

University of East London Institutional Repository: http://roar.uel.ac.uk

This book chapter is made available online in accordance with publisher policies.
Please scroll down to view the document itself. Please refer to the repository record
for this item and our policy information available from the repository home page for
further information.

To see the final version of this paper please visit the publisher’s website.
Access to the published version may require purchase or a subscription.

Author(s): Coates, Paul.
Title: Rethinking representation
Year of publication: 2004
Citation: Coates, P. (2004) ‘Rethinking representation’ in Coates, P.
Programming.Architecture. London: Routledge, pp.6-23
Link to published version:
http://www.routledge.com/books/details/9780415451888/

http://roar.uel.ac.uk/�
http://www.routledge.com/books/details/9780415451888/�

chapter one

Rethinking representation

programming.architecture6 rethinking representation 7

To demonstrate how this works we can teach these
rules to a computer using the NetLogo language
which provides a mechanism for setting up parallel
computations very simply. The points are described
using ‘turtles’ – little autonomous computer programs,
all of whom obey the program set out below:

to repel

ask turtles

[

set closest-turtle min-one-of other

turtles [distance myself]

set heading towards closest-turtle

back 1

]

end

To understand this piece of code, first notice that the
whole thing is wrapped up in the clause:

to repel

do something

end

This is because we are defining how to do something
for the computer, so here we are setting out how to
repel. The stuff between the word ‘to’ and the word ‘end’
is the actual code. Then comes the phrase ‘ask turtles’.
Who, you might ask, is doing this asking? The turtles are
the points in space, they are really a lot of tiny abstract
computers, and the global overall observer is, in this
statement, sending out a message to all the turtles to
run the program enclosed in the square brackets [],
which is the three sentences:

1) set closest-turtle min-one-of other

turtles [distance myself]

2) set heading towards closest-turtle

3) back 1

The turtles are being told:

‘Dear turtles, I would like to ask you to look through
all the other turtles to find the one whose distance
away is at a minimum.’

Then they must remember which turtle this is by storing
its reference in the name ‘closest-turtle’.

Now the turtles are told:

‘Set your heading so that you are pointing towards
this “closest-turtle”, and back off one step.’

Interestingly we also have to tell the computer to
address the ‘other’ turtles as in the human language
description . If we just asked all the turtles this would
include	myself	(the	one	doing	the	ASKing),	and	we	
would get a value of zero and try to walk away from
ourselves – not a good idea. This is a good example (the
first of many) of how we have to SPELL IT OUT for
these supremely pedantic machines.

The introduction sets out the initial position of text as
design representation. Fundamentally the proposition
is that Chomsky’s dictum – that finite syntax and lexicon
can nevertheless generate an infinite number of useful
(well-formed) structures – can be applied to artificial
languages, and that texts can be written in those
languages to generate architectural objects, taken to
mean ‘well-formed’ configurations of space and form.
This is the generative algorithm and the idea is that
a generative algorithm is a description of the object
just as much as the measurement and analysis of the
object, the illustration of the object and the fact of its
embodiment in the world.

The position here is that the text we are looking at,
being an artificial language, usually depends for its
embodiment on some hardware – the engineering
product of the Turing machine – and this hardware
affords some species of representation, from simple
graphics all the way up to programmable hardware, 3D
printing and immersive virtual worlds. But this aspect is
simply an unfolding of the underlying algorithm, which
is still the original representation. It would be possible
to orchestrate 300 human beings to obey instructions
and so act out the algorithm (like synchronised
swimmers) such as in the following.

Some simple texts

As a very first shot, take the example of representing
some simple geometric shapes and volumes like the
circle, the spheroid and other 3D polyhedra, not using
geometry, but small programs written in a dialect of
Logo (a venerable Artificial Intelligence (AI) language
defined by Seymour Papert, whose history is elaborated
in the next section).

Triangles and circles
For the 2D case, this can be verified with a simple
experiment using a program with a large number of
points in 2D space, initially randomly sprinkled over the
plane.

Give each point a rule:

‘Search through all the other points and find the
nearest one to yourself.’
‘Then move away from this nearest point.’

All the points do this simultaneously.

Of course the problem is that, in backing away from
your nearest neighbour, you may inadvertently come
too close to someone else, but that is ok because
then you just turn around and back away from them.
Remember that everybody is doing this at the same
time.

programming.architecture8 rethinking representation 9

Emergent tessellations
With a suitable repel strength, the points all settle down
in a triangular pattern because whenever they diverge
from this grid they are in an unstable situation and will
always fall back into the triangular lattice. The point to
note is that these wiggles are not in the algorithm (all it
states is the backing off principle outlined above). What
would one expect from such an algorithm? At fi rst sight
perhaps just aimless wandering; however, it does in fact
settle down as if pulled into alignment by some ‘force’
not implied by the two lines of code. This is an example
of ‘emergence’ – the idea that the program, by operating
continuously in parallel, engenders a higher order
observation, which could be characterised as a simple
demonstration of the principle that the triangular lattice
is the least cost-minimum energy equilibrium point
for a 2D tessellation, with each point equidistant to six
others. Here also is our fi rst example of an algorithm
which possessed epistemic independence of the model
(in this case the code of the repel algorithm) from the
structural output running the algorithm. In other words
the stable triangular tessellation (the structural output
of the program) is not explicitly written in the rules;
which is an example of distributed representation.

Distributed representation
This is also the fi rst example of many that illustrates
the notion of distributed representation. The way
the algorithm works is to embed the rules to be
simultaneously followed in EACH turtle. Each turtle
(small autonomous computational entity) is running the
little program described above with its own decision
making – who is nearest to MYSELF – and behaves
independently of the other little computers – I turn
THIS WAY and back off . The repel algorithm is the
only available description we can fi nd in this system,
everything else is just general scheduling events and
general start stop for the whole simulation, and this
representation is present in EVERY turtle. The turtles
can interact with each other and have some limited
observational powers, for instance they can ‘feel’ the
nearest turtle and take appropriate action, but they do
not know about the triangular tessellation since that
can only be observed by the global observer – in this
case, the person (you) running the simulation on your
computer. This distinction between diff erent levels of
observer is a key aspect of distributed representation,
and will crop up many times in the following pages. It
is vital, with distributed representation models, that
there is some feedback present between these little

autonomous programs; if each one took no notice of its
neighbours then nothing would happen. This is evident
in the cellular automata shown next and the canonical
‘pondslime algorithm’ introduced at the end of this
chapter.

It is instructive to compare this bottom-up small
program with the conventional recipe for a triangular
tessellation. Of course there are many ways of
describing how to draw such a pattern by using a simple
wallpaper approach.

Wallpaper algorithm
Set out a line of dots at a spacing of 1.
Duplicate this line with an offset of 0.5

in the x direction and the square root
of 0.75 in the y direction.

Do this as many times as you like.

The square root of 0.75 is the height of an equilateral
triangle of side 1 derived from Pythagoras (where
height2 + 0.52 = 12; so h = √1-0.25), which evaluates
to approximately 0.8660254037844386467637231
7075294. This is not a very attractive number and
seems to suggest that this algorithm is not capturing
the real description of the underlying dynamics,
but just mechanically constructing a top-down and
rather clumsy measurement of the outcome. This
distinction should be remembered when simulations
and modelling are discussed elsewhere, as it forms
part of the argument in favour of the ‘short description’
encoded in the generative rule rather than the ‘long
description’ involved in traditional geometry.

In the top left-hand image, the trails of the turtles are shown
moving from the initial random sprinkling to the triangular
grid. It takes about 500 steps for the system to settle down,
and it can be observed that the turtles quite quickly fi nd a
suitable position and then stay there (the trails do not stretch
very far, and rarely cross).

Th ese and many other examples of programming in the
book are based on NetLogo. Th is language is a descendant
of StarLogo which, in turn, was a parallel implementation
of Logo (described in the next chapter), which itself was a
development of LISP (see Chapter 3). See Resnic (1994) for a
good introduction.

Th e turtles settle down to a triangular least-eff ort
confi guration. See below where the points are linked to show
the triangular grid.

To the left, two versions of the outcome running with links
are shown. None of these patterns lasts for long; like all
dynamic systems the moment can be captured, but is gone
and lost for ever by the ceaseless jiggling of the turtles.

programming.architecture10 rethinking representation 11

Extending the model – drawing circles with turtles
The following examples are based on the Papert
paradigm of allowing the geometry to emerge from
the algorithm rather than being imposed from outside.
In this case the geometry is based on the circle, which
is then extended to cover more complex geometries
such as the voronoi (emergent tessellation). These
are ‘illustrations of consensus’ because the bit you
can see (the two images on the page opposite) is the
emergent result of all the components of the system
(turtles mostly) finally reaching some agreement about
where to be. The phrase begs the question as to what
the turtles are being asked to agree about, and what
architectural idea might be involved. Generally, the
task is to distribute themselves with respect to two
conflicting pressures – that of the group based on some
higher order pattern, and that of the individual.
Papert points out that the equations:

Xcirc = originX + Radius cos (angle)

Ycirc = originY + Radius sin (angle)

do not capture any useful information about circles,
whereas we can write a small program in NetLogo to get
one turtle to walk in a circle by telling it to go forward
and left a bit (see Chapter 2 for background on Seymor
Papert). The program:

To circle

Repeat 36

Forward 1

Turn Left 10

End repeat

End circle

requires only English and a familiarity with walking.

As Resnick points out in Turtles, Termites and Traffic
Jams (1994), with parallel computation we can propose
another implementation of the circle using not just one
turtle, but many of them. The algorithm is based on the
characterisation of a circle as being:

An array of points all at the same distance from
another common point

To do this with turtles we:

•	 create	a	lot	of	turtles	at	random;
•	 get	each	turtle	to	turn	towards	the	centre	of	the	

circle;

•	 get	each	turtle	to	measure	the	distance	between	
itself and this centre point;

•	 if	this	distance	is	less	than	the	desired	radius,	then	
take a step back (because you are too near);

•	 if	it	is	greater,	then	take	a	step	forward	(because	you	
are too far away); and

•	 go	on	doing	this	for	ever.

This procedure can be written in NetLogo as:

to attract

ask turtles

[

set heading towardsxy 0 0

ifelse ((distancexy 0 0) < radius)

 [bk 1]

 [fd 1]

]

end

Notice that nowhere in the procedure is it given where
the turtles are to walk to, they just walk back and
forth. In fact the ‘circle’ is only apparent to the human
observer, and while we look at it, it shimmers into being
rather than being constructed carefully. The result is a
ring of turtles defining a circle. In fact there is one more
thing to do because just using this process will result
in an uneven circle with gaps in as the turtles start off
randomly and gather in random spacings around the
circumference. How can we get the turtles to spread
themselves out? The answer is to do the repel procedure
we have already looked at. This version backs off not 1
unit, but a variable amount controlled by a ‘slider’ on the
interface:

to repel

ask turtles

[

set closest-turtle min-one-of other

turtles [distance myself]

set heading towards closest-turtle

bk repel-strength

]

end

IFELSE is an example of one of the key concepts of any
programming language: the ability to get the computer to
ask a question about which there are a number of things to
process. Known as a ‘conditional statement’, it has many
forms, but in this language, in this situation, we use the
phrase ‘ifelse’.

This construct example has to decide which of two possible
routes to take in the flow of the program.

Cheesy illustration: If standing at a fork in the road, with
the possiblity of going left or right, you need some way of
evaluating the choices open to you. So there you are, what do
you do? It happens you have a note from your aunt in your
pocket, you take it out and it says:

{‘when reaching a fork in the road, if it’s after lunch turn
left, else turn right’}

It is clearly just after lunch, so you take the left turn. Problem
resolved. (The left turn takes you to the tea rooms, obviously.)

In the script of attract the note from your aunt is asking ‘if
your distance to the centre is less than radius, then take a step
back, otherwise step forwards’.

The general notion of IFELSE is that you ask a question,
then on the basis of the TRUTH or otherwise of the
statement, you choose between two possibilities:

IF <something is true> THEN DOTHIS
 ELSE DOTHAT

that is why it is called IFELSE:

formally
ifelse (conditional expression)
 [thing to do if true]
 [thing to do if false]

programming.architecture12 rethinking representation 13

These two procedures use two references to globally
defi ne values which aff ect the system being simulated,
called ‘radius’ and ‘repel strength’. These named values
are referred to as variables (because they can contain
numbers that vary). In NetLogo you can set the variables
through the user interface by using sliders.

You might say that this is not a ‘real’ circle, but just a
messy thing that is a bit circular. But, like the triangular
tesselation example, the classical defi nition of pi as the
ratio of the circumference divided by the diameter is
famously unresolvable. In fact, the expansion of pi can
be used as the basis for generating a random sequence,
as it is impossible to predict the next number in the
sequence by any means other than continuing to
iterate the division sum. In other words, in our universe
circles cannot be identifi ed with whole numbers,
every measurement of a circular thing is inevitably a
compromise, only resolved by its eventual instantiation
into an array of bricks, pieces of steel, etc. So repel
and attract (which only use simple additions and no
funny ratios) seem more fundamental descriptions,
generating the funny ratios out of the process rather
than squashing them in by force.

These two variables, ‘repel’ and ‘attract’ form a useful test
bed for experiments. There is a relationship between
the values of the variables such that, if you make the
radius very small, then you of course make a smaller
circle. If you make the repel strength quite large, then,
depending on the number of turtles (another variable),
the turtles will fi nd it impossible for all of them to
comfortably fi t on the circumference. The actual result
is quite surprising, as it leads to a series of well-formed
rings of turtles at ever-increasing distances from the
nucleus. In many ways this could be seen as an example
of a Bohr’s model of the atom, since the radius is the
overall energy of the atom and the repulsion force is the
energy level of an electron. (This is intended only as an
illustration of the possible explanatory power of these
simple models and not a claim to deep physical truth!)

What is undeniable is that, instead of a general fuzzy
ring of turtles from the radius outwards, they only
inhabit particular rings, which again is not in the model.
The text of the algorithm does not include an explicit
reference to annular ringyness, but only one circle.

Given the high level of abstraction, we can begin to
model more complex shapes and spatial organisations
than individual geometric objects without having to
do much extra coding, as in the following illustrations.
The latter image simply has an additional rule to draw a
line between each turtle and its nearest neighbours; see
below

Illustrations of consensus
A photograph taken while lying on the fl oor of the Turbine Hall Gallery at the Tate Modern,
London, looking up to the mirrored ceiling. It shows how people have arranged themselves in a
circular pattern (there is another one forming to the right of the image) without there being any
formal ‘directive’. Th e actual geometry is not obvious while walking about the gallery, and only
shows up once you lie down on your back and get the God’s eye view – when one becomes the
external observer. (Th anks to MSc student Stefan Krakhofer for the photograph.)

programming.architecture14 rethinking representation 15

Extending the model –
drawing bubbles

A more complex outcome that we can achieve with
only small modifi cations is the emergent Voronoi
diagram (dirichelet tessellations). Voronoi diagrams
are conventionally calculated using computational
geometry. A Voronoi diagram is a pattern which
describes the minimal energy pathways between a
set of points. Looking at such a diagram we can see
that each initial point is separated from its immediate
neighbours by being enclosed in a polygon, with each
face joining the polygons of all its neighbours.

Taking the two procedures attract and repel, we can
make a small modifi cation to the attract one, so that
instead of turtles being attracted to the constant
location 0 0, they are instead interested in another of
the turtles acting as a ‘target’. Therefore we can make
two kinds of turtle – normal ones and targets. Both the
normal turtles and the target turtles obey the repel rule,
but the attract rule only applies to normal turtles, who
try to stay at a particular radius from the target turtles:

to attract

locals [targets]

ask turtles

[

set targets turtles with [target = true]

set closest-turtle min-one-of other

targets [distance myself]

set heading towards closest-turtle

ifelse ((distance closest-turtle) <

radius) [bk 1] [fd 1]

]

end

Emergent spatial tessellation of
minimal path polygons

In the series above, a very large number of turtles slowly
retreat from the stationary targets (larger dots) to form
the boundaries of the Voronoi tessellation. This is an
example of an emergent self-organised structure, where
the algorithm goes with the fl ow of the problem to be
solved, namely draw the equidistant boundaries given
the initial distribution of points. The answer emerges
naturally from the very simple process described above.

The diff erence between the code for drawing a circle
and the code for drawing a Voronoi diagram using the
traditional ‘computational geometry’ approach is huge:
the two trig functions described earlier have to be
expanded to many pages of code dealing with complex
maths and elaborate sorting and scheduling procedures
in order to defi ne the polygons, whereas the step from
circle to Voronoi using the attract and repel procedures
is simply to have two kinds of turtles and a lot more of
them!

All this is intended to illustrate the fundamental point
about how representational methods can change
when we use the Turing machine to generate form. As
we shall see in the next section, the complexity of the
emergent forms can be much higher than defi ning
them in purely geometric ways. With these two texts we
can represent a huge range of objects, and interestingly
the representation hardly has to change at all to
accommodate the third dimension.

Th e simulation begins with the two kinds of turtle – ‘normal’
turtles (little) and ‘target’ turtles (big) – sprinkled randomly
about. Slowly the smaller, normal turtles retreat to the given
radius distance in the attract procedure, gathering on the
boundaries in ever greater numbers. Th ey cannot go near
other targets, but end up in a position which is as far away as
possible from all the nearest targets.

If the program models the process to be represented, rather than
the graphics of the outcome, it is likely to be a better, shorter
model.

Th is image of mould growing in a coff ee cup shows an
agglomeration of disc-like elements into a Voronoi like mat.

programming.architecture16 rethinking representation 17

Attribute VB_Name =

“Voronoibits”

‘---------------------

changing datastructure

to hold indeces into

originalpoints

‘------------------ rather

than points 11.6.03-----

‘ defining the cells of the

voronoi diagram

‘ working 26 june 03

Const pi = 3.1415926535

Const yspace = 0

Const xspace = 1

Type pointedge

pos As point ‘position of

intersection

Bedge(2) As Integer

‘indeces into boundary

array where intersection

occurs

End Type

Type intersectStuff

outnode As point

outnodeid As Integer

‘index into vertex array

for voronoi cell

beforeinter As pointedge

afterinter As pointedge

End Type

Const VERYSLOW = 0.7

Type mypoint

x As Double

y As Double

z As Double

spacetype As Integer

kuller As Integer

End Type

Type pair ‘to tie the

triangle nos to the

sorted angles

value As Double

index As Integer

End Type

Type delaunay

p1 As Integer

p2 As Integer

p3 As Integer

circcentre As mypoint

‘the coordinates of the

centre of the circle by

3 pts constructed by

this point

circrad As Double ‘the

radius of this circle

End Type

Type cell

item() As Integer

tot As Integer

area As Double

id As Long

spacetype As Integer

jump As Boolean

kuller As Integer

End Type

Public pts As Integer

Public numtriangles As

Integer

Public originalpoints() As

mypoint

Public triangles() As

delaunay

Public cells() As cell

Public neighbour() As cell

Public cyclesmax As Long

Public cycles As Long

Sub voronoi(d As Integer)

ReDim cells(1 To pts) As

cell

ReDim neighbour(1 To pts)

As cell

Dim i As Integer, j As

Integer, k As Integer

For i = 1 To pts

cells(i).spacetype =

originalpoints(i).

spacetype ‘ having been

set in teatime

cells(i).kuller =

originalpoints(i).kuller

Next i

cycles = 0

numtriangles = 0

‘cyclesmax = pts ^ 3

For i = 1 To pts

For j = i + 1 To pts

For k = j + 1 To pts

‘ the triangles array is

populated in the sub

drawcircle - sorry !!

drawcircle_ifnone_inside

i, j, k, pts

cycles = cycles + 1

‘counterform.count_Click

Next k

Next j

Next i

collectcells (0) ‘define

data for all voronoi

cells

neighcells (0) ‘define

End Sub

Sub collectcells(d As

Integer) ‘ populates

array cells with lists

of all the vertex

incident triangles of a

point

Dim v As Integer, N As

Integer, t As Integer

For v = 1 To pts ‘ go

through all the original

points

N = 0

ReDim cells(v).item(1 To

1)

‘ drawpoint

originalpoints(V),

acGreen, 2

‘ ThisDrawing.Regen

acAllViewports

For t = 1 To numtriangles

‘go through all

triangles

If triangles(t).p1 = v Or

triangles(t).p2 = v Or

triangles(t).p3 = v Then

N = N + 1 ‘’ T is

index into a tri

sharing a vertex with

originalcells(V)

ReDim Preserve cells(v).

item(1 To N)

cells(v).item(N) = t

cells(v).tot = N

End If

Next t

sortbyangle v, cells(v)

Next v

End Sub

Function centre_

gravity(this As

delaunay) As mypoint

Dim tx As Double, ty As

Double, tz As Double

tx = (originalpoints(this.

p1).x +

originalpoints(this.

p2).x +

originalpoints(this.

p3).x) / 3

ty = (originalpoints(this.

p1).y +

originalpoints(this.

p2).y +

originalpoints(this.

p3).y) / 3

tz = 0

centre_gravity.x = tx

centre_gravity.y = ty

centre_gravity.z = tz

End Function

The code on this page can be contrasted with the short
snippet on page 15. Both are doing essentially the same
thing – generating the minimal path tessellation known
as a Voronoi diagram. However, the one on page 15
is written in NetLogo as a parallel process of dynamic
systems of turtles, the other is written in BASIC as
an exercise in computational geometry (code by the
author). Not only is the BASIC enormously longer, but it
is also much more restrictive in that it does not allow for
easy manipulation of the underlying generating points
or alterations of the dynamics of the particles. The only
advantage this approach has over the emergent version
is that the defined polygons are explicitly defined by
ordered line segments, whereas the images taken from
the agent-based examples would need a little post-
processing to define them.

BASIC is a very old programming language used in
many Windows applications to automate operations.
See Chapter 3 for a discussion of the badness of BASIC.

Voronoi by computational ceometry – this was generated as
part of an experiment in recursive Voronoi diagrams where
each generation provides the seed points for the next diagram

programming.architecture18 rethinking representation 19

Sub sortbyangle(index As

Integer, this As cell)

Dim angles() As pair, i As

Integer, O As mypoint,

CG As mypoint

ReDim angles(1 To this.

tot) As pair

O = originalpoints(index)

For i = 1 To this.tot

CG = centre_

gravity(triangles(this.

item(i)))

angles(i).value =

getangle(O, CG)

angles(i).index = this.

item(i)

Next i

bubblesort angles, this.

tot

For i = 1 To this.tot

this.item(i) = angles(i).

index

Next i

End Sub

Sub bubblesort(s() As

pair, N As Integer)

Dim index As Integer,

c As Integer, swap As

Integer, temp As pair

Do

swap = False

For c = 1 To N - 1

If s(c).value > s(c +

1).value Then

temp = s(c)

s(c) = s(c + 1)

s(c + 1) = temp

swap = True

End If

Next c

Loop Until (swap = False)

End Sub

Function getangle(st As

mypoint, fin As mypoint)

As Double

Dim q As Integer, head As

Double, add As Double

Dim xd As Double, yd As

Double, r As Double

‘ calculate quadrant

If fin.x > st.x Then

 If fin.y > st.y Then

q = 1

Else

q = 2

End If

Else

If fin.y < st.y Then

q = 3

Else

q = 4

End If

End If

Select Case q

Case 1

xd = fin.x - st.x

yd = fin.y - st.y

If xd = 0 Then

r = pi / 2

Else

r = yd / xd

End If

add = 0

Case 2

yd = st.y - fin.y

xd = fin.x - st.x

add = 270

If yd = 0 Then

r = pi / 2

Else

r = xd / yd

End If

Case 3

xd = st.x - fin.x

yd = st.y - fin.y

If xd = 0 Then

r = pi / 2

Else

r = yd / xd

End If

add = 180

Case 4

xd = st.x - fin.x

yd = fin.y - st.y

If yd = 0 Then

r = pi / 2

Else

r = xd / yd

End If

add = 90

End Select

If xd = 0 Then

getangle = 90 + add

Else

getangle = ((Atn(r) / pi)

* 180) + add

End If

End Function

Sub neighcells(d As

Integer)

Dim v As Integer, N As

Integer, nbs As Integer,

cp As Integer

For v = 1 To pts

nbs = 0

‘go through the item

list for this cell

(based on vertex V)

For cp = 1 To cells(v).tot

- 1 ‘the indeces into

array cells

N = matchupcells(cells(v).

item(cp), cells(v).

item(cp + 1), v) ‘two

points on the voronoi

region

If N > 0 Then

nbs = nbs + 1

ReDim Preserve

neighbour(v).item(1 To

nbs)

neighbour(v).item(nbs)

= N

neighbour(v).tot = nbs

End If

Next cp

Next v

End Sub

Function matchupcells(p1

As Integer, p2 As

Integer, current As

Integer) As Integer

‘ find a cell (in array

cells)which shares an

edge p1 - p2 with this

cell (current)

Dim m As Integer, v As

Integer, cp As Integer

matchupcells = 0

For v = 1 To pts

If v <> current Then ‘dont

look at you own list

m = 0

‘a voronoi region can only

share two verteces (one

edge) with any other

‘but since the edges

are organised anti

clockwise, the

neighbouring cell

‘will be going the other

way. so here we just

look for two matches

hope thats ok?

For cp = 1 To cells(v).tot

‘run through vertex list

for this cell

If cells(v).item(cp) = p1

Then m = m + 1

If cells(v).item(cp) = p2

Then m = m + 1

Next cp

If m = 2 Then

matchupcells = v

Exit For ‘dont go on

looking once found a

match

End If

End If

Next v

End Function

Sub drawcircle_ifnone_

inside(i As Integer,

j As Integer, k As

Integer, pts As Integer)

Dim testcircle As delaunay

testcircle.p1 = i

testcircle.p2 = j

testcircle.p3 = k

circbythreepts testcircle

If Not inside(testcircle,

pts) Then

‘drawpoint testcircle.

circcentre, acYellow,

testcircle.circrad

numtriangles =

numtriangles + 1

ReDim Preserve triangles(1

To numtriangles)

triangles(numtriangles)

= testcircle

End If

End Sub

Function inside(this

As delaunay, pts As

Integer) As Integer

‘ are there any points

closer to the centre of

this circle than the

radius

inside = False

Dim i As Integer, dd As

Double, cr As Double

For i = 1 To pts

‘ignore points that are on

this circle

If i <> this.p1 And i <>

this.p2 And i <> this.

p3 Then

dd = distance(this.

circcentre,

originalpoints(i))

cr = this.circrad

If (dd < cr) Then

inside = True

Exit For

End If

End If

Next i

End Function

Sub circbythreepts(this As

delaunay)

Dim a As Double, b As

Double, c As Double, k

As Double, h As Double,

r As Double, d As

Double, e As Double, f

As Double

Dim pos As mypoint

Dim k1 As Double, k2 As

Double, h1 As Double, h2

As Double

a = originalpoints(this.

p1).x: b =

originalpoints(this.

p1).y

c = originalpoints(this.

p2).x: d =

originalpoints(this.

p2).y

e = originalpoints(this.

p3).x: f =

originalpoints(this.

p3).y

‘three points (a,b),

(c,d), (e,f)

‘k = ((a²+b²)(e-c) +

(c²+d²)(a-e) + (e²+f²)

(c-a)) / (2(b(e-c)+d(a-

e)+f(c-a)))

k1 = (((a ^ 2) + (b ^ 2))

* (e - c)) + (((c ^ 2)

+ (d ^ 2)) * (a - e)) +

(((e ^ 2) + (f ^ 2)) *

(c - a))

k2 = (2 * ((b * (e - c))

+ (d * (a - e)) + (f *

(c - a))))

k = k1 / k2

‘h = ((a²+b²)(f-d) +

(c²+d²)(b-f) + (e²+f²)

(d-b)) / (2(a(f-d)+c(b-

f)+e(d-b)))

h1 = (((a ^ 2) + (b ^ 2))

* (f - d)) + (((c ^ 2)

+ (d ^ 2)) * (b - f)) +

(((e ^ 2) + (f ^ 2)) *

(d - b))

h2 = (2 * (((a * (f - d))

+ (c * (b - f)) + (e *

(d - b)))))

h = h1 / h2

‘the circle center is

(h,k) with radius; r² =

(a-h)² + (b-k)²

r = Sqr((a - h) ^ 2 + (b -

k) ^ 2)

pos.x = h: pos.y = k:

pos.z = 0

‘’drawpoint pos, acYellow,

r

this.circcentre = pos

this.circrad = r

End Sub

Sub convert(b As mypoint,

f As mypoint, start()

As Double, finish() As

Double)

start(0) = b.x

start(1) = b.y

start(2) = b.z

finish(0) = f.x

finish(1) = f.y

finish(2) = f.z

End Sub

Function findcenter(pts As

Integer) As mypoint

Dim xt As Double, yt As

Double

xt = 0

yt = 0

For i = 1 To pts

xt = xt +

originalpoints(i).x

yt = yt +

originalpoints(i).y

Next i

findcenter.x = xt / pts

findcenter.y = yt / pts

findcenter.z = 0

End Function

Sub Draw_Line(b As

mypoint, f As mypoint, c

As Integer)

Dim lineobj As AcadLine

Dim mLineObj As AcadMLine

Dim start(0 To 2) As

Double, finish(0 To 2) As

Double

convert b, f, start, finish

Set lineobj =

ThisDrawing.ModelSpace.

AddLine(start, finish)

lineobj.color = c

lineobj.Layer = “delaunay”

‘lineobj.Update

End Sub

Sub drawpoly(this As cell)

Dim tri As delaunay

Dim plineObj As

AcadLWPolyline

‘changed to lw polyline so

only duets of coords not

trios

Dim thepoly(0) As

AcadEntity ‘thing to use

in addregion

Dim boundary As Variant

‘assign with addregion

Dim boundy() As AcadRegion

‘thing you redim

Dim acell As AcadRegion

Dim numtri As Integer,

thepoints() As Double,

TPC As Integer

numtri = this.tot * 2 - 1

ReDim thepoints(numtri +

2) As Double

TPC = 0

‘ loop through all the

items getting the

coordinates of the

circlcentres that are

‘ inside the elements of

the thetriangles array

For i = 1 To this.tot

thepoints(TPC) =

triangles(this.item(i)).

circcentre.x

TPC = TPC + 1

thepoints(TPC) =

triangles(this.item(i)).

circcentre.y

TPC = TPC + 1

‘ thepoints(TPC) =

triangles(this.item(i)).

circcentre.z

‘ TPC = TPC + 1

Next i

thepoints(TPC) =

thepoints(0)

TPC = TPC + 1:

thepoints(TPC) =

thepoints(1)

‘TPC = TPC + 1:

thepoints(TPC) =

thepoints(2)

If TPC > 3 Then

On Error Resume Next

‘got crash on huge poly

Set plineObj =

ThisDrawing.ModelSpace.A

ddLightWeightPolyline(th

epoints)

If plineObj.area > 0 Then

Set acell =

makeregion(plineObj)

On Error Resume Next

acell.Boolean

acIntersection, bound

this.area = acell.area

this.id = acell.ObjectID

‘changed to acell

If this.spacetype = 1 Then

acell.color = this.kuller

Else

acell.color = acWhite

End If

‘ acell.Update

‘ ThisDrawing.Regen acAc-

tiveViewport

makeboundaryregion 0

End If

End If

End Sub

Sub drawcircle(x As

Variant, y As Variant,

kuller As Integer, size

As Integer)

Dim p(2) As Double, circ

As AcadCircle

p(0) = x: p(1) = y: p(2)

= 0

Set circ = ThisDrawing.

ModelSpace.AddCircle(p,

size)

circ.color = kuller

‘ circ.Update

End Sub

Function random(bn As

Double, tn As Double) As

Double

random = ((tn - bn + 1) *

Rnd + bn)

End Function

Function distance(startp

As mypoint, endp As

mypoint) As Double

Dim xd As Double, yd As

Double

xd = startp.x - endp.x

yd = startp.y - endp.y

distance = Sqr(xd * xd +

yd * yd)

End Function

Sub drawpoint(pos As

mypoint, c As Integer, r

As Double)

‘ This example creates a

point in model space.

Dim circleObj As

AcadCircle

Dim location(0 To 2) As

Double

location(0) = pos.x

location(1) = pos.y

location(2) = pos.z

‘ Create the point

Set circleObj =

ThisDrawing.ModelSpace.

AddCircle(location, r)

circleObj.color = c

‘ZoomAll

End Sub

programming.architecture20 rethinking representation 21

Moving into the third dimension
The code below is pretty much the same as before
(there are a few diff erences due to the 3D version of the
language being a revision behind the 2D version, but
we can ignore those), apart from that the only diff erence
is the use of the word pitch as well as heading, which
allow the turtles to point towards things in 3D space:

to attract

ask nodes

[

 set closest-turtle min-one-of targets

with other targets [distance

myself]

 set heading towards-nowrap closest-

turtle

 set pitch towards-pitch-nowrap

closest-turtle

 ifelse ((distance closest-turtle) <

radius) [bk 1] [fd 1]

]

end

to repel-nodes

ask nodes

[

 set closest-turtle min-one-of nodes

with other nodes [distance myself]

 set heading towards-nowrap closest-

turtle

 set pitch towards-pitch-nowrap

closest-turtle

 bk repel-strength

]

end

When running these simulations another thing that
distinguishes this approach from geometry becomes
apparent: rather than in the top-down computational
approach, where a lot of works goes on until the
‘solution’ is presented to you in one fell swoop, here the
emergent organisation occurs as a visible process that
sometimes has to be teased along with small tweaks
of attract and repel values. Sometimes the whole thing
descends into a chaotic muddle and cannot be retrieved
without stopping and starting again. The algorithm for
stitching the turtles together with line-shaped turtles is
typical of the bottom-up approach.

Once the closest turtle has been found, we ask each
node to create a link with it. The ‘link’ turtle is a special
feature of NetLogo which behaves intelligently in that
if the target node is already connected, then this is not
attempted again. In the course of a run, the ‘nearest
turtle’ will change so it is necessary to clear out existing
links – this is easily accomplished with ‘clear-links’ (a
special button – not shown – is needed for this).

(above) From rings of points to spherical clouds
(below) Using a link turtle to join the dots

programming.architecture22 rethinking representation 23

ask nodes

[

 set closest-turtle min-one-of other

nodes [distance myself]

 set heading towards-nowrap closest-

turtle

 set pitch towards-pitch-nowrap

closest-turtle

 bk repel-strength

 create-link-with closest-turtle

]

end

One might ask why this simple algorithm does not
lead to links which cross the middle of the emerging
spheroid, but remember that the attract and repel
procedures have a habit of making sure that everyone’s
nearest neighbour is to be found on the ‘shell’. Where
several spheroids meet (as in the images on the facing
page), a certain amount of negotiation takes place,
with things jiggling about until most people are happy.
The important point here is that no more code has to
be written, this is an emergent outcome of the process
provided for free by the dynamics of the system.

After everything has settled down (the ‘emergent
consensus’ proposed at the start of this chapter), the
self-organised turtle configurations can be exported
to other packages for further processing. In the images
shown on the facing page, the turtle coordinates are
read into AutoCAD using a small Visual Basic script, and
spheres and cylinders are drawn between the points
of the nodes and links. Further processing to tile up
the mesh and rendering can be achieved with your
favourite CAD package.

Further processing to develop the emergent
distributions into varieties of forms

	fractal composition in Archcs
	chapter1 from ybibl

