

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

To see the final version of this paper please visit the publisher’s website.
Access to the published version may require a subscription.

Author(s): Mouratidis, Haralambos; Kolp, Manuel; Giorgini, Paolo; Faulkner,
Stephane
Title: An Architectural Description Language for Secure Multi-Agent Systems
Year of publication: 2010
Citation: Mouratidis, H., Kolp, M., Giorgini, P., Faulkner, S. (2010) ‘An Architectural
Description Language for Secure Multi-Agent Systems’ Web Intelligence and Agent
Systems 8 (1) pp.99-122
Link to published version: http://dx.doi.org/10.3233/WIA-2010-0182
DOI: 10.3233/WIA-2010-0182

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219372439?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://roar.uel.ac.uk/�
http://dx.doi.org/10.3233/WIA-2010-0182�

1

An Architectural Description Language for
Secure Multi-Agent Systems
Haralambos Mouratidis1,a, Manuel Kolpb, Paolo Giorginic, Stephane Faulknerd

aInnovative Informatics Group, School of Computing, IT and Engineering, University of East
London, England
b Information Systems Research Unit, Catholic University of Louvain (UCL), Belgium
c Department. of Information and Communication Technology, University of Trento, Italy
d Information Management Research Unit, University of Namur, Belgium

Abstract. Multi-Agent Systems (MAS) architectures are gaining popularity for building open, distributed, and evolving
information systems. Unfortunately, despite considerable work in the fields of software architecture and MAS during the last
decade, few research efforts have aimed at defining languages for designing and formalising secure agent architectures. This
paper proposes a novel Architectural Description Language (ADL) for describing Belief-Desire-Intention (BDI) secure MAS.
We specify each element of our ADL using the Z specification language and we employ two example case studies: one to
assist us in the description of the proposed language and help readers of the article to better understand the fundamentals of the
language; and one to demonstrate its applicability.

Keyword: Architectural Description Language, Multi-Agent Systems, Security, BDI Agent Model, Software Architecture

1 Corresponding Author: H.Mouratidis@uel.ac.uk

2

1. Introduction

The characteristics and expectations of
new application areas for the enterprise,
such as e-business, knowledge management,
peer-to-peer computing, and web services,
are deeply modifying information systems
engineering. Most of the systems designed,
for this kind of application areas, are now de
facto concurrent and distributed. They tend
to be open and dynamic, in that they exist in
a changing organizational and operational
environment where new components can be
added, modified, or removed at any time. It
is also important that such systems are
secure, since they are often used for the
management and storage of sensitive
information, such as medical, financial and
private data.

Given these needs, many researchers are
looking for paradigms that will enable them
to conceptualize, design and implement
information systems that can operate
effectively in such circumstances. In this
context, we advocate the use of Multi-Agent
Systems (MAS) to build today’s enterprise
information systems. MAS architectures
appear to be more flexible, modular and
robust than traditional; including object-
oriented ones. MAS do represent dynamic
and evolving structures and components,
which can change at run-time to benefit
from the capabilities of new system entities
or replace obsolete ones. Moreover, MAS
represent a suitable paradigm for the
consideration of security challenges
introduced by the current information
systems. Security issues, within an agent
system context, will require for the agents of
the system to consider the security
requirements, when specifying their
objectives and interactions, and therefore
cause the propagation of security
requirements to the whole system [34].

However, as the expectations of business
stakeholders are changing day after day; and
as the complexity of systems, information
and communication technologies and
organisations is continually increasing in
today’s dynamic environments; developers
are expected to produce architectures that
must handle more difficult and intricate
requirements than ever before.

A critical issue in the design and
construction of any complex information
system is its architecture. That is, its gross
organization as a collection of interacting
components. A rigorous architectural design
can ensure that a system will satisfy key
requirements in such areas as performance,
reliability, portability, scalability, and
interoperability [40]. To assist developers in
specifying information system architectures,
architectural description languages are used.
An Architectural Description Language
(ADL) provides a concrete syntax for
specifying architectural abstractions in a
descriptive notation. Architectural
abstractions concern the structure of the
system’s components, their behaviour, and
their interrelationships.

Unfortunately, despite the progress on the
field of software architectures (see for
instance [2], [17], [28], [30], [39]) and the
simultaneous progress on MAS research;
few research efforts have aimed at truly
defining description languages for MAS
architectures, and even these do not
adequately include important issues of MAS
such as security. This paper deals with this
problem and it proposes a novel ADL for
MAS, which defines a “core” set of
structural, behavioural and security
concepts, including relationships and
constraints, which are fundamental for a
complete MAS ADL. The language, called

3

SKwyRL-ADL2, aims to describe secure
Belief-Desire-Intention (BDI) MAS.

The paper is structured as follows. Section
2 overviews the notions of agent and MASs
and identifies the main concepts of the BDI
model, which is used in our ADL. Section 3
discusses security in MAS and Section 4
models SKwyRL-ADL using the Z
specification language. An example case
study is used to assist reader understanding
of the language’s elements. Section 5
demonstrates the applicability of the
proposed ADL with the aid of a real case
study from the e-media domain. Section 6
describes related work; it indicates how that
work has influenced the presented work, and
it discusses how the presented work differs
from related work. The last section
summarizes the contributions of the paper
and discusses future work.

2. Agents and Multi-Agent Systems

An agent defines a system entity, situated
in some environment that is capable of
flexible autonomous action in order to meet
its design objectives [46]. Three key
concepts support this definition:
• Situatedness: an agent receives input

from the environment it operates and can
perform actions, which change the
environment in some way;

• Autonomy: an agent is able to operate
without direct, continuous supervision.
In other words it has full control over its
own actions;

• Flexibility: an agent is not only reactive
but also pro-active. Reactivity means
that an agent has perceptions of the

2 Socio-Intentional ArChitecture for Knowledge

Systems & Requirements ELicitation (www.isys.ucl.ac.be/
skwyrl)

world, which force the agent to act and
react to change in quasi real-time
fashion. Pro-activeness means that an
agent’s behaviour is not exclusively
reactive but it is also driven by internal
goals, i.e. an agent may take initiative.

With these concepts in mind, a MAS can
be defined as a set of autonomous and
proactive agents that interact with each other
to achieve common or private goals. This
definition leads us to two different types of
MAS: Cooperative or Competitive.

A Cooperative MAS has a unique high-
level global goal (or set of goals)
decomposed recursively into parallel
activities to be performed by the set of
agents that compose that MAS. This kind of
system is typically adapted to perform
distributed problem solving. In a
Competitive MAS, each of the component
agents has its own set of goals that may or
may not meet those of other agents. In this
case the MAS is an architecture that allows
agents to interact, while each one pursues
personal goals and defends own interests.
This kind of system meets typical
engineering requirements of e-commerce,
information retrieval applications, web
services or peer-to-peer networks. In such
environments, every agent generally
represents either a client, aiming at
obtaining some resources or have some
service accomplished; or a provider, aiming
at selling resources or services at a certain
(not necessarily financial) cost. Each agent
pursues the goals of the (human or system)
actor it represents, and these goals can
usually be in conflict.

In order to reason about these goals and
act in an autonomous way, agents are
usually built on rationale models and
reasoning strategies that have roots in
various disciplines including Artificial
Intelligence, Cognitive Science, Psychology

4

or Philosophy. Agent models are
proliferating; some include learning
capabilities, others intelligent agendas based
on statistics, others yet are based on genetic
algorithms and so on. An exhaustive
evaluation of these models is out of the
scope of this paper or even this research
work. However, a simple yet powerful and
mature model coming from Cognitive
Science and Philosophy that has received a
great deal of attention, notably in Artificial
Intelligence, is the Belief-Desire-Intention
(BDI) model [6]. This approach has been
intensively used to study the design
rationale of agents and is proposed as a
keystone model in numerous agent-oriented
development environments such as JACK3
or JADE4. The main concepts of the BDI
agent model are (except the notion of agent
itself that we have just explained):
• Beliefs that represent the informational

state of a BDI agent, that is, what the
agent knows about itself and the world;

• Desires (or goals) that are its
motivational state, that is, what the agent
is trying to achieve;

• Intentions that represent the deliberative
state of the agent, that is, what plans the
agent has chosen for possible execution.

In particular, a BDI agent has a set of
plans, which defines sequences of actions
and steps available to achieve a certain goal
or react to a specific situation. The agent
reacts to events, which are generated by
modifications to its beliefs, additions of new
goals, or messages arriving from the
environment or from another agent. An
event may trigger one or more plans; the
agent commits to execute one of them, that
is, it becomes its intention. Plans are

3 http://www.agent-software.com.au/jack.html
4 http://jade.tilab.com

executed one step at a time. A step can
query or change the beliefs; it can perform
actions on the external world; and it can
submit new goals. The operations performed
by a step may generate new events that, in
turn, may start new plans. A plan succeeds
when all its steps have been completed; it
fails when certain conditions are not met.

3. MAS and Security

Security of software systems, agent-
oriented, object-oriented or otherwise, is
concerned with methods providing cost
effective and operationally effective
protection from undesirable events[30]. In
principle security is usually defined in terms
of the existence of any of the following
properties:
• Confidentiality: The property of

guaranteeing information is only
accessible to authorized entities and
inaccessible to others;

• Authentication: the property of proving
the identity of an entity;

• Integrity: the property of assuring that
the information remains unmodified
from source entity to destination entity;

• Access Control: the property of
identifying the access rights an entity
has over system resources;

• Non-repudation: the property of
confirming the involvement of an entity
in certain communication;

• Availability: the property of
guaranteeing the accessibility and
usability of information and resources to
authorized entities.

In MAS, each of these properties is
associated with the characteristics of agents
and need to be considered during the
development. For instance, regarding
situatedness [46], the authentication,

5

confidentiality and availability of an agent
needs to be considered according to the
environment in which the agent operates.
On the other hand, the social behaviour
property of an agent involves
communication with other agents and other
entities and as such the properties of non-
repudiation, integrity and access control are
important. Therefore, it is crucial for the
agents of a MAS to consider, during run-
time, the systems’ and their individual
security requirements when specifying their
objectives and interactions. For this to
happen, agent developers must integrate
security considerations when they define the
architecture of their MAS [4]. However,
research efforts so far have been mainly
focused on the solution of individual
security problems of MAS, such as attacks
from an agent to another agent, attacks from
a platform to an agent, and attacks from an
agent to a platform. Developers of MAS
ADLs have mainly neglected security and
have failed to provide evidence of
successfully integrating security concepts as
part of their ADLs. As a result, MAS
developers find no help when considering
security during the architectural design of a
MAS.

4. SKwyRL: An Architectural Language
for Secure MAS

4.1. ADL Concepts

Architectural description languages are
formal languages that are used to specify the
architecture of a system [40]. By
architecture, we mean the components that
compose a system, the behavioural
specification for those components, and the
mechanisms for interactions among them.
Based on our analysis of existing literature

(see Section 6 for a discussion of related
work), we have identified the following
concepts as the common foundation of
concepts and concerns for system
architecture descriptions:

Component. Components are units of
computation and data store. Therefore,
components are loci of computation and
state. A component, in architecture, may be
as small as a single procedure (e.g., Wright
[1] procedures) or as large as an entire
application (e.g., hierarchical components in
Rapide [28]). It may require its own data
and/or execution space, or it may share them
with other components.

Interface. Interfaces are set of interaction
points among components and the external
world. All ADLs support specification of
component interfaces. They differ in
terminology and the kinds of information
they specify. For example, each interface
point in ACME [17]and Wright is called a
port. In UniCon [39], an interface point is a
player, and in Rapide a constituent. In
Darwin [29], the interface consists of a
collection of services that are either
provided or required.

Type. A type describes how architectural
element representation is built up. ADLs
can support reuse by modelling abstract
components as types and instantiating them
in an architectural configuration. All the
surveyed ADLs distinguish component
types from instances. However, UniCon and
Darwin lack explicit means of introducing
new component types, as they support only
a predefined set. Other ADLs such as
Rapide and Wright make explicit use of
parameterisation.

Connector. Connectors are used to model
interactions among components and the
rules that govern those interactions. Some
ADLs that model connectors as first-class
entities are called explicit configuration

6

languages, as opposed to in-line
configuration languages. The first-class
includes languages such as Wright. On the
other hand, Rapide and Darwin are
examples of in-line configuration languages.
In these languages, connectors cannot be
named. They are described solely in terms
of bindings between the provided service of
a component and the required service of
another component.

Configuration. Configurations (or
topologies) are connected graphs of
components and connectors that describe
architectural structures. Configurations are
needed to determine whether appropriate
components are connected, their interfaces
match and their combined semantics result
in desired behaviour. Descriptions of
configurations enable the assessment of
concurrent and distributed aspects of
architecture, e.g., potential for deadlocks
and starvation, performance, reliability,
security, etc. Configurations also enable
analysis for adherence to design heuristics
and style constraints. In this sense, a major
role of configuration is to facilitate the
understanding of systems at a high level of
abstraction. Therefore, configurations must
model structural information with simple
and understandable syntax.

Hierarchical Composition. A
hierarchical composition allows the
representation of an entire architecture as a
single component in another, larger
architecture. Several ADLs provide explicit
features to support hierarchical composition.
For example ACME provides templates,
Darwin composition elements, and UniCon
and Wright maps.

4.2. The GOSIS example

To assist understanding the specification
of the language components, we represent

extracts of the aGent-Oriented Source
Integration System (GOSIS) architecture to
compliment our theoretical description of
the language. GOSIS provides a MAS
architecture that supports the integration of
data coming from dynamic, distributed and
heterogeneous sources. GOSIS is a hybrid
approach that combines the advantages of
in-advance and on-demand processes[15]. In
such an approach, the user information
needs can be extracted in-advance or on-
demand by the mediator. The information
extracted in-advance is stored in a central
database managed by the mediator. The
information contents of this central database
can be seen as a materialized view where the
database resides at the information sources.
In this way, in comparison with a basic
mediator, a hybrid mediator adds
functionalities essentially in order to
perform materialized view maintenance.

In particular, when a user wishes to send a
request, it contacts the broker agent, which
serves as an intermediary to select one or
more mediator(s) that can satisfy the user
information needs. Then, the selected
mediator(s) firstly decomposes the user’s
query into one or more sub-queries
regarding the appropriate information
sources and then it eventually compiles and
synthesizes results from the source and
returns the final result to the broker. When
the mediator identifies repetitively the same
user information needs, this information of
interest is extracted from each source,
merged with relevant information from the
other sources, and stored as knowledge by
the mediator. Each of the stored knowledge
bases constitutes a materialized view that
the mediator has to keep up-to-date.
Moreover, two types of agents, a wrapper
and a monitor, are connected to each
information source. The wrapper is used to
translate the sub-query issued by the

7

mediator in the native format of the source
and also to translate the source response in
the data model used by the mediator. The
monitor is responsible for detecting changes
of interest (e.g., a change which affects a
materialized view) in the information source
and for reporting them to the mediator.
Changes are then translated by the wrapper
and sent to the mediator.

It may also be necessary for the mediator
to obtain information concerning the
localisation of a source, and for the
associated wrapper to provide current or
future relevant information. This kind of
information is provided by the matchmaker
agent, which allows a direct interaction
between the mediator and the correspondent
wrapper. The matchmaker plays the role of a
“yellow-page” agent. Each wrapper
advertises its capabilities by subscribing to
the yellow page agent. Finally, the multi-
criteria analyzer reformulates a sub-query
(sent by a mediator to a wrapper) through a
set of criteria in order to express the user
preferences in a more detailed way, and
refines the possible domain of results.

4.3. The ADL concepts

Following the identification of the
common foundation of components
necessary for an ADL; an architecture based
on the proposed SKwyRL-Architectural
Description Language (ADL) includes the
following concepts:
• Component. In SKwyRL-ADL, we

consider an agent as a system
component with a set of plans
determining its computation dimension
and a set of beliefs defining its data
space.

• Interface. SKwyRL-ADL specifies an
interface point in the same way as
ACME and Wright, with the difference

that a port is either a sensor requiring a
service or an effector providing a service
for the agent environment. In this sense,
like Darwin, an interface can be seen as
a collection of provided or required
services.

• Type. We introduce parameterisation in
order to distinguish the different
instances of each agent type that can
appear in a configuration or to expand
an agent description from a single
system to families of systems. SKwyRL-
ADL permits any part of an agent
description to be replaced with a
“placeholder”, which is then filled with
a parameter when the type is
instantiated.

• Connector. SKwyRL-ADL follows the
Rapide and Darwin notion of connectors
according to the definition of agent
interaction that we will discuss in the
following section.

• Configuration. Because Wright offers
the most complete and formal definition
of configuration specification, we follow
it with the aim of describing a complete
system architecture. Like a Wright
configuration description, the
components (i.e., agent) and connectors
(i.e., bindings between provided and
required services) must be combined
into a configuration. In this sense, in
SKwyRL-ADL, a configuration is a
collection of agent instances combined
via bindings between provided and
required services.

• Hierarchical Composition. SKwyRL-
ADL allows for hierarchical
composition, but provides no specific
constructs to support it. In particular,
SKwyRL-ADL permits replacing basic
components in an architecture by a (sub)
configuration so as to form a new

8

configuration. This is done by
supporting the specification of an agent

by one or more detailed lower-level
descriptions.

Fig. 1: Conceptualization of SKwyRL-ADL.

4.4. Metamodel

Figure 1 introduces the main entities and
relationships of the elements of SKwyRL-
ADL. Each entity has been identified from
the generic features of current ADLs, from
architectural security considerations, and
from the concepts defined through the
theoretical BDI architecture model.

For clarity we have further subdivided the
model into three sub-models: the agent

model; the security model; and the
architectural model. The three following
sub-sections describe these models in
greater detail. Each entity is formalized
using the Z specification language [41]. We
have adopted Z in order to formalize the
concepts and relationships of our ADL
model for a number of reasons. Firstly, Z
provides modularity and abstraction and is
sufficiently expressive to allow for a
consistent, unified and structured account of

Knowledge Base

Security Mechanism

Belief Security Method

Action
1

1..*

1

1..*
Event 0..*

1..*

0..*

1..*

generate

Plan trigger

Goal
11..* 11..*

Capability

Security Constraint

1..*

1..*

1..*

1..*
restrict

1..*

1..*

1..*

1..*
restrict

Protection Objective

1..*

1..*

1..*

1..*addsArchitecture Configuration

Effector Sensor

1..*1..*

Service

0..*

1..*

0..*

1..*

generate

1..*

1..*

1..*

1..*

Agent
1..* 1..*1..* 1..*

own

1..*

1..*

1..*

1..*
own

1..*

0..*

1..*

0..* react to

0..*
1..*

0..*
1..* has

imposed

Interface
1

0..*

possess

1

0..*

connect to

1..* 1..*

1..*

1..* 1..*

1..*

9

a software system and its associated
operations. Such structured specifications
enable the description of MAS architectures
at different abstraction levels, with system
complexity being added at successive lower
levels. Secondly, Z is particularly suitable in
squaring the demands of formal modelling
with the need for implementation by
allowing for transitions between
specification and software. Our approach to
formalize the specification of SKwyRL is
thus pragmatic: we need to be formal to be
precise about the concepts we discuss, yet
we want to remain directly connected to
implementation issues.

Furthermore, Z is widely used as formal
specification language within the software
engineering and the artificial intelligence
communities. Z has been shown to be clear,
concise and relatively easy to learn
compared with other languages [27].

4.4.1. Agent Model

The agent model, illustrated in Figure 1, is

composed of eight main design entities. An
agent needs knowledge about its
environment in order to make good
decisions. Knowledge is contained in an
agent in the form of one or many knowledge
bases structuring its informational state. A
knowledge base consists of a set of beliefs
that the agent has about its environment. A
belief represents a view of the current
environment of an agent.

However, beliefs about the current state of
the environment are not always enough to
decide what to do. In other words, in
addition to a current state description, the
agent needs goal information. A goal
describes an environment state that is (or is
not) desirable. An agent pursues one or

more goals that represent its motivational
state.

The intentional behaviour of an agent is
represented by its capabilities to react to
events. A capability is a set of events that an
agent can handle, post or send to its
environment and a set of plans. An event is
generated either by an action that modifies
beliefs or adds new goals, or by services
provided by another agent. Note that
services also appear in the structural model
because they involve interactions among
agents that compose the MAS.

Interactions serve as basic elements to
support the construction of configurations.
An event may invoke (trigger) one or more
plans; the agent is committed to executing
one of them, that is, it becomes its intention.
A plan defines the sequence of actions or
services to be chosen by the agent to
accomplish a task or fulfil a goal. An action
can query, add or remove beliefs, generate
new events or submit new goals.

As an example, consider the model shown
in Figure 2 representing a partial
specification of the mediator agent of the
GOSIS case study. The Mediator agent has a
set of interfaces, Knowledge Bases (KB),
Protection Objectives (PO), Security
Mechanisms (SM) and a set of Capabilities
(CP).

This formalization is intended as an
intuitive aid to introduce the fundamental
design entities and relationships, and assist
in the comprehension of the ADL. However,
the description level chosen here does not
specify the details of the beliefs composing
the KB; the plans and events composing
each CP; or the security methods composing
each SM. For this reason, the proposed ADL
supports refinement specification, using the
Z language, for each of the main aspects of
the agent: interface, knowledge base,
security mechanisms and capabilities.

10

Agent: { Mediator
Interface:

Sensor[require(query_translation)]
Sensor[require(query reformulation)]
Sensor[require(results)]
Sensor[require(locate_wrapper)]
Sensor[require(change_advertizings)]
Effector[provide(found_items)]

KnowledgeBase:
Results_KB
MatchMaker_Info_KB
DataManagement_KB
Request_KB
Notification_KB

Protection Objectives:
Confidentiality_PO
Availability_PO

Security mechanisms:
DataIntegirty_SM
AuthenticationExchange_SM

Capabilities:
Handle_Request_CP
Handle_Results_CP
Materialized_Views_CP
Wrapper_Localization_CP
Handle_Change_CP

 }

Fig. 2: Partial specification of the GOSIS mediator agent.

Knowledge base. A knowledge base is a
set of beliefs that the agent has about the
environment and itself. A knowledge base
(KB) is a means of structuring the
informational state of agents and it
encapsulates a set of states describing a
specific part of the current environment of
an agent. Each individual state is called a
belief. A knowledge base specification is
also described by the type of KB (KBtype) and
a name that assists to identify the KB.
Whenever an agent wants to query or
modify a KB, it does so by using this name.
The set of all names is denoted by [KBname]
and a KB can be specified as in Figure 3.

The KBtype describes the kinds of formal
knowledge used by agents that compose the
MAS. closedWorld states that an agent knows
only the beliefs included in its knowledge
base [25], and anything not in its knowledge

base simply doesn’t exist. Inversely,
openWorld states that an agent accepts every
belief that it “considers” possible [21].
Although closed-world states do not often
occur in the real world, they are useful in
many simulation and programming
environments [12].

[KBname]
[KBtype]:= closedWorld | openWorld

KnowledgeBase

name: KBname
composed_of: ℙ Belief
type: KBtype

name ≠∅∧composed_of ≠∅∧type ≠∅
(∀kb:KnowledgeBase) (∃ ag : Agent) •use(kb,ag)

Fig. 3: KnowledgeBase specification.

An example of a KB specification for the
Mediator agent of the GOSIS system is
shown in Figure 4. In particular, three KBs
are specified in the agent specification
presented above: the Matchmaker_Info,
WrapperSubscription and Translation_Management.
The contents of these KBs concern,
respectively, wrapper localisations and
translation abilities; accepted and refused
wrapper subscriptions; mediator queries and
the specific information needed to translate
it. This specific information is represented
by the following beliefs:
• source_resource that defines the kind of

data available from the connected
source;

• source_modeling that describes how the
information is structured;

• dictionary that provides the term
correspondence between the mediator
and the source.

11

KnowledgeBase: {

name: MatchMaker_Info_KB
composed-of:

wrapper(WrapperLocalization,TranslationServ
ice(+))

type: closed_world }

KnowledgeBase: {

name:WrapperSubscription_KB
composed-of:

refusal_subscription(Id,TranslationType,
WrapperLocalization,Reason)

accepted_subscribe(Id,TranslationType,
WrapperLocalization,Date)

type: closed_world }

KnowledgeBase: {

name: Translation_Management_KB
composed-of:

search(RequestType,ProductType,Filte
redKeyword(+))

source_resource(InfoType(+))
source_modeling(SourceType,Relation(

+),Attributes(+))
dictionary(MediatorTerm,SourceType,C

orrespondence)
type: closed_world}

Fig. 4: KB specification for the GOSIS mediator agent.

Belief. A belief is a predicate describing a
set of states about the current agent
environment being either true or false.
Beliefs describe the environment of an agent
in terms of states of objects with individual
identities and properties, and relations on
objects as being either true or false. We use
predicate symbols to specify a particular
relation that holds (or fails to hold) between
several objects, and terms to represent
objects. Each term can be build from
constant, variable or function symbols.
Constant symbols are therefore terms. But
sometimes it is more convenient to use an
expression to refer to an object. This is what
function symbols are for. Thus a complex
term can be formed by a function symbol
followed by a parenthesized list of terms as
arguments to the function symbol.

From the above primitives, we can define
an AtomicBelief. The set of all predicate,

function, constant and variable symbols are
denoted by [PredSymb],[Function],[Constant], and
[Variable], respectively. An AtomicBelief is
formed from a predicate symbol followed by
a sequence of terms (Figure 5).

[PredSymb]
[Funtion]
[Constant]
[Variable]
[Term]:=Function(Term,…)|Constant| Variable

AtomicBelief

head: PredSymb
terms: seq Term

head ≠∅∧terms ≠∅

Fig. 5: AtomicBelief Specification.

A Belief is specified either as an
AtomicBelief, a negated AtomicBelief, a series of
AtomicBeliefs connected using logic
connectives, or an AtomicBelief characterized
with a temporal pattern. We use the
following temporal patterns: ○ (in the next
state), ● (in the previous state), ◊ (some time
in the future), ♦ (some time in the past), □
(always in the future), ■(always in the past),
W(always in the future unless), and U
(always in the future until).

[Belief]:=AtomicBelief
|¬AtomicBelief
| Temp_Pattern AtomicBelief
 | AtomicBelief Connective AtomicBelief

[Connective] →∧ | ∨ | ⇒

[Temporal_Pattern]:=○ | ● | ◊ | ♦ | □ | ■ |W |U

Goal. A goal describes an environment

state that an agent wants to bring
about.Beliefs about the current state of the
environment are not always enough to
decide what to do. In other words, in
addition to a current state description, the
agent needs goal information, which

12

describes situations that are (not) desirable.
Goal information is an operational objective
to be achieved by an agent. Operational
means that the objective can be formulated
in terms of appropriate state transitions
under the control of one agent. We consider
goals according to four patterns [10]:

Achieve: P ⇒ ◊Q

Pmeans “state P holds in the current
state”
◊Qmeans “state Q holds in the current
or in some future state”

Cease: P ⇒ ◊¬Q

Maintain: P ⇒ □Q
□Qmeans “state Q holds in the current
and in all future states”

Avoid: P ⇒□¬Q

With respect to beliefs, goals can be
specified as in Figure 6.

[GoalPattern] := Achieve | Cease | Maintain |
 Avoid
[GoalStatus]:= Fulfilled | Unfulfilled

Goal

head: GoalPattern
state: Belief
Status: GoalStatus

head ≠∅∧state ≠∅

(∀ g: Goal) ∧ g.status = Fulfilled
⇒ (∃ blset = {bl1,…,bln: Belief} ∧ g.state ⊆
blset)

Fig. 6: Goal specification.

The state explicitly describes (in terms of
beliefs) the environment in which the goal is
fulfilled. The status indicates whether the
goal has been fulfilled or not. The goal
patterns influence the set of possible agent
behaviours: achieve and cease goals

generate actions, plans, or events; maintain
and avoid goals restrict them. When a goal
is required, the agent identifies a set of plans
to achieve or maintain this goal. From then
on, the agent chooses, according to its
current beliefs, which of these plans will be
executed.

Capability. A capability is a set of plans
that an agent can execute and a set of events
that it can post to itself or send to its
environment. The capability is a means of
structuring the intentional behaviour of
agents. In a perspective of modularity, it
allows to encapsulate a set of agent
functionalities that can be plugged in as
required. This component approach allows a
system architect to build up a library. These
components can then be (re)used to add
selected functionality to different agents of a
system. Also, some of these components can
be temporally not available for the agents in
the system. Capabilities are structured from
a set of events, plans or sub-capabilities that
can be combined to provide complex
functionality. A Capability specification
takes the form in Figure 7.

[CapName]
[AtomicCap] := Plan | Capability | Event
[CapAvaibility]:= Available | Unavailable

Capability

name: CapName
composed_of: ℙ AtomicCap
availability: CapAvailability

name ≠∅∧composed_of ≠∅

(∀ cap: Capability) ∃ ag: Agent ∧ cap ∈ ag.has ⇒
cap.availability = “available”

Fig. 7: Capability specification

13

Referring back to the GOSIS case study,
the mediator specification holds five
capabilities:
• Handle_Request decomposes a user query

into one or more sub-queries and sends
them to adequate wrappers;

• Handle_Results synthesises the source
answers and returns the answers to the
broker;

• Materialized_Views manages the storage,
the updates, the queries and the results
related to a set of materialized views;

• Wrapper_Localization manages the
information (provided by the
matchmaker) concerning the localisation
of a source and its connected wrapper;

• Handle_Change executes the materialised
view updates when a monitor detects
changes from its source.

The proposed ADL allows the
specification of each capability with a name
and a body (composed-of) containing the
plans that the capability can execute and the
events that it can post to itself (handled by
one of these plans) or send to other agents.
For example, the Handle_Request is specified
as in Figure 8.

Capability: {

name: Handle_Request_CP
composed-of:
Plan: DecompNmlRq

Plan: DecompMCRq
SendEvent: FaillUserRq
SendEvent: FailDecompMCRq
PostEvent: ReadyToHandleRst

availability: available}

Fig. 8: Handle_Request capability specification

The concept of Event and Plan are specified
later in this section.

Action. An action is an internal operation
executed in order to achieve goals or
accomplish tasks. An operation is a basic
executable command of agent behaviour.
The type of operation that agents can

perform may be classified as either external
(the domain of the operation is the
environment outside the agent) or internal
(the domain of the operation is the agent
itself). Actions concern only internal
operations. We will explain later in the
paper how external operations are specified
in SKwyRL-ADL and why they play an
important role in the definition of the system
topology. From the set of all internal
operations [Operation], we can specify an
AtomicAction as in Figure 9.

[Operation]

AtomicAction

head: Operation
input:Belief

head ≠∅∧input ≠∅

Fig. 9: AtomicAction specification

In order to design agents that present
efficient behaviour in specific environment
states, preconditions can be defined allowing
the agent to choose a better action than it
would otherwise have chosen. Once the
action is selected, the agent can execute it.
This affects (affect) the agent’s informational
or motivational states (Figure 10).

Output:= Belief | Goal
function:= Add_KB | Rem_KB
[Affect]:= function X output

Action

precondition: ℙ Belief
body: AtomicAction
affect: Affect

body ≠∅∧affect ≠∅

Fig. 10: Action specification

14

Event. An event is a belief or goal
occurrence generated by an action or a
service, which triggers the execution of a
plan. Events are the origin of all activity
within an agent-oriented system. In the
absence of events, an agent sits idle.
Whenever an event occurs, an agent selects
between the available plans and executes the
selected plan (or plan set depending on the
event processing model chosen), until it
succeeds or fails. An event is either the
effect of an action or a service, or it is
exogenous to the system, resulting from an
action or a service not accomplished by an
agent in the system. We define an event as
in Figure 11.

[ExogEffect]
[TriggerEvent]:= Effect | ExogEffect
[Evtype] = postEvent | sendEvent

Event

Trigger: TriggerEvent
destination: ℙ Agent
type: EVtype

Trigger ≠∅

(∀ ev: Event) ev.type = sendEvent ⇒ ev.dest ≠∅

Fig. 11: Event specification

SKwyRL-ADL allows the specification of
two types of events: postEvent and sendEvent.
A postEvent describes an event that the agent
can post. Posting an event means that an
agent creates an instance of the event and
posts it internally (i.e., sends the event to
itself). Such as event needs to be handled by
the agent’s own plan. Inversely, a sendEvent
identifies events that the agent sends
externally (i.e., to another agents) or
considered exogenous to the system.

Plan. A plan defines a sequence of actions
or/and services to accomplish a task or

achieve a goal. Plans are selected by agents,
as described below. Selected plans constrain
the agent behaviour and act as intentions. A
plan can be specified as in Figure 12 and
consists of:
• invocation condition, detailing the

circumstances, in terms of beliefs or
goals, that cause the plan to be triggered;

• context, that defines the preconditions of
the plan, i.e., what must be believed by
the agent for a plan to be selected for
execution;

• the plan body, which specifies either the
sequence of formulae that the agent
needs to perform. A formulae being
either an action or a service (i.e., action
that involves interaction with other
agents) to be executed;

• end state, which defines the post-
conditions under which the plan is
succeeded;

• a set of services or actions that specify
what happens when a plan fails or
succeeds.

[PlanName]
[AtomicPlan]:= Action | Service

Plan

name: PlanName
invocation: ℙ Event

Context: ℙ Belief
Body: seq AtomicPlan
endState: ℙ Affect
succeed: seq Atomicplan
Failure: seq AtomicPlan

name ≠ ∅∧invocation ≠ ∅∧body ≠ ∅

Fig. 12: Plan specification

A Plan is said to have succeeded when it
reaches its end state, and it is said to have
failed if it is not in the end state and there

15

are no available actions or services. For
instance, the DecompNmlRq and the
DecompMCRq plans of the mediator agent
deal with the decomposition of normal and
multi-criteria (expressing the user
preferences) requests.

Plan: {

name: DecompNmlRq
invocation: Add(Request_KB,

 user_keyword(pt(+),kw(+))
/* with pt:ProductType From Mediator.Ask(user_info-

needs).reply_with and with kw:Keyword
FromMediator.Ask(user_info-needs).reply_with
 context: ¬ materialized_view(ProductType

= pt(+),Keyword = kw(+))
body: ∀ pt : ProducType ∈

user_keyword(pt(+),kw(+))
Do
Action:

select_wrapper(wrapper(WrapL
ocalization,TranslationService(+))

as wp(+): Wrapper
Service:

performative:
 Ask(query_translation)
sender: Mediator
parameters: rt:RequestType∧

pt:ProductType∧
kw(+):Keyword

receiver: wp(+): Wrapper
Affect:

Add(Translation_Management
_KB, search(rt,pt,kw(+))

End-Do

endstate: ∀ pt : ProducType ∈
 user_keyword(pt(+),kw(+))
Do
Add(Translation_Management_KB,
 search(rt,pt,fk(+))

End-Do

suceed:
Action: count(search(rt,pt,kw(+))
Affect: Add(Request_Kb,
 old_user_keyword(pt,kw(+))

Failure: Plan: DecompMCRq
}

Fig. 13: DecompNmlRq plan specification

The DecompNmlRq plan, shown in Figure
13, is triggered each time a new user_keyword
belief is added to the Request KB. The

argument values of the user_keyword belief
are required by the Ask(user_info-needs)
service that the mediator initiates. However,
the plan is only executed if a materialized_view
belief which has the same argument values
as the invocation user_keyword belief does not
exist. A materialized_view belief represents a
repetitive user information need whose
content is extracted from each source,
merged with relevant information from
other sources, and stored as a belief by the
mediator. The complementary condition on
the existence of a materialized_view belief is
specified by the context. The context helps
for the selection of the most appropriate
plan in a given situation.

As soon as the invocation condition and
the context are true, the sequence of actions
or services specified in the plan body can be
executed. The plan body of the DecompNmlRq
plan is composed by the sequence of an
action and a service. The mediator selects
from their wrapper beliefs one or more
wrappers (wp(+)) capable of translating the
decomposed subqueries. Then, a translation
service Ask(query_translation) is asked from the
selected wrappers.

The plan will only succeed if the
statement described by the end state is
successful. Moreover, SKwyRL-ADL also
allows specifying what happens when a plan
reaches its endstate or fails, by considering
further courses of action or service. For
example, the succeed specification of the
DecompNmlRq plan counts the number of
occurrences of the current subquery in order
to identify a possible new materialized view,
while the fail specification returns to the
execution of the DecompMCRq plan.

4.4.2. Security Model
The security model is composed of four

main design entities. An agent has zero or
more protection objectives and each security

16

objective imposes one or more security
constraints on the agent. Security
constraints might restrict the goals and/or
the capabilities of an agent. On the other
hand, an agent owns security mechanisms. A
security mechanism represents a set of
standard security methods that an agent
might have and they help towards the
satisfaction of the protection objectives of
the agent. A security method defines a
sequence of actions and/or services to
satisfy an agent’s security mechanisms.

Protection Objective. A protection
objective indicates a desirable security
attribute that an agent might have, such as
integrity, and availability. An agent might
impose a security objective by itself or more
likely a protection objective is imposed to
an agent through its environment (e.g. from
a security policy or through other agents
and/or stakeholders/developers). Moreover,
a protection objective alters the agent’s
motivational state by adding constraint(s) to
the agent with respect to security. A
protection objective imposes one or more
security constraints to an agent, and each
agent might have zero or more protection
objectives. A protection objective is
specified as in Figure 14.

[POname], [POimposer]:= self | environment

ProtectionObjective

name: POname
imposed_by: POimposer
imposed_to: Agent
constraints: ℙ SecurityConstraint

Name ≠∅∧ imposed_to ≠∅∧ constraints ≠∅

(∀ po: ProtectionObjective)
(∀ ag: Agent) (∀ sc: SecurityConstraint)

[(sc po) ∧ (po ag)] ⇔ constrain(ag,sc)

Fig. 14: Protection objective specification

In particular, a Protection Objective
specification is described by a name
(Name), which assists to identify the
Protection Objective, and an imposer
(Imposed_by), which describes who imposes
the Protection Objective to the agent.
Imposed_to indicates the agent the
Protection Objective is imposed to, and
Constraints provides the set of security
constraints imposed as a result of the
specific protection objective.
Referring to the Mediator agent
specification, there are two protection
objectives (Confidentiality_PO and
Availability_PO). Following the Protection
Objective specification of the proposed
ADL, the Availability_PO is specified as
shown in Figure 15. In particular, the
Mediator agent is imposed an Availability
Protection Objective from its Environment.
As a result of this, a security constraint
(ConfirmServiceAvailability) is imposed to
the Mediator.

Protection Objective: {

name: Availability_PO
imposed_by: Environment
imposed_to: Mediator
constraints: ConfirmServiceAvailability}

Fig. 15: Availability_PO specification

Security Constraint. A security
constraint defines a set of restrictions to the
goals and the capabilities of an agent. These
restrictions are security related and are
imposed by the agent’s environment (either
from a security policy, other systems/agents,
the developers or the stakeholders). When a
security constraint restricts a goal, the agent
must identify a possible way of achieving
the goal without endanger the security
constraint. On the other hand, when a
security constraint restricts a capability (in
reality the security constraint will restrict
plans and/or events of the capability) the

17

agent must identify alternative ways of
satisfying its goals without using the
specific capability. It is possible that some
restrictions are communication related. For
instance, a restriction that might apply for
the communication of one agent with
another agent, might not apply for the
communication of the same agent with a
third agent or vice versa. Also, a security
constraint might restrict the
goals/capabilities of an agent for a specific
time frame. For instance, a restriction that
might apply today may not be valid
tomorrow. A security constraint can be
specified as in Figure 16.

[SCname], [SCrestriction] : Goal | Capability
[SCtimeFrame]:= All | Function,
[SCcommunication]:= Agent | All

SecurityConstraint

name: SCname
restricts: SCrestriction
timeFrame: SCtimeFrame
constraints: SCcommunication

name ≠∅∧ restricts ≠∅

(∀ ag: Agent) [(g: Goal ag) (cap: Capability ag)
(sc: SecurityConstraint ag)] restrict(g, sc)
restrict(cap,sc)

Fig. 16: Security constraint specification

Going back to the Mediator specification,
the ConfirmServiceAvailability security
constraint restricts the Mediator’s Keep
Materialized View Up-to-date goal at all
times and for every communication. This is
specified in Figure 17.

Security Constraint: {
name: ConfirmServiceAvailability_SC
restricts: Keep_MaterialisedView_Uptodate
timeFrame: All
constraints: All
}

Fig. 17: ConfirmServiceAvailability_SCspecification

Security Mechanism. A security
mechanism represents a set of standard
security methods that an agent might have
and they help towards the satisfaction of the
protection objectives of the agent. The
security mechanism allows structuring the
security behaviour of an agent with respect
to its security information. Internally, each
security mechanism is structured by a set of
different security methods, allowing system
architects firstly to build up a library of
different security methods, and secondly to
build different security mechanisms for
different agents of the system, by adding
and removing security methods from the
library. Because of this, a security
mechanism could be either available or
unavailable to an agent at a specific point of
time.

The security mechanism could be
structured by different types of security
methods. Some of them related to the
detection of security breaches, some of them
related to the prevention of security
breaches, and some of them related to the
recovery from security breaches. Therefore,
the type of a security mechanism could be
one of the following: (1) detecting: which
involves only security methods that aim to
detect anomalies; (2) preventing: which
involves only security methods used to
prevent security intrusions; (3) recovering:
which involves security methods used only
to recover after a security incident; (4)
combinational: which involves security
methods of all types. A security mechanism
is specified in Figure 18.

Going back to the GOSIS example, the
Mediator agent has two security
mechanisms (see Figure 2): Data Integrity
and Authentication Exchange. The Data
Integrity security mechanism
(DataIntegrity_SM) is composed of a
security method (Error Detection), which is

18

available for the Mediator agent; it is a
combinational type of Security Mechanism
and it helps towards the Confidentiality
Protection Objective of the agent.

[SMname], [SMavailability]:= Available| Unavailable
[SMtype]:= Detecting | Preventing | Recovering |

 Combinational

SecurityMechanism

name: SMname
composed_of : ℙ SecurityMethod
type: SMtype
availability: SMavailability
help: ℙ Protection Objective

name ≠∅∧ composed_of ≠∅∧ type ≠∅

(∀ SM: SecurityMechanism) (∃ ag : Agent) •
use(sm,ag)

Fig. 18: Security mechanismspecification

Using the Security mechanisms
specification of the proposed language, the
above example is specified as shown in
Figure 19.

Security Mechanism: {

name: DataIntegrity_SM
composed_of: Error_detection
type: Combinational
availability: Available
help: Confidentiality }

Fig. 19: DataIntegrity security mechanismspecification

Security Method. A security method
defines a sequence of actions and/or
services such as cryptographic algorithms
and secure protocols used to realise the
protection objectives of the agent. Each
security method consists of the following:
• an entry condition, indicating the

factor(s) that cause the method to be
triggered;

• the security action, which specifies the
actions/services that the agent needs to
perform with respond to the security
method invocation;

• an end condition that specifies the
desirable conditions of the security
action;

• the results report if the security action
has failed or succeeded and what the
next steps should be (these steps
would be determined by whether the
security action succeeded or failed). A
security action has succeeded if and
only if the output condition
corresponds to an end condition.

A security method is specified as in

Figure 20.

[SMETname], [SMEToutput]:= Success| Fail
[SMETtype]:=Detect|Prevent|Recovery

SecurityMethod

name:SMETname
type: SMETtype
entry_condition: SMETentrycondition
action:SMETaction
end_condition:SMETdesirable
output:SMEToutput
next_step: SMETnextstep

name ≠∅∧ type ≠∅∧ output ≠∅

(∀ SMET: SecurityMethod) (∃ ag : Agent) •
use(smet,ag)

Fig. 20: Security method specification

Referring to the GOSIS example, previous
analysis has identified that the Data
Integrity security mechanism of the
Mediator agent is composed of the Error
Detection security method. Error detection
is a method that allows some
communication errors to be detected (for
instance on communication between the

19

various agents of the system). The data is
encoded so that the encoded data contains
additional redundant information about the
data. The data is decoded so that the
additional redundant information must
match the original information. This allows
some errors to be detected. A number of
error detection methods are currently used.
For the sake of this paper we assume that
the Mediator agent employs a Cyclic
Redundancy Check (CRC) method. CRC is
calculated by dividing the bit string of the
block by a generator polynomial. The value
of the cyclic redundancy check is the
reminder of the calculation which is one bit
shorter than the generator polynomial.
Figure 21 shows an example of the CRC
security method specification.

Security Method: {

name:CRC_SM
type: Detect
entry_condition:EncodedData
action:RunCrcAlgortihm
end_condition:NoError
output:SMEToutput
 }

Fig. 21: Data Integrity security mechanism specification

4.4.3. Architectural Model
The main entities and relationships of the

architectural model are illustrated in Figure
1. It is composed of seven main design
entities. It describes interactions among the
agents that compose the MAS.
Configurations are the central concept of
architectural design, consisting of
interconnected set of agents. The topology
of a configuration is defined by a set of
bindings between provided and required
services. An agent interacts with its
environment through an interface composed
of sensors and effectors. An effector
provides a set of services to the
environment. A sensor requires a set of
services from the environment. A service is

performed by an agent that interacts by
dialoguing with one or several agents.
Finally, the whole MAS is specified with an
architecture, which is composed of a set of
configurations. The concept of architecture
allows representing an agent by one or more
detailed, lower-level configuration
descriptions. In the rest of this section, we
define and specify, using Z, each entity of
this structural model.

Interface. An interface defines a
collection of connection points through
which an agent interacts with its
environment. An interface is a specification
of how an agent appears to the rest of the
system. Its primary constituents are a set of
effectors and a set of sensors, which model
the points through which an agent interacts.
An effector provides a service for other
agents and/or human users. A sensor
requires a service from another agent and/or
human user. For each interaction, there is
always a correspondence between a service
provided by an effector and a service
required by a sensor, e.g. the send and
receive request services of a client-server
application.

We specify an interface as a non-empty,
finite set of effectors or sensors that represents
the complete set of interaction points
through which an agent communicates.
These two basic interfaces are distinct, yet
they share many characteristics. It can be
useful (when appropriate) to consider them
as specialisations of the same type. In Z, this
can be accomplished by defining them as
disjoint subsets of the Interface type. We
introduce the AgentInterface type as the
infinite set of all possible effectors and
sensor definitions (Figure 22).

20

[AgentInterface]

Interface

effector: ℙ AgentInterface

sensor: ℙ AgentInterface

(effector, sensor) partition AgentInterface

Fig. 22: Interface specification

The predicate partition indicates that the
sets of effectors and sensors are disjoint. We
define an Effector (Figure 23) or a Sensor
(Figure 24) as an individual connection
point that defines a set of required or
provided services.

[EffectorName]

Effector

name: EffectorName
provide:Service

name ≠ ∅∧provide ≠ ∅

Fig. 23: Effector specification

[SensorName]

Sensor

name: SensorName
require:Service

name ≠ ∅∧require ≠ ∅

Fig. 24: Sensor specification

Referring to the GOSIS example, the
Mediator needs the query_translation service
that the Wrapper provides. Such interface
definition points two aspects of an agent.
Firstly, it indicates the expectations the

agent has about the agents with which it
interacts. Secondly, it reveals that the
interaction relationships are a central issue
of the architectural description. Such
relationships are not only part of the
specification of the agent behavior but
reflect the potential patterns of
communication that characterize the ways
the system reason about itself. However, the
required query translation service needs to
be specified in greater detail. This is
possible with the aid of a service.

Service. A service is an operation
performed by a sender agent that interacts
by dialoguing with one or more receiver
agents. We represent a service as a kind of
action called speech act in the literature [3].
A speech act is an action available to
communicate what an agent knows about
the environment. It has the effect of
changing the state of the environment just as
any action.

A service is specified using the model of
action defined in Section 4.4.1, i.e., with
preconditions and affects, as described in
Figure 25.

Service

precondition: ℙ Belief
body: AtomicService
affect: Affect

body ≠∅∧affect ≠∅

Fig. 25: Service specification

We define an AtomicService (Figure 26) in
the same way as a KQML [10] inter-agent
communication. It consists of:
a performative that names the services; a sender
that identifies the agent initiating the
services in the architecture; the reply-with that
defines the information about which the

21

service expresses an interaction; a set of
receivers that identify the agent’s interaction
with the sender; the parameters that define the
information required to execute the service;
and an optional ontology that defines the
agreed-upon terms that will be used in the
exchange.

[Performative]
[Ontology]

AtomicService

name: Performative
sender: Agent
parameter: ℙ Term
reply-with: Belief
receiver: ℙ Agent
ontology: Ontology

name≠ ∅∧sender ≠ ∅∧receiver ≠ ∅

(∀ s: Service) s.sender ≠ s.receiver

(∀ s: Service) ∃ ag1: s. sender∧∃ ag2: s.
receiver⇒ s.parameter ∈ ag2.belief

Fig. 26: AtomicService specification

Referring back to the GOSIS case study,
we can see (Figure 27) that the mediator
(sender) initiates the service by asking the
wrapper (receiver) to translate a query. To
this end, the mediator provides to the
wrapper a set of parameters allowing the
definition of the contents of this query. Such
mediator query is specified as belief with
the predicate search and the following terms:
search(RequestType,ProductType(+),FilteredKeyword(+))

Each term represents, respectively, the
type of the request (normal or advanced in
the case of multi-criteria refinement); the
type of product; and one or more keywords
that must be included in or excluded from
the results.

The Affect indicates that a new search
belief is added to the Translation_Management
knowledge base of the wrapper.

Service:

performative: Ask(query_translation)
sender: Mediator
parameters: rt: RequestType ∧ pt:ProductType
 ∧ fk(+):FilteredKeyword
receiver: Wrapper
Affect: Add(Translation_Management_KB,
 search(rt,pt,fk(+))

Fig. 27: Example of service specification

Configuration. A configuration is an
interconnected set of agent instances. A
MAS modelled at the architectural level of
design is represented as a configuration of
instantiated agent components. The
topology of the system is defined by a set of
bindings between services provided by
effector instances and services required by
sensor instances. The configuration
separates the descriptions of composite
structures from the elements in those
compositions. This allows reasoning about
the composition as a whole and changing of
the composition without having to examine
each of the individual components in a
system. Because there may be more than
one uses of a given agent in a MAS, we
distinguish the different instances of each
agent type that appear in a configuration. To
this end, in our ADL we define the type
Instance representing the name given to an
agent instance that has been instantiated
within a configuration: [IAgent].

Instantiating an agent also has the
secondary effect of instantiating the services
that are defined by its interface. We define
provided and required service instance
types: [IRService] and [IPService].

Once the instances have been declared, a
configuration is completed by describing the
collaborations. The collaborations define the

22

topology of the configuration, by showing
which agent instance participates in which
interactions. This is done by defining a one-
to-many mapping relation between provided
and required services. A configuration can
be then specified as in Figure 28.

[AgentDescription]
[IAgent]
[Instance] := IAgent | IPService | IRService

Configuration

description: ℙ AgentDescription

inst:ance: ℙ Instance
collaboration: (IAgent X IRService) → (IAgent
X IPService)

description ≠ ∅∧instance ≠ ∅∧collaboration ≠ ∅

Fig. 28: Configurationspecification

Part of the GOSIS configuration with
instance declarations and collaborations is
given in Figure 29.

“(min)...(max)” indicates the smallest
acceptable integer, and the largest. An
omitted cardinality (as is the case with
(max) in the broker, mediator and wrapper
agents), means no limitation. Dynamic and
evolving structures can change at runtime.
Such a configuration allows for dynamic
reconfiguration and architecture
resolvability at run-time. Configurations
separate the description of composite
structures from the description of the
elements that form those compositions. This
permits reasoning about the composition as
a whole and allows reconfiguration without
having to examine each component of the
system.

Architecture. Architecture models the full
set of design information defined within an
architectural specification. An important
property for an ADL is to allow basic

components in architecture to be replaced by
(sub) configurations, in order to form new
configurations.

Configuration GOSIS

Description
Agent Broker[nb: 1…]
Agent Mediator[nm: 1…]
Agent Wrapper[nw: 1…nS]

 /*with nS = number of information sources
Agent Monitor[nmo: 1…nS]
Agent Matchmaker
Agent Multi-Critria-analyzer
Service Tell(query_translation)
Service Ask(query_translation)
Service Achieve(result)
Service Do(result)
Service Tell(subscription_info)
Service Ask(subscription_info)
…

Instance
BRnb: Broker
MEnm: Mediator
WRnw: Wrapper
MOnmo: Monitor
MA: Matchmaker
MCA: Multi-Criteria-Analyzer
Tellquerytrans: Tell(query_translation)
Askquerytrans: Ask(query_translation)
Achres: Achieve(result)
Dores: Do(result)
Tellsubs: Tell(subscription_info)
Asksubs: Ask(subscription_info)
…

Collaborations
MEnm.Askquerytrans - Tellquerytrans.WRnw;
MEnm.Achres --- Tellres.WRnw;
MEnm.Asksubs --- Tellsubs.MA;
…

End GOSIS

Fig. 29: Part of the GOSIS configuration

This is usually referred to as hierarchical
refinement in software architecture. To
support hierarchical descriptions, SKwyRL-
ADL permits the representation of an agent
by one or more detailed, lower-level
descriptions. This is specified with the
concept of architecture. The architecture
models a complete specification. Each
design has at least one configuration
corresponding to the top-level system
model. However, our model also supports

23

hierarchical system descriptions; that is, an
agent may be further specified as being
implemented by a configuration. An
architecture maintains the set of all of the
configurations that have been defined, and it
can be specified as a non-empty set of
configurations that has been defined in the
specification (Figure 30).

Architecture

composed_of: ℙ Configuration

composed_of ≠∅

Fig. 30: Architecture configuration

5. The e-commerce system Case Study

E-Media5 is a typical business-to-consumer
application we have developed using the
ADL described in the previous sections. The
application offers an e-commerce
architecture supporting the creation of
information sources that facilitate the on-
line transaction of products, services, and
payments resulting in an effective and
efficient interaction among sellers, buyers
and intermediaries.

This section describes how we have
applied SKwyRL ADL to formally specify
architectural aspects of the system, such as
interfaces, knowledge bases, and security
mechanisms. In particular, in section 5.1, we
introduce the case study and we discuss with
the aid of secure Tropos [5] and i*[47]
diagrams the analysis of the system, its
requirements and the selected architectural
style for the e-media system. In Section 5.2
we illustrate how the proposed ADL was
used to support the architectural description

5 (http://www.isys.ucl.ac.be/skwyrl/emedia)

of the system by focusing on one of the
system’s main components; the Billing
Processor Agent. Then in section 5.3, we
explain how the developed architectural
solution was implemented and we provide
illustrations of the system’s implementation.

5.1. E-Media

E-Media provides an on-line interface that
allows customers to examine the items on
the E-Media catalogue and place orders.
Customers can search the on-line store by
either browsing the catalogue or querying
the item database. An online search engine
allows customers to search title, author/artist
and description fields through keywords or
full-text search. If an item is not available in
the catalogue, the customer has the option to
order it. Moreover, Internet communications
are supported. All web information (e.g.,
product and customer turnover, and sales
average) of strategic importance is recorded
for monthly or on-demand statistical
analysis. Based on this statistical and
strategic information, the system
continuously manages and adapts the stock,
pricing and promotions policy. For example,
for each product, the system can decide to
increase or decrease stocks or profit
margins. It can also adapt the customer on-
line interface with new product promotions.

Apart from the main functional features of
the system, security is a very important
factor in the development of the E-Media
system. Customers need to know that their
information remains secure and accessible
only to intended participants, and also that
the risks, such as receiving wrong product
because someone intercepted and changed
the order, associated with online purchases
are minimized. Therefore, from the
customer’s point of view the main security
objectives are confidentiality and integrity.

24

Confidentiality guarantees that the
information is accessible only to authorized
entities and inaccessible to others, whereas
integrity guarantees that information
remains unmodified from source entity to
destination entity.

On the other hand, the stakeholder of the
E-Media system needs to make sure that the
system will always be available for
customers to buy; it can confirm the
involvement of an entity in certain
communications; and it can prove the
identity of an entity. In other words, the
main security objectives from the e-media’s
stakeholder point of view are availability,
non-repudiation, and authentication.

 Availability guarantees the accessibility
and the usability of information and
resources to authorized entities, non
repudiation confirms the involvement of an
entity in certain communications, and
authentication proves the identity of an
entity.

For both, the customer and the e-media
stakeholder actors to satisfy their security
objectives, some security constraints are
imposed on their dependencies. Figure 31
models the dependencies between the
customer, the E-Media stakeholder and the
E-Media system along with the security
constraints imposed by the first two actors
on the system, using the secure Tropos
language [35] where each node represents
an actor (or system component) and each
link between two actors indicates a
dependency. A dependency describes an
“agreement” (called dependum) between
two actors: the depender and the dependee.
The depender is the depending actor, and the
dependee, the actor who is depended upon.
The type of the dependency describes the
nature of the agreement. Goal dependencies
represent delegation of responsibility for
fulfilling a goal; soft-goal dependencies are

similar to goal dependencies, but their
fulfilment cannot be defined precisely; task
dependencies are used in situations where
the dependee is required. A Secure
Dependency introduces security
constraint(s) that must be respected by
actors for the dependency to be satisfied
[35]. This means that the depender expects
from the dependee to satisfy the security
constraint(s) and also that the dependee will
make effort to deliver the dependum by
satisfying the security constraint(s).

Actors are represented as circles;
dependums – goals, softgoals, tasks and
resources – are respectively represented as
ovals, clouds, hexagons and rectangles;
dependencies have the form depender →
dependum → dependee. Security constraints
are represented as hexagons.

Figure 31: E-Media dependencies

Following the secure Tropos analysis
process, the structure-in-5 organizational
architectural style, presented in [23], was

25

identified as suitable for the e-media system.
More information about alternative
architectural selections can be found in [13].
According to the structure-in-5 style, the
organisation of the software architecture can
be considered an aggregate of five sub-
structures [33]. The Operational Core,
which carries out the basic tasks and
procedures directly linked to the production
of products and services; the Strategic
Appex, which makes executive decisions
ensuring that the organization fulfills its
mission in an effective way and defines the
general strategy of the organization in its
environment.

The Middle Line, which establishes a
hierarchy of authority between the Strategic
Apex and the Operational Core; the
Technostructure, which serves the
organization by making the work of others
more effective, typically by standardising
work processes, outputs and skills; the
Support, which provides specialized
services, at various levels of the hierarchy,
outside the basic operating workflow.
These sub-structures are realized in the case
of the e-media architecture by the Store
Front, the Back Store, the Billing Processor,
the Coordinator and the Decision Maker, as
shown in Figure 32.

The Store Front interacts with customers
and provides them with a usable front-end
web application for consulting, searching
and shopping media items. The Back Store
constitutes the support component. It
manages the product database and
communicates to the Store Front relevant
product information. To be able to produce
statistical information (e.g., analyses,
average charts and turnover reports), the
Back Store stores and backs up all the
appropriate web information about
customers, products and sales. Such kind of
information is analysed either for a

predefined product (when the Coordinator
asks it) or on a monthly basis for every
product. Based on this monthly statistical
analysis, strategic information (e.g., sales
increase or decrease, performance charts,
best sales, and sales prevision) is also
provided to the Decision Maker.

Figure 32: The E-Media Architecture in Structure-in-5

The Billing Processor handles customer
orders and bills. To this end, it provides the
customer with on-line shopping cart
capabilities. It also handles, under the
responsibility of the Coordinator, stock
orders to avoid shortages or congestions.
Finally, it ensures the secure management of
financial transactions for the Decision
Maker. The Coordinator assumes the central
position of the architecture. It is responsible
to implement strategic decisions for the
Decision Maker. It supervises and
coordinates the activities of the Billing
Processor (initiating the stock and pricing
policy), the Front Store (adapting the front
end interface with new promotions and
recommendations) and the Back Store
(parameterize statistical computing)

26

ensuring that the system fulfils its mission in
an effective way. Finally, the Decision
Maker assumes strategic roles. It defines the
strategic behaviour (e.g., sales and turnover,
product visibility, and hits) of the system
ensuring that objectives and responsibilities
delegated to the Billing Processor,
Coordinator and Back Store are consistent
with respect to their capabilities.

5.2. Architectural Description

The initial analysis of the case study, as
partially presented in the previous section,
provides an organizational representation of
the system-to-be including relevant actors,
security constraints and their respective
goals, tasks and resource inter-
dependencies. Such analysis can serve as a
basis to understand and discuss the
assignment of system functionalities and
security issues but it is not adequate to
provide a precise specification of the system
details. As introduced in the previous
sections, SKwyRL-ADL provides a finite
set of formal agent-oriented constructors
that allow detailing, in a formal and
consistent way, the software architecture as
well as its agent components, their
behaviours and the corresponding security
issues. The rest of the section describes the
specification, in SKwyRL-ADL, of one of
the main components of the e-media system
as introduced in 5.1 and 5.2; the Billing
Processor agent. Focusing on this
component of the system allows us to
demonstrate the applicability of the
proposed ADL and also in the same time to
keep the description to a reasonable and
manageable length. For a complete
specification of the E–Media case study, we
refer the reader to [14].

There are five main aspects of the Billing
Processor (BP) agent that need to be

considered: the Interface representing the
interactions in which the agent will
participate; the Knowledge Base defining
the agent knowledge capacity, the
Protection Objectives indicating the desired
security attributes of the agent, the Security
Mechanisms representing a set of standard
security methods that an agent might have
and help towards the satisfaction of the
protection objectives of the agent, and the
Capabilities defining agent behaviours.

In particular, the Billing Processor agent
Interface consists of a number of effectors
and sensors for the agent. Effectors provide
services to other agents, and sensors require
services provided by other agents. An
interaction is then defined by the
correspondence between a required and a
provided service. As shown in Figure 33 the
BP agent’s interface consists of four
effectors and two sensors.

Agent:{Billing-Processor
Interface

Effector[provide(shopping_cart)]
Effector[provide(billing)]
Effector[provide(stock_orders)]
Effector[provide(finance_security)]
Sensor[require(strategic_behavior)]
Sensor[require(statistical_info)]

KnowledgeBase:
Stock_KB Pricing_Kb
BP_Customer_KB Providers_KB
BP_System_KB Statistical_KB

Protection Objectives:
Confidentiality_PO Integrity_PO
Availability_PO Non_Repudiation_PO
Authentication_POAccessControl_PO

Security mechanisms:
Encipherment_SMDIgitalSignature_SM
AccessControl_SM DataIntegirty_SM
AuthenticationExchange_SM
TrafficPadding_SMRoutingControl_SM
Notarization_SM

Capabilities:
Shopping_Cart_Management_CP
Billing_CP Stock_Management_CP
Statistic_CP

}

Figure 33: Billing Processor agent specification

27

Moreover, the BP agent has a number of
knowledge bases related to customers,
providers, pricing and stock as well as a
number of protection objectives, such as
(amongst others) confidentiality, integrity,
and availability. The BP agent also has a
number of security mechanisms, such as
access control and notarization, as well as a
number of capabilities, such as stock
management and billing.

Once all the five aspects have been
defined, more detail specifications are
constructed for each one of these. For
instance, the BP agent Interface components
are further specified. In particular, each
provided or required service can be detailed
by describing the sender agent that initiates
the service, a set of receiver agents that
interact with the sender, the “reply-with”
that defines the information with which the
service expresses an interaction, and
optionally a set of parameters that define the
information required to execute the service.
The parameters as well as the “reply-with”
information can be represented with a belief
or a set of terms (e.g., function, constant or
variable) as shown in Figure 34.

Service: {Ask(statistical_info)

sender: Coordinator
parameters:(tw:TimeWindows),(id:Id_product)
reply_with: to: Turnover ∨ sl: Sales
receiver: Back-Store
Effect:Add(Statistical_KB,

Achieve(statistic(“today”,“on_product”)}

Figure 34: Ask statistical specification

As discussed above, the BP agent has six
KBs. Following the ADL specification for
Knowledge Bases, introduced in the
previous sections, each KB is specified with
a name, a KB_body and a KB_type. For
example, the specification of the
Statistical_KB for the BP agent is shown in
Figure 35.

That specification describes the formal
knowledge that the BP agent has with
respect to the statistical analysis required.
As shown in Figure 35, this includes,
amongst other things, product turnover,
customer turnover and product sales. Since
the BP agent only knows the beliefs
included in its KB, the type of the Statistical
KB is closed world.

KnowledgeBase: {Statistical_KB

KB_body:
statistic_computation(Date,Subject)
product_turnover(Id_Prod,TimeWindows,Turnover)
customer_turnover(Id_Card,TimeWindows,Turnove)
product_sales(Id_Prod,TimeWindows,Sales)
extrapol_sales(Id_Prod,TimeWindows,setoffSales)
KB_type: closed_world }

Figure 35: Statistical Knowledge Base for BP specification

The high-level specification of the BP
agent indicates that the agent has six (6)
protection objectives. These protection
objectives have been identified by the
security analysis that took place for the e-
media system and partially presented in
section 5.1. In particular, the initial security
constraints (illustrated in Figure 31) were
further analysed into secure goals and plans
which in turn allowed us to identify a
number of protection objectives to satisfy
the secure goals and plans of the BP agent.
Following the ADL structure and in
particular the Protection Objective
specification (as presented in previous
sections), each of protection objective of the
BP agent is specified with a name,
information of who imposed it to the agent,
the agent to which it is imposed to (in this
case the Billing Processor), and the
constraints that it imposes to the agent. For
example, the specification of the
Non_Repudiation Protection Objective is
illustrated in Figure 36.

28

Protection Objective: {
name: Non_Repudiation_PO
imposed_by: Environment
imposed_to: Billing_Processor
constraints: ConfirmInvolvementInTransactions}

Figure 36: Non Repudiation Protection Objective specification

Our security analysis, during the analysis
stage of the development process, indicated
that the BP agent should have 8 different
security mechanisms in order to satisfy its
security requirements. Following the
specification for Security Mechanisms
presented in the previous section, each
security mechanism is specified with a
name, the security methods it is composed
of, a type, its availability to the agent, and
an indication to which protection objective
helps. For instance, the Notarization security
mechanism specification for the Billing
Processor agent is shown in Figure 37. It is
important to emphasise that the notarisation
mechanism is provided by a third-party
notary, which must be trusted by all
participants. The notary can assure integrity,
origin, time or destination of data. For
example, a message that has to be submitted
by a specific deadline may be required to
bear a time stamp from a trusted time
service proving the time of submission.

Security Mechanism: {
name: Notarization_SM
composed_of: third_party_notary
type: Combinational
availability: Available
help: Non_Repudiation}

Figure 37: Notarization security mechanism specification

The Billing Processor agent has also some
capabilities. A capability is composed of
plans and events that together serve to give
an agent certain abilities. For example, the
Billing Processor Statistic_CP capability is
specified as shown in Figure 38. The body
contains the plans that the capability can
execute and the events it can post to be

handled by other plans or it can send to
other agents.

Capability:{Statistic_CP
CP_body:

Plan Prov_Turnover_On_Demand
Plan Prov_Turnover
Plan Sales_Average
Plan Stock_Orders
SendEvent Grade
SendEvent Best_Sales
SendEvent Promotion

}

Figure 38: Billing Processor Statistic_CP capability specification

The Stock_Order plan of the Billing-
Processor (Figure 39) ensures that the level
of stock of each product is constantly higher
than the minimal quantity, which is
determined by the coordinator on the basis
of the strategic orientation provided by the
Decision-Maker.

Plan:{
Name: Stock_Orders
invoc:

 Maintain(current_stock(id,Availability > lb)
// with id: Id_Product

// From Coordinator.Ask(stock_orders).reply_with
// with lb: Lower_Bound
// From Coordinator.Ask(stock_orders).reply_with

context:
current_stock(id,Availability < lb)
∧¬ time (now > “11 am”)
∧ (day(now =“monday”
∨ day(now =“wednesday”)

body:
action: proceed_order(id, lb)

effect:Add(Stock_Kb,
Sent_Orders(id,qu,date))

endstate:
Add(Stock_Kb, Sent_Orders(id,qu,date))

succeed:
action: update_stock(id, av)
//with av: availability

effect: Add(Stock_Kb, Stock(id, av))
fail:

action: search_last(sent_orders(),id) as
 qu: Quantity
Add(Stock_Kb,Sent_Orders(id,qu,d
ate))
update_stock(id, av)

effect: Add(Stock_Kb, Stock(id, av))
}

Figure 39: Stock_Order plan specification

29

In the plan body, the quantity to order is
determined and then the order is sent to the
publisher. Eventually, the level of stock is
updated in the system. In case of plan
failure, the “fail” instructions are carried
out. So the Billing Processor searches for
the last order sent for this product and it
reorders the same quantity. Then the stock
level is updated with the quantity ordered.

5.3. E-Media Implementation

Following the analysis of the system
(partially presented in 5.1) and the
specification of its architecture (partially
presented in 5.2), the next step included the
implementation of the system based on the
developed architecture. In the rest of this
section, we briefly describe the E-Media
implementation to illustrate the roles of the
agents (Front Store, Decision Maker, Back
Store, Coordinator and Billing Processor)
identified in 5.1 and their interaction. We
also focus the discussion on implementation
aspects of the Billing Processor agent
described in section 5.2. The E-Media
application was implemented (~ 10.000
lines of code) using JACK [26]; a BDI
agent-oriented development environment for
JAVA.

When an on-line customer gets connected
to E-media, an instance of the Front-Store is
created to display an interface that allows
the user to sign in. Then, the Back-Store
handles the information provided by the user
and checks its validity. If the access is
granted, the user can purchase products on
E-Media by adding catalogue items to the
shopping cart managed by the Billing-
Processor. At any time the user can use a
navigation-bar to switch from one section of
the website to another. Moreover,
promotions and best sales are part of the

strategic behaviour objective. The
promotions’ policy is initiated by the
Decision-Maker based on the strategic
information provided by the Back-Store.
The Coordinator chooses the best
promotions and consequently adapts the
Store Front layout. The Coordinator acts
similarly for the best sales: the Back-Store
computes the five best sellers and the
Coordinator accordingly updates the Store-
Front. Figure 40 illustrates the Store-Front
interface for the DVD section.

To search the E-Media DVD catalogue,
the user must fill in at least one field of the
search engine (see section 1 in Figure 40).
The Store-Front sends the query parameters
to the Back Store which provides the results
back to the Store-Front (see section 2 in
Figure 40).

At any moment during the session, the
user can click on a product (best seller,
query result, and shopping cart); a request is
then sent to Back Store to provide more
information on this product (see section 3 in
Figure 40).

Figure 40: Interface of e-media DVD section

The implementation for the Billing
Processor has followed the architectural
description presented in the previous section
(5.2). In particular, when a user starts the

30

billing process, the Billing Processor agent
invokes the shopping cart and billing
effectors and displays all the items of the
shopping cart and it computes the total and
sub-total for each product. It then employs a
number of its KBs, POs and SMs to validate
the user id and process the payment card. As
discussed in the previous section (5.2) a
third party is used to support the
notarization security mechanism of the BP
agent. During all this time, the BP agent
communicates with the user, through user
messages on the screen, as illustrated in
Figure 41, by employing its sensors and
effectors. Once the payment is accepted, the
Billing Processor uses again its interface to
communicate with the Store-Front.
Furthermore, a confirmation message is
displayed and the shopping cart is cleared.

Figure 41: Secure Payment Information.

6. Related Work

Over the past decade, the field of software

architecture has received increasing
attention as an important subfield of
software engineering. Practitioners have
come to realise that getting an architecture
“right” is a critical success factor for system
design and development. They have begun

to recognise the value of making explicit
architectural descriptions and choices in the
development of new systems. In this
context, a number of researches have
proposed architectural description languages
([2], [17], [28], [30] and [39]) for
representing and analysing architectural
designs. In particular, a number of
Architectural Description Languages
(ADLs) have been proposed such as
Rapide[29], Darwin[32], Aseop[18],
Unicon[39],Wright [2] and ACME[17].
However, these efforts have not been
undertaken with agent orientation in mind,
and therefore the resulted languages are not
applicable for specifying MAS
architectures. Nevertheless, the study and
careful examination of the above efforts has
enable us to identify the essential aspects
that any ADL should be able to specify, and
develop the common foundation of concepts
and concerns for the language proposed in
this paper (see Section 4 for details). On the
other hand, few efforts have been made to
define an architectural description language
(ADL) for MAS. MAS-adl[10]is a simple
customized architectural description
language for MAS used to describe the
various classes of agents involved in the
MAS and the interconnections between their
instances. In particular, for any given class
the architectural description provides
information about the kind of the
architecture; the interpreters and the services
of agents in that class. ADLMAS [48] is an
architectural description language for MAS,
which adopts Object-Oriented Petri nets as a
formal theory basis. ADLMAS is suitable
for representing concurrent, distributed and
synchronous MAS. ADLMAS can visually
and intuitively depict a formal framework
for MAS, from the agent level and social
level, which describes the static and
dynamic semantics, and analyse, simulate

31

and validate MAS and interactions among
agents with formal methods. Similarly Yu et
al. [49], have developed a MAS ADL based
on π-net. The proposed ADL supports the
Belief-Desire-Intention (BDI) model and it
makes use of two formalisms, namely
Agent-Oriented Petri nets (AOPN) and π-
calculus. AOPNs are used to visualize the
static architecture and model the behaviors
of the MAS under development, while π-
calculus is used to represent the dynamic
architecture of MAS. These works are
important, but they fail to adequately
consider the issue of security in MAS.

There is, of course, a large effort of works
in the area of MAS, with respect to security.
These include policy specification languages
(for example [23],[4]), Trust and Reputation
mechanisms(for example [20], [22], [30]),
agent-oriented software engineering
methodologies for the analysis and design of
secure MAS [35], security patterns[36], and
security mechanisms and protocols [4].
Although such works do not directly input
into our proposed language; their study has
enable us to consider a variety of security
considerations, issues and challenges faced
for the development of secure MAS and
therefore develop a security model for the
proposed ADL that supports appropriate
architectural concepts.

7. Conclusion

Today’s information systems must be
based on open architectures to accommodate
new components and meet fast evolving
requirements. MAS architectures provide an
effective way to design such systems since

they do support open and evolving
configurations that can change at run-time to
exploit the services of new agents, or
replace existing ones.

Based on the analysis of existing classical
ADLs, security consideration for multi-
agent systems and the BDI agent model, this
article has defined a set of system
architectural concepts to propose an ADL
for secure BDI-MAS. This ADL allows
specification of agent components (such as
knowledge base, interface and capabilities),
agent behaviour (such as belief, goal and
plan), agent security (such as security
constraints, protection objectives and
security mechanisms) and agent interactions
(such as service and configuration).

The research reported here calls for
further work. We are currently working on:
- the development of a CASE tool to

automatically generate the code skeleton
of the future multi-agent information
system from their specification with the
ADL;

- the definition of a set of rules to perform
consistency analysis that could be
included in commercial verification tools
such as PVS (http://pvs.csl.sri.com/);

- the identification of a suitable set of core
abstractions, inspired by an
organizational metaphor, to be used
during the design of multi-agent systems;

- the development of a clear methodology,
centred around these organizational
abstractions, for the design of multi-agent
systems architectures.

32

References

[1] R. Allen, “A Formal Approach to Software Architecture,”

Ph.D. Thesis, Carnegie Mellon University, Technical Report
Number: CMU-CS-97-144, 1997.

[2] R. Allen and G. Garlan, “Formal Connectors,” Software
Architecture Lab., Carnegie Mellon University, Pittsburgh,
USA, Technical Report CMU-CS-94-115, 1994.

[3] J. L. Austin, How to do things with worlds, Oxford University
Press, 1962.

[4] M. Barley, H. Mouratidis, A. Unruh, D. Spears, P. Scerri, and
F. Massacci,(eds.) (2008) "Safety and Security in Multiagent
Systems: The Early Years",Springer-Verlag, forthcoming.

[5] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, A.
Perini. TROPOS: An Agent-Oriented Software Development
Methodology. Journal of Autonomous Agents and Multi-
Agent Systems. Kluwer Academic Publishers Volume 8, Issue
3, Pages 203 - 236, May 2004.

[6] M. Bratman, Intentions, Plans and Practical Reasoning,
Harvard Univ. Press, 1988.

[7] P. C. Clements, “A Survey of Architecture Description
Languages,” in Proc. of the 8th Int. Workshop on Software
Specification and Design, Paderborn, Germany, 1996, pp.
123-131.

[8] D. Calvanese, S. Castano, F. Guerra, D. Lembo, M. Melchiori,
G. Terracina, D. Ursino, and M. Vincini, “Towards a
Comprehensive Methodological Framework for Semantic
Integration of Heterogeneous Data Sources,” in Proc. of the
8th Int. Workshop on Knowledge Representation meets
Databases, Rome, Italy, 2001.

[9] D. Calvanese, G. De Giacomo, M. Lenzerini, D. Nardi, and R.
Rosati, “Schema and Data Integration Methodology for
DWQ,” Foundations of Data Warehouse Quality Project,
Dipartimento di Informatica e Sistemistica, Università di
Roma "La Sapienza", Report DWQ-UNIROMA-004, 1998.

[10] A. Cuppari, P. L. Guida, M. Martelli, V. Mascardi, and
F. Zini. “An Agent Based Prototype for Freight Trains Traffic
Management”. In Proc. of FMERail'99 Workshop, Toulouse,
France, September 1999.

[11] A. Dardenne, A. van Lamsweerde and S. Fickas, “Goal-
Directed Requirements Acquisition,” Science of Computer
Programming, 20(1): 3-50, 1993.

[12] A. Dal Formo and U. Mendenlo, “A Multi-Agent Simulation
Platform for Modeling Perfectly Rational and Bounded-
Rational Agents in Organizations,” Artificial Societies and
Social Simulation, 5(2):166-177, 2001.

[13] T. T. Do, S. Faulkner and M. Kolp. Organizational Multi-
Agent Architectures for Information Systems. in Proc. of the
5th Int. Conf. on Enterprise Information Systems (ICEIS
2003), Angers, France, April 2003.

[14] S. Faulkner, An Architectural Framework for DescribingBDI
Multi-Agent Information Systems, Ph.D. thesis,Department of
Management Science, University of Louvain,Belgium, May
2004.

[15] S. Faulkner, M. Kolp, T. Nguyen and A. Coyette, “A Multi
Agent Perspective on Data Integration Architectural Design”.
In Knowledge-Based Intelligent Information & Engineering
Systems (KES), 8(1):1150-1156, LNCS 3213, Springer, 2004

[16] T. Finin, R. Fritzson, D. McKay and R. McEntire, “KQML as
an Agent Communication Language,” in Proc. of the 3rd Int.

Conf. on Information and Knowledge
Management,Gaithersburg, USA, 1994, pp. 456-463.

[17] D. Garlan and R. Monroe, “Acme: an architecture description
interchange language,” in Proc. of the 7th Annual IBM Centre
for Advanced Studies Conference, Toronto, Ontario, 1997, pp.
78-86.

[18] D. Garlan, R. Allen, and J. Ockerbloom.Exploiting Style in
Architectural Design Environments. InProceedings of
SIGSOFT’94: Foundations of SoftwareEngineering, pages
175–188, New Orleans, Louisiana,USA, December 1994.

[19] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A.
Rajaraman, Y. Sagiv, J.D. Ullman, and J. Widom, “The
TSIMMIS Approach to Mediation : Data Models or
Languages,” Journal of Intelligent Information Systems,
8(2):117-132, 1997.

[20] A. Herzberg, Y. Mass, J.Mihaeli,D.Naor, and Y. Ravid,
Access Control meets Public Key Infrastructure : OrAssigning
Roles to Strangers. In Proceedings of 2000 IEEE Symposium
onSecurity and Privacy, Oakland, May 2000, 2000.

[21] J. Hintikka, Knowledge and belief, Cornell University Press,
1962.

[22] Y. Hu. Some thoughts on Agent Trust and Delegation. In
Proceedings ofAutonomous Agents 2001, 2001.

[23] L. Kagal and T. Finin. Modeling conversation policies using
permissions and obligations. Autonomous Agents and Multi-
Agent Systems 14, 2 (Apr. 2007), 187-206.

[24] M. Kolp, P. Giorgini, and J. Mylopoulos. An Organizational
Perspective on Multi-agent Architectures. In Proc. of the 8th
Int. Workshop on Agent Theories, architectures, and=
languages, ATAL’01, Seattle, USA, Aug. 2001.

[25] K. Konolige, “A first order formalization of knowledge and
action for multi-agent planning system,” Machine
Intelligence, 10: 41-72, 1982.

[26] JACK Intelligent Agents. http://www.agent-software.com/
[27] M. Luck and M. d’Inverno, “A formal framework for agency

and autonomy,” In Proc. of the 1st Int. Conf. on Multi-Agent
Systems,San Francisco, USA, 1995. pp. 254-260.

[28] D. C. Luckham, J. J. Kenney, L. M. Augustin, J. Vera, D.
Bryan and W. Mann, “Specification and Analysis of System
Architecture Using Rapide,” IEEE Transactions on Software
Engineering, 21(4):336–355, 1995.

[29] D. C. Luckham, and V. Vera, “An Event-Based Architecture
Definition Language,” IEEE Transactions on Software
Engineering, 21(4):717-734. 1995.

[30] B. B. Madan and K. Goseva-Popstojanova and K.
Vaidyanathan and K. S. Trivedi, “Modeling and
Quantification of Security Attributes of Software Systems”, in
Proc. of the 2002 International Conference on Dependable
Systems and Networks (DSN’02), Washington, DC, USA, pp.
505-514, 2002.

[31] Y. Mass and O. Shehory. Distributed Trust in Open Multi
Agent Systems. InWorkshop on Deception, Fraud and Trust in
Agent Societies, Autonomous Agents2000, 2000.

[32] J. Magee and J. Kramer, “Dynamic Structure in Software
Architectures,” in Proc. of the 4th Int. Conf. on the
Foundations of Software Engineering, San Francisco, CA,
USA, 1996. pp. 3-14.

[33] H. Mintzberg. Structure in fives: designing
effectiveorganizations. Prentice-Hall, 1992.

[34] H. Mouratidis, S. Faulkner, M. Kolp, and P. Giorgini, “A
Secure Architectural Description Language for Agent
Systems”. In Proc. of the 4th International Joint Conference
on Autonomous Agents and Multi-Agents Systems
(AAMAS'05), Utrecht, The Netherlands, pp. 578-585, 2005.

[35] H. Mouratidis and P. Giorgini. Enhancing secure Tropos to
effectively deal with security requirements in the development

33

of multiagent systems, in the proceedings of the 1st
International Workshop on Safety and Security in Multiagent
Systems, AAMAS 2004, N.Y. USA, 2004

[36] H. Mouratidis, P. Giorgini, M. Schumacher . Security Patterns
for Agent Systems. In Proceedings of theEight European
Conference on Pattern Languages of Programs (EuroPLoP),
Irsee, 2003.

[37] Y. Papakonstantinou, H. Garcia-Molina and J. Ullman.
Medmaker, “A mediation system based on declarative
specification,” in Proc. of the 12th Int. Conf. On Data
Engineering, New Orleans, 1996, pp. 132-141.

[38] V. S Subrahmanian, S. Adali, A. Brink, R. Emery, J. J. Lu,
A. Rajput, T. J. Ross, C. Ward, “Hermes: A Heterogeneous
Reasoning and Mediator System,” in Proc. of the Int. Conf.
On Database Theory, Delphi, Greece, 1997, pp 19-40.

[39] M. Shaw, R. DeLine, D. V. Klein, T. L. Ross, D. M. Young
and G. Zelesnik, “Abstractions for Software Architecture and
Tools to Support Them,” IEEE Transactions on Software
Engineering, 21(4):314-335, 1995.

[40] M. Shaw and D. Garlan, Software Architecture: Perspectives
on an Emerging Discipline, Prentice Hall, 1996.

[41] J. M. Spivey, The Z Notation: A Reference Manual. Prentice-
Hall, second edition, 1992.

[42] S. Vestal, “A Cursory Overview and Comparison of Four
Architecture Description Languages,” Honeywell Technology
Center, Technical Report, 1993

[43] J. Widom, “Research Problems in Data Warehousing,” in
Proc. of the 4th Int. Conf. on Information and Knowledge
Management, Baltimore, Maryland, USA, 1995, pp. 25-30.

[44] G. Wiederhold, “Mediators in the architecture of future
information system,” IEEE Computer, 25(3): 38-49, 1992.

[45] G. Wiederhold, “Intelligent Integration of Information,” in
Proc. of the ACM SIGMOD Conference on Management of
Data, Washington, USA, 1993, pp. 434-437.

[46] M. Wooldridge and N.R Jennings, “Special Issue on
Intelligent Agents and Multi-Agent Systems,” Applied
Artificial Intelligence Journal, 9(4):74–86, 1996.

[47] E. Yu, “Modelling Strategic Relationships for Process
Reengineering,” Ph.D. thesis, Department of Computer
Science, University of Toronto, Canada, 1995.

[48] Z. Yu, Z. Li. “Architecture description language based on
object-oriented Petri nets for multi-agent systems” In Proc. of
the 2005 Int. Conf on Networking, Sensing and Control,
Tucson, USA, pp. 256-260, 2005.

[49] Z. Yu, Y. Cai, R. Wang, J. Han, “π-net ADL : An architecture
description language for multi-agent systems”, In Proc. Of
International Conference on Intelligent Computing, Lecture
Notes in Computer Science vol. 3645, Springer-Verlag, 2005.

	WIAS cs
	WIAS

