed representation. The way 
the algorithm works is to embed the rules to be 
simultaneously followed in EACH turtle. Each turtle 
(small autonomous computational entity) is running the 
little program described above with its own decision 
making – who is nearest to MYSELF – and behaves 
independently of the other little computers – I turn 
THIS WAY and back off . The repel algorithm is the 
only available description we can fi nd in this system, 
everything else is just general scheduling events and 
general start stop for the whole simulation, and this 
representation is present in EVERY turtle. The turtles 
can interact with each other and have some limited 
observational powers, for instance they can ‘feel’ the 
nearest turtle and take appropriate action, but they do 
not know about the triangular tessellation since that 
can only be observed by the global observer – in this 
case, the person (you) running the simulation on your 
computer. This distinction between diff erent levels of 
observer is a key aspect of distributed representation, 
and will crop up many times in the following pages. It 
is vital, with distributed representation models, that 
there is some feedback present between these little 

autonomous programs; if each one took no notice of its 
neighbours then nothing would happen. This is evident 
in the cellular automata shown next and the canonical 
‘pondslime algorithm’ introduced at the end of this 
chapter.

It is instructive to compare this bottom-up small 
program with the conventional recipe for a triangular 
tessellation. Of course there are many ways of 
describing how to draw such a pattern by using a simple 
wallpaper approach.

Wallpaper algorithm
Set out a line of dots at a spacing of 1.
Duplicate this line with an offset of 0.5 

in the x direction and the square root 
of 0.75 in the y direction. 

Do this as many times as you like.

The square root of 0.75 is the height of an equilateral 
triangle of side 1 derived from Pythagoras (where 
height2 + 0.52 = 12; so h = √1-0.25), which evaluates 
to approximately 0.8660254037844386467637231
7075294. This is not a very attractive number and 
seems to suggest that this algorithm is not capturing 
the real description of the underlying dynamics, 
but just mechanically constructing a top-down and 
rather clumsy measurement of the outcome. This 
distinction should be remembered when simulations 
and modelling are discussed elsewhere, as it forms 
part of the argument in favour of the ‘short description’ 
encoded in the generative rule rather than the ‘long 
description’ involved in traditional geometry.

In the top left-hand image, the trails of the turtles are shown 
moving from the initial random sprinkling to the triangular 
grid. It takes about 500 steps for the system to settle down, 
and it can be observed that the turtles quite quickly fi nd a 
suitable position and then stay there (the trails do not stretch 
very far, and rarely cross).

Th ese and many other examples of programming in the 
book are based on NetLogo. Th is language is a descendant 
of StarLogo which, in turn, was a parallel implementation 
of Logo (described in the next chapter), which itself was a 
development of LISP (see Chapter 3). See Resnic (1994) for a 
good introduction.

Th e turtles settle down to a triangular least-eff ort 
confi guration. See below where the points are linked to show 
the triangular grid.

To the left, two versions of the outcome running with links 
are shown. None of these patterns lasts for long; like all 
dynamic systems the moment can be captured, but is gone 
and lost for ever by the ceaseless jiggling of the turtles.
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Extending the model – drawing circles with turtles
The following examples are based on the Papert 
paradigm of allowing the geometry to emerge from 
the algorithm rather than being imposed from outside. 
In this case the geometry is based on the circle, which 
is then extended to cover more complex geometries 
such as the voronoi (emergent tessellation). These 
are ‘illustrations of consensus’ because the bit you 
can see (the two images on the page opposite) is the 
emergent result of all the components of the system 
(turtles mostly) finally reaching some agreement about 
where to be. The phrase begs the question as to what 
the turtles are being asked to agree about, and what 
architectural idea might be involved. Generally, the 
task is to distribute themselves with respect to two 
conflicting pressures – that of the group based on some 
higher order pattern, and that of the individual. 
Papert points out that the equations:

Xcirc = originX + Radius cos (angle)

Ycirc = originY + Radius sin (angle)

do not capture any useful information about circles, 
whereas we can write a small program in NetLogo to get 
one turtle to walk in a circle by telling it to go forward 
and left a bit (see Chapter 2 for background on Seymor 
Papert). The program:

To circle

Repeat 36

Forward 1

Turn Left 10

End repeat

End circle

requires only English and a familiarity with walking.

As Resnick points out in Turtles, Termites and Traffic 
Jams (1994), with parallel computation we can propose 
another implementation of the circle using not just one 
turtle, but many of them. The algorithm is based on the 
characterisation of a circle as being:

An array of points all at the same distance from 
another common point

To do this with turtles we:

•	 create	a	lot	of	turtles	at	random;
•	 get	each	turtle	to	turn	towards	the	centre	of	the	

circle;

•	 get	each	turtle	to	measure	the	distance	between	
itself and this centre point;

•	 if	this	distance	is	less	than	the	desired	radius,	then	
take a step back (because you are too near);

•	 if	it	is	greater,	then	take	a	step	forward	(because	you	
are too far away); and

•	 go	on	doing	this	for	ever.

This procedure can be written in NetLogo as:

to attract

ask turtles

[

set heading towardsxy 0 0

ifelse ((distancexy 0 0 ) < radius) 

 [bk 1]

 [fd 1]

]

end

Notice that nowhere in the procedure is it given where 
the turtles are to walk to, they just walk back and 
forth. In fact the ‘circle’ is only apparent to the human 
observer, and while we look at it, it shimmers into being 
rather than being constructed carefully. The result is a 
ring of turtles defining a circle. In fact there is one more 
thing to do because just using this process will result 
in an uneven circle with gaps in as the turtles start off 
randomly and gather in random spacings around the 
circumference. How can we get the turtles to spread 
themselves out? The answer is to do the repel procedure 
we have already looked at. This version backs off not 1 
unit, but a variable amount controlled by a ‘slider’ on the 
interface:

to repel

ask turtles

[

set closest-turtle min-one-of other 

turtles [distance myself]

set heading towards closest-turtle

bk repel-strength

]

end

IFELSE is an example of one of the key concepts of any 
programming language: the ability to get the computer to 
ask a question about which there are a number of things to 
process. Known as a ‘conditional statement’, it has many 
forms, but in this language, in this situation, we use the 
phrase ‘ifelse’.

This construct example has to decide which of two possible 
routes to take in the flow of the program. 

Cheesy illustration: If standing at a fork in the road, with 
the possiblity of going left or right, you need some way of 
evaluating the choices open to you. So there you are, what do 
you do? It happens you have a note from your aunt in your 
pocket, you take it out and it says:

{‘when reaching a fork in the road, if it’s after lunch turn 
left, else turn right’}

It is clearly just after lunch, so you take the left turn. Problem 
resolved. (The left turn takes you to the tea rooms, obviously.)

In the script of attract the note from your aunt is asking ‘if 
your distance to the centre is less than radius, then take a step 
back, otherwise step forwards’.

The general notion of IFELSE is that you ask a question, 
then on the basis of the TRUTH or otherwise of the 
statement, you choose between two possibilities:

IF <something is true> THEN DOTHIS 
 ELSE DOTHAT

that is why it is called IFELSE:

formally
ifelse (conditional expression)
 [thing to do if true]
 [thing to do if false]
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These two procedures use two references to globally 
defi ne values which aff ect the system being simulated, 
called ‘radius’ and ‘repel strength’. These named values 
are referred to as variables (because they can contain 
numbers that vary). In NetLogo you can set the variables 
through the user interface by using sliders.

You might say that this is not a ‘real’ circle, but just a 
messy thing that is a bit circular. But, like the triangular 
tesselation example, the classical defi nition of pi as the 
ratio of the circumference divided by the diameter is 
famously unresolvable. In fact, the expansion of pi can 
be used as the basis for generating a random sequence, 
as it is impossible to predict the next number in the 
sequence by any means other than continuing to 
iterate the division sum. In other words, in our universe 
circles cannot be identifi ed with whole numbers, 
every measurement of a circular thing is inevitably a 
compromise, only resolved by its eventual instantiation 
into an array of bricks, pieces of steel, etc. So repel 
and attract (which only use simple additions and no 
funny ratios) seem more fundamental descriptions, 
generating the funny ratios out of the process rather 
than squashing them in by force.

These two variables, ‘repel’ and ‘attract’ form a useful test 
bed for experiments. There is a relationship between 
the values of the variables such that, if you make the 
radius very small, then you of course make a smaller 
circle. If you make the repel strength quite large, then, 
depending on the number of turtles (another variable), 
the turtles will fi nd it impossible for all of them to 
comfortably fi t on the circumference. The actual result 
is quite surprising, as it leads to a series of well-formed 
rings of turtles at ever-increasing distances from the 
nucleus. In many ways this could be seen as an example 
of a Bohr’s model of the atom, since the radius is the 
overall energy of the atom and the repulsion force is the 
energy level of an electron. (This is intended only as an 
illustration of the possible explanatory power of these 
simple models and not a claim to deep physical truth!) 

What is undeniable is that, instead of a general fuzzy 
ring of turtles from the radius outwards, they only 
inhabit particular rings, which again is not in the model. 
The text of the algorithm does not include an explicit 
reference to annular ringyness, but only one circle.

Given the high level of abstraction, we can begin to 
model more complex shapes and spatial organisations 
than individual geometric objects without having to 
do much extra coding, as in the following illustrations. 
The latter image simply has an additional rule to draw a 
line between each turtle and its nearest neighbours; see 
below

Illustrations of consensus
A photograph taken while lying on the fl oor of the Turbine Hall Gallery at the Tate Modern, 
London, looking up to the mirrored ceiling. It shows how people have arranged themselves in a 
circular pattern (there is another one forming to the right of the image) without there being any 
formal ‘directive’. Th e actual geometry is not obvious while walking about the gallery, and only 
shows up once you lie down on your back and get the God’s eye view – when one becomes the 
external observer. (Th anks to MSc student Stefan Krakhofer for the photograph.)
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Extending the model – 
drawing bubbles

A more complex outcome that we can achieve with 
only small modifi cations is the emergent Voronoi 
diagram (dirichelet tessellations). Voronoi diagrams 
are conventionally calculated using computational 
geometry. A Voronoi diagram is a pattern which 
describes the minimal energy pathways between a 
set of points. Looking at such a diagram we can see 
that each initial point is separated from its immediate 
neighbours by being enclosed in a polygon, with each 
face joining the polygons of all its neighbours.

Taking the two procedures attract and repel, we can 
make a small modifi cation to the attract one, so that 
instead of turtles being attracted to the constant 
location 0 0, they are instead interested in another of 
the turtles acting as a ‘target’. Therefore we can make 
two kinds of turtle – normal ones and targets. Both the 
normal turtles and the target turtles obey the repel rule, 
but the attract rule only applies to normal turtles, who 
try to stay at a particular radius from the target turtles:

to attract

locals [targets]

ask turtles

[ 

set targets turtles with [target = true]

set closest-turtle min-one-of other 

targets [distance myself]

set heading towards closest-turtle

ifelse ((distance closest-turtle) < 

radius) [bk 1] [fd 1]

]

end

Emergent spatial tessellation of 
minimal path polygons 

In the series above, a very large number of turtles slowly 
retreat from the stationary targets (larger dots) to form 
the boundaries of the Voronoi tessellation. This is an 
example of an emergent self-organised structure, where 
the algorithm goes with the fl ow of the problem to be 
solved, namely draw the equidistant boundaries given 
the initial distribution of points. The answer emerges 
naturally from the very simple process described above. 

The diff erence between the code for drawing a circle 
and the code for drawing a Voronoi diagram using the 
traditional ‘computational geometry’ approach is huge: 
the two trig functions described earlier have to be 
expanded to many pages of code dealing with complex 
maths and elaborate sorting and scheduling procedures 
in order to defi ne the polygons, whereas the step from 
circle to Voronoi using the attract and repel procedures 
is simply to have two kinds of turtles and a lot more of 
them!

All this is intended to illustrate the fundamental point 
about how representational methods can change 
when we use the Turing machine to generate form. As 
we shall see in the next section, the complexity of the 
emergent forms can be much higher than defi ning 
them in purely geometric ways. With these two texts we 
can represent a huge range of objects, and interestingly 
the representation hardly has to change at all to 
accommodate the third dimension. 

Th e simulation begins with the two kinds of turtle – ‘normal’ 
turtles (little) and ‘target’ turtles (big) – sprinkled randomly 
about. Slowly the smaller, normal turtles retreat to the given 
radius distance in the attract procedure, gathering on the 
boundaries in ever greater numbers. Th ey cannot go near 
other targets, but end up in a position which is as far away as 
possible from all the nearest targets.

If the program models the process to be represented, rather than 
the graphics of the outcome, it is likely to be a better, shorter 
model. 

Th is image of mould growing in a coff ee cup shows an 
agglomeration of disc-like elements into a Voronoi like mat. 



programming.architecture16 rethinking representation 17

Attribute VB_Name = 

“Voronoibits”

    

‘--------------------- 

changing datastructure 

to hold indeces into 

originalpoints

‘------------------ rather 

than points 11.6.03-----

-----------------

‘ defining the cells of the 

voronoi diagram

‘ working 26 june 03

    

Const pi = 3.1415926535

Const yspace = 0

Const xspace = 1

Type pointedge

pos As point ‘position of 

intersection

Bedge(2) As Integer 

‘indeces into boundary 

array where intersection 

occurs

End Type

Type intersectStuff

outnode As point

outnodeid As Integer 

‘index into vertex array 

for voronoi cell

beforeinter As pointedge

afterinter As pointedge

End Type

    

Const VERYSLOW = 0.7

Type mypoint

x As Double

y As Double

z As Double

spacetype As Integer

kuller As Integer

End Type

    

Type pair ‘to tie the 

triangle nos to the 

sorted angles

value As Double

index As Integer

End Type

Type delaunay

p1 As Integer

p2 As Integer

p3 As Integer

circcentre As mypoint 

‘the coordinates of the 

centre of the circle by 

3 pts constructed by 

this point

circrad As Double ‘the 

radius of this circle

End Type

Type cell

item() As Integer

tot As Integer

area As Double

id As Long

spacetype As Integer

jump As Boolean

kuller As Integer

End Type

       

Public pts As Integer

Public numtriangles As 

Integer

Public originalpoints() As 

mypoint

Public triangles() As 

delaunay

Public cells() As cell

Public neighbour() As cell

   

Public cyclesmax As Long

Public cycles As Long

    

Sub voronoi(d As Integer)

ReDim cells(1 To pts) As 

cell

ReDim neighbour(1 To pts) 

As cell

Dim i As Integer, j As 

Integer, k As Integer

    

    

For i = 1 To pts

cells(i).spacetype = 

originalpoints(i).

spacetype ‘ having been 

set in teatime

cells(i).kuller = 

originalpoints(i).kuller

Next i

    

    

cycles = 0

numtriangles = 0

‘cyclesmax = pts ^ 3

    

For i = 1 To pts

For j = i + 1 To pts

For k = j + 1 To pts

‘ the triangles array is 

populated in the sub 

drawcircle - sorry !!

drawcircle_ifnone_inside 

i, j, k, pts

cycles = cycles + 1

‘counterform.count_Click

Next k

Next j

Next i

    

collectcells (0) ‘define 

data for all voronoi 

cells

neighcells (0) ‘define

 

End Sub

Sub collectcells(d As 

Integer) ‘ populates 

array cells with lists 

of all the vertex 

incident triangles of a 

point

Dim v As Integer, N As 

Integer, t As Integer

    

For v = 1 To pts ‘ go 

through all the original 

points

N = 0

ReDim cells(v).item(1 To 

1)

‘ drawpoint 

originalpoints(V), 

acGreen, 2

‘ ThisDrawing.Regen 

acAllViewports

           

For t = 1 To numtriangles 

‘go through all 

triangles

If triangles(t).p1 = v Or 

triangles(t).p2 = v Or 

triangles(t).p3 = v Then

N = N + 1 ‘’ T is 

index into a tri 

sharing a vertex with 

originalcells(V)

ReDim Preserve cells(v).

item(1 To N)

cells(v).item(N) = t

cells(v).tot = N

End If

Next t

sortbyangle v, cells(v)

Next v

End Sub

Function centre_

gravity(this As 

delaunay) As mypoint

Dim tx As Double, ty As 

Double, tz As Double

tx = (originalpoints(this.

p1).x + 

originalpoints(this.

p2).x + 

originalpoints(this.

p3).x) / 3

ty = (originalpoints(this.

p1).y + 

originalpoints(this.

p2).y + 

originalpoints(this.

p3).y) / 3

tz = 0

centre_gravity.x = tx

centre_gravity.y = ty

centre_gravity.z = tz

    

End Function

    

The code on this page can be contrasted with the short 
snippet on page 15. Both are doing essentially the same 
thing – generating the minimal path tessellation known 
as a Voronoi diagram. However, the one on page 15 
is written in NetLogo as a parallel process of dynamic 
systems of turtles, the other is written in BASIC as 
an exercise in computational geometry (code by the 
author). Not only is the BASIC enormously longer, but it 
is also much more restrictive in that it does not allow for 
easy manipulation of the underlying generating points 
or alterations of the dynamics of the particles. The only 
advantage this approach has over the emergent version 
is that the defined polygons are explicitly defined by 
ordered line segments, whereas the images taken from 
the agent-based examples would need a little post-
processing to define them.

BASIC is a very old programming language used in 
many Windows applications to automate operations. 
See Chapter 3 for a discussion of the badness of BASIC.

Voronoi by computational ceometry – this was generated as 
part of an experiment in recursive Voronoi diagrams where 
each generation provides the seed points for the next diagram
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Sub sortbyangle(index As 

Integer, this As cell)

Dim angles() As pair, i As 

Integer, O As mypoint, 

CG As mypoint

ReDim angles(1 To this.

tot) As pair

O = originalpoints(index)

For i = 1 To this.tot

CG = centre_

gravity(triangles(this.

item(i)))

angles(i).value = 

getangle(O, CG)

angles(i).index = this.

item(i)

Next i

bubblesort angles, this.

tot

For i = 1 To this.tot

this.item(i) = angles(i).

index

Next i

    

End Sub

Sub bubblesort(s() As 

pair, N As Integer)

Dim index As Integer, 

c As Integer, swap As 

Integer, temp As pair

Do

swap = False

For c = 1 To N - 1

If s(c).value > s(c + 

1).value Then

temp = s(c)

s(c) = s(c + 1)

s(c + 1) = temp

swap = True

End If

Next c

Loop Until (swap = False)

End Sub

Function getangle(st As 

mypoint, fin As mypoint) 

As Double

Dim q As Integer, head As 

Double, add As Double

Dim xd As Double, yd As 

Double, r As Double

‘ calculate quadrant

If fin.x > st.x Then

 If fin.y > st.y Then

q = 1

Else

q = 2

End If

Else

If fin.y < st.y Then

q = 3

Else

q = 4

End If

End If

 

Select Case q

 

Case 1

xd = fin.x - st.x

yd = fin.y - st.y

If xd = 0 Then

r = pi / 2

Else

r = yd / xd

End If

add = 0

Case 2

yd = st.y - fin.y

xd = fin.x - st.x

add = 270

If yd = 0 Then

r = pi / 2

Else

r = xd / yd

End If

Case 3

xd = st.x - fin.x

yd = st.y - fin.y

If xd = 0 Then

r = pi / 2

Else

r = yd / xd

End If

add = 180

Case 4

xd = st.x - fin.x

yd = fin.y - st.y

If yd = 0 Then

r = pi / 2

Else

r = xd / yd

End If

add = 90

End Select

If xd = 0 Then

getangle = 90 + add

Else

getangle = ((Atn(r) / pi) 

* 180) + add

End If

 

End Function

Sub neighcells(d As 

Integer)

    

Dim v As Integer, N As 

Integer, nbs As Integer, 

cp As Integer

     

For v = 1 To pts

nbs = 0                                 

‘go through the item 

list for this cell 

(based on vertex V)

For cp = 1 To cells(v).tot 

- 1 ‘the indeces into 

array cells

N = matchupcells(cells(v).

item(cp), cells(v).

item(cp + 1), v) ‘two 

points on the voronoi 

region

If N > 0 Then

nbs = nbs + 1

ReDim Preserve 

neighbour(v).item(1 To 

nbs)

                 

neighbour(v).item(nbs) 

= N

neighbour(v).tot = nbs

End If

Next cp

Next v

End Sub

   

Function matchupcells(p1 

As Integer, p2 As 

Integer, current As 

Integer) As Integer

‘ find a cell (in array 

cells)which shares an 

edge p1 - p2 with this 

cell (current)

Dim m As Integer, v As 

Integer, cp As Integer

matchupcells = 0

For v = 1 To pts

If v <> current Then ‘dont 

look at you own list

m = 0

‘a voronoi region can only 

share two verteces ( one 

edge) with any other

‘but since the edges 

are organised anti 

clockwise, the 

neighbouring cell

‘will be going the other 

way. so here we just 

look for two matches 

hope thats ok?

For cp = 1 To cells(v).tot 

‘run through vertex list 

for this cell

If cells(v).item(cp) = p1 

Then m = m + 1

If cells(v).item(cp) = p2 

Then m = m + 1

Next cp

If m = 2 Then

matchupcells = v

Exit For ‘dont go on 

looking once found a 

match

End If

End If

Next v

End Function

    

Sub drawcircle_ifnone_

inside(i As Integer, 

j As Integer, k As 

Integer, pts As Integer)

Dim testcircle As delaunay

 

testcircle.p1 = i

testcircle.p2 = j

testcircle.p3 = k

circbythreepts testcircle

If Not inside(testcircle, 

pts) Then

‘drawpoint testcircle.

circcentre, acYellow, 

testcircle.circrad

numtriangles = 

numtriangles + 1

ReDim Preserve triangles(1 

To numtriangles)

        

triangles(numtriangles) 

= testcircle

End If

    

End Sub

    

Function inside(this 

As delaunay, pts As 

Integer) As Integer

‘ are there any points 

closer to the centre of 

this circle than the 

radius

    

inside = False

Dim i As Integer, dd As 

Double, cr As Double

For i = 1 To pts

‘ignore points that are on 

this circle

If i <> this.p1 And i <> 

this.p2 And i <> this.

p3 Then

dd = distance(this.

circcentre, 

originalpoints(i))

cr = this.circrad

If (dd < cr) Then

inside = True

Exit For

End If

End If

Next i

End Function

Sub circbythreepts(this As 

delaunay)

   

Dim a As Double, b As 

Double, c As Double, k 

As Double, h As Double, 

r As Double, d As 

Double, e As Double, f 

As Double

Dim pos As mypoint

Dim k1 As Double, k2 As 

Double, h1 As Double, h2 

As Double

    

a = originalpoints(this.

p1).x: b = 

originalpoints(this.

p1).y

c = originalpoints(this.

p2).x: d = 

originalpoints(this.

p2).y

e = originalpoints(this.

p3).x: f = 

originalpoints(this.

p3).y

    

‘three points (a,b), 

(c,d), (e,f)

‘k = ((a²+b²)(e-c) + 

(c²+d²)(a-e) + (e²+f²)

(c-a)) / (2(b(e-c)+d(a-

e)+f(c-a)))

k1 = (((a ^ 2) + (b ^ 2)) 

* (e - c)) + (((c ^ 2) 

+ (d ^ 2)) * (a - e)) + 

(((e ^ 2) + (f ^ 2)) * 

(c - a))

k2 = (2 * ((b * (e - c)) 

+ (d * (a - e)) + (f * 

(c - a))))

    

k = k1 / k2

    

‘h = ((a²+b²)(f-d) + 

(c²+d²)(b-f) + (e²+f²)

(d-b)) / (2(a(f-d)+c(b-

f)+e(d-b)))

h1 = (((a ^ 2) + (b ^ 2)) 

* (f - d)) + (((c ^ 2) 

+ (d ^ 2)) * (b - f)) + 

(((e ^ 2) + (f ^ 2)) * 

(d - b))

h2 = (2 * (((a * (f - d)) 

+ (c * (b - f)) + (e * 

(d - b)))))

h = h1 / h2

    

‘the circle center is 

(h,k) with radius; r² = 

(a-h)² + (b-k)²

r = Sqr((a - h) ^ 2 + (b - 

k) ^ 2)

        

pos.x = h: pos.y = k: 

pos.z = 0

‘’drawpoint pos, acYellow, 

r

this.circcentre = pos

this.circrad = r

    

End Sub

    

Sub convert(b As mypoint, 

f As mypoint, start() 

As Double, finish() As 

Double)

    

start(0) = b.x

start(1) = b.y

start(2) = b.z

finish(0) = f.x

finish(1) = f.y

finish(2) = f.z

End Sub

    

Function findcenter(pts As 

Integer) As mypoint

Dim xt As Double, yt As 

Double

    

xt = 0

yt = 0

    

For i = 1 To pts

xt = xt + 

originalpoints(i).x

yt = yt + 

originalpoints(i).y

Next i

        

findcenter.x = xt / pts

findcenter.y = yt / pts

findcenter.z = 0

    

End Function

    

Sub Draw_Line(b As 

mypoint, f As mypoint, c 

As Integer)

Dim lineobj As AcadLine

Dim mLineObj As AcadMLine

Dim start(0 To 2) As 

Double, finish(0 To 2) As 

Double

   

convert b, f, start, finish

    

Set lineobj = 

ThisDrawing.ModelSpace.

AddLine(start, finish)

    

lineobj.color = c

lineobj.Layer = “delaunay”

‘lineobj.Update

    

End Sub

Sub drawpoly(this As cell)

Dim tri As delaunay

Dim plineObj As 

AcadLWPolyline

‘changed to lw polyline so 

only duets of coords not 

trios

Dim thepoly(0) As 

AcadEntity ‘thing to use 

in addregion

Dim boundary As Variant 

‘assign with addregion

Dim boundy() As AcadRegion 

‘thing you redim

Dim acell As AcadRegion

Dim numtri As Integer, 

thepoints() As Double, 

TPC As Integer

numtri = this.tot * 2 - 1

ReDim thepoints(numtri + 

2) As Double

TPC = 0

‘ loop through all the 

items getting the 

coordinates of the 

circlcentres that are

‘ inside the elements of 

the thetriangles array

    

For i = 1 To this.tot

thepoints(TPC) = 

triangles(this.item(i)).

circcentre.x

TPC = TPC + 1

thepoints(TPC) = 

triangles(this.item(i)).

circcentre.y

TPC = TPC + 1

‘ thepoints(TPC) = 

triangles(this.item(i)).

circcentre.z

‘ TPC = TPC + 1

Next i

thepoints(TPC) = 

thepoints(0)

TPC = TPC + 1: 

thepoints(TPC) = 

thepoints(1)

‘TPC = TPC + 1: 

thepoints(TPC) = 

thepoints(2)

   

If TPC > 3 Then

On Error Resume Next    

‘got crash on huge poly

Set plineObj = 

ThisDrawing.ModelSpace.A

ddLightWeightPolyline(th

epoints)

If plineObj.area > 0 Then

          

Set acell = 

makeregion(plineObj)

        

On Error Resume Next

acell.Boolean 

acIntersection, bound

this.area = acell.area

this.id = acell.ObjectID 

‘changed to acell

If this.spacetype = 1 Then

acell.color = this.kuller

Else

acell.color = acWhite

End If

‘ acell.Update

‘ ThisDrawing.Regen acAc-

tiveViewport

makeboundaryregion 0

End If

End If

    

End Sub

Sub drawcircle(x As 

Variant, y As Variant, 

kuller As Integer, size 

As Integer)

Dim p(2) As Double, circ 

As AcadCircle

p(0) = x: p(1) = y: p(2) 

= 0

Set circ = ThisDrawing.

ModelSpace.AddCircle(p, 

size)

circ.color = kuller

‘ circ.Update

    

End Sub

Function random(bn As 

Double, tn As Double) As 

Double

    

random = ((tn - bn + 1) * 

Rnd + bn)

    

End Function

Function distance(startp 

As mypoint, endp As 

mypoint) As Double

Dim xd As Double, yd As 

Double

xd = startp.x - endp.x

yd = startp.y - endp.y

distance = Sqr(xd * xd + 

yd * yd)

End Function

    

Sub drawpoint(pos As 

mypoint, c As Integer, r 

As Double)

‘ This example creates a 

point in model space.

Dim circleObj As 

AcadCircle

Dim location(0 To 2) As 

Double

location(0) = pos.x

location(1) = pos.y

location(2) = pos.z

‘ Create the point

Set circleObj = 

ThisDrawing.ModelSpace.

AddCircle(location, r)

circleObj.color = c

‘ZoomAll

End Sub
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Moving into the third dimension
The code below is pretty much the same as before 
(there are a few diff erences due to the 3D version of the 
language being a revision behind the 2D version, but 
we can ignore those), apart from that the only diff erence 
is the use of the word pitch as well as heading, which 
allow the turtles to point towards things in 3D space:

to attract

ask nodes

[ 

 set closest-turtle min-one-of targets 

with other targets [distance 

myself]

 set heading towards-nowrap closest-

turtle

 set pitch towards-pitch-nowrap 

closest-turtle

 ifelse ((distance closest-turtle) < 

radius) [bk 1] [fd 1]

]

end

to repel-nodes

ask nodes

[

 set closest-turtle min-one-of nodes 

with other nodes [distance myself]

 set heading towards-nowrap closest-

turtle

 set pitch towards-pitch-nowrap 

closest-turtle

 bk repel-strength

]

end

When running these simulations another thing that 
distinguishes this approach from geometry becomes 
apparent: rather than in the top-down computational 
approach, where a lot of works goes on until the 
‘solution’ is presented to you in one fell swoop, here the 
emergent organisation occurs as a visible process that 
sometimes has to be teased along with small tweaks 
of attract and repel values. Sometimes the whole thing 
descends into a chaotic muddle and cannot be retrieved 
without stopping and starting again. The algorithm for 
stitching the turtles together with line-shaped turtles is 
typical of the bottom-up approach. 

Once the closest turtle has been found, we ask each 
node to create a link with it. The ‘link’ turtle is a special 
feature of NetLogo which behaves intelligently in that 
if the target node is already connected, then this is not 
attempted again. In the course of a run, the ‘nearest 
turtle’ will change so it is necessary to clear out existing 
links – this is easily accomplished with ‘clear-links’ (a 
special button – not shown – is needed for this).

(above) From rings of points to spherical clouds
(below) Using a link turtle to join the dots
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ask nodes

[

 set closest-turtle min-one-of other 

nodes [distance  myself]

 set heading towards-nowrap closest-

turtle

 set pitch towards-pitch-nowrap 

closest-turtle

 bk repel-strength

 create-link-with closest-turtle

]

end

One might ask why this simple algorithm does not 
lead to links which cross the middle of the emerging 
spheroid, but remember that the attract and repel 
procedures have a habit of making sure that everyone’s 
nearest neighbour is to be found on the ‘shell’. Where 
several spheroids meet (as in the images on the facing 
page), a certain amount of negotiation takes place, 
with things jiggling about until most people are happy. 
The important point here is that no more code has to 
be written, this is an emergent outcome of the process 
provided for free by the dynamics of the system.

After everything has settled down (the ‘emergent 
consensus’ proposed at the start of this chapter), the 
self-organised turtle configurations can be exported 
to other packages for further processing. In the images 
shown on the facing page, the turtle coordinates are 
read into AutoCAD using a small Visual Basic script, and 
spheres and cylinders are drawn between the points 
of the nodes and links. Further processing to tile up 
the mesh and rendering can be achieved with your 
favourite CAD package.

Further processing to develop the emergent 
distributions into varieties of forms
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