
Dependence Cluster Visualization

Syed Islam, Jens Krinke
CREST

King’s College London
London, UK

syed.s.islam@kcl.ac.uk,
krinke@acm.org

David Binkley
Loyola University Maryland
Baltimore Maryland, USA
binkley@cs.loyola.edu

ABSTRACT
Large clusters of mutual dependence have long been regarded as
a problem impeding comprehension, testing, maintenance, and re-
verse engineering. An effective visualization can aid an engineer
in addressing the presence of large clusters. Such a visualization is
presented. It allows a program’s dependence clusters to be consid-
ered from an abstract high level down thru a concrete source-level.
At the highest level of abstraction, the visualization uses a heat-map
(a color scheme) to efficiently overview the clusters found in an en-
tire system. Other levels include three source code views that allow
a user to “zoom” in on the clusters starting from the high-level sys-
tem view, down through a file view, and then onto the actual source
code where each cluster can be studied in detail.

Also presented are two case studies, the first is the open-source
calculator bc and the second is the industrial program copia, which
performs signal processing. The studies consider qualitative evalu-
ations of the visualization. From the results, it is seen that the visu-
alization reveals high-level structure of programs and interactions
between its components. The results also show that the visualiza-
tion highlights potential candidates (functions/files) for re-factoring
in bc and finds dependence pollution in copia.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance, En-
hancement, Restructuring, reverse engineering, and reengineering

General Terms
Design, Experimentation, Measurement

Keywords
Dependence, program comprehension, program slicing, clustering,
visualization, reverse engineering, re-engineering.

1. INTRODUCTION
Program dependence analysis, a key component of source code

analysis [?], explores the dependence relationships between pro-
gram statements. Real-world code has been shown to contain large
clusters of mutually dependent statements [?]. Such clusters can

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SOFTVIS’10, October 17–21, 2010, Salt Lake City, Utah, USA.
Copyright 2010 ACM 978-1-4503-0028-5/10/10 ...$10.00.

impede comprehension [?], maintenance and evolution [?], test-
ing [?], and analysis [?]. For these reasons, dependence clusters
can be regarded as anti pattern [?], pollution [?] or a bad code
smell [?].

Prior work [?] has shown that dependence clusters are prevalent
in real-world programs and their sizes can indicate how difficult a
program will be to work with [?]. Most of the clusters found in
programs are rather small and uninteresting. Typically only the top
three or four clusters of medium-sized programs (around 10,000
SLoC) are of interest. For example, they are large enough to have
an impact on program comprehension. Over all the programs con-
sidered including the two presented as case studies herein, no more
than the top seven largest clusters were ever identified with high-
level concepts of interest in a program. Dependence cluster visual-
izations thus far have been size-graphs aimed solely at showing a
statistical summary of dependence clusters. In contrast, we provide
a visualization of (coherent) dependence clusters that often map to
particular concepts in a program. Such high-level abstraction helps
an engineer form a mental model and consequently aids in compre-
hension, maintenance, and reverse engineering.

The primary contribution of this paper is the multi-level visual-
ization of dependence clusters using a new tool named decluvi. The
visualization aids an engineer in understanding the structure of a
program by providing a quick summary of the dependence clusters
found in the entire system and then mapping these clusters down
onto the source code; thus providing a concrete view of the clusters.
The paper also presents a qualitative evaluation of the dependence-
cluster visualization for the open-source program bc and the indus-
trial program copia. The evaluation illustrates how visualization of
dependence clusters can facilitate extraction of high-level program
structure and how it can suggest improvements to this structure.
For example, the visualization helps to identify artifacts of bc that
need restructuring to improve logic separation, cohesion, and ab-
straction. In the case of copia, dependence pollution is identified,
which causes problems during software maintenance.

The remainder of this paper is organized as follows: Section ??
provides background on dependence clusters and previous depen-
dence cluster visualization techniques, while Section ?? introduces
the new visualization. Section ?? presents two case studies and
evaluation. Section ?? describes related work, while Section ??
highlights future work, and finally, Section ?? summarizes the work
presented.

2. BACKGROUND
This section provides background information on dependence

clusters and existing visualizations. It first formalizes mutually de-
pendent sets and dependence clusters together with a specialized

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219372395?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Blue (solid) lines represent control dependence.
Green (broken) lines represent data dependence.

Figure 1: Dependence cluster example

form called coherent dependence clusters, followed by a review of
the existing dependence cluster visualization techniques.

2.1 Dependence Clusters
Harman et al. [?] defined a dependence cluster as a maximal set

of program statements that mutually depend upon one another.

Definition 1 (Mutually-Dependent Cluster [?])
A Mutually-Dependent Cluster is a maximal set of statements, S,
such that ∀x, y ∈ S : x depends on y.

The above definition is parameterized by an underlying depends-
on relation. Ideally, such a relation would precisely represent the
impact, influence, or dependence of one statement upon another.
Unfortunately, such a relation is not computable. One well known
approximation is based on Weiser’s Program Slice [?]: a slice is
a set of program statements that affect the values computed at a
statement of interest. One common slicing algorithm is based on
a program’s System Dependence Graph (SDG) [?]. An SDG is
comprised of vertices, which essentially represent the statements
of the program, and edges, which represent the immediate control
and data dependence between vertices.

Two kinds of SDG slices are used in this paper: backward slices
and forward slices. The backward slice taken with respect to vertex
v, denoted BSlice(v), is the set of vertices reaching v via a path of
control and data dependence edges [?]. The second kind of slice,
a forward slice, is also taken with respect to vertex v. Denoted
FSlice(v), it includes the set of vertices reachable from v via a path
of control and data dependence edges [?]. In both cases, when
slicing programs that contain certain language features, the path of
dependence edges considered must be restricted, for example, to
respect the procedure calling convention of the language [?].

The following definitions are given using BSlice. Each has a
dual that uses FSlice. When the distinction is important, backward
and forward will be added to the definition name for clarification.

Definition 2 (Slice-based Cluster [?])
A Slice-based Cluster is a maximal set of vertices, V , such that
∀x, y ∈ V : x ∈ BSlice(y).

As a simple illustrative example of a slice-based dependence
cluster, consider the example in Figure ??. In this example, the
predicate i < 10 data depends on the assignment to i, this assign-
ment control depends on the predicate of the if statement, and the if
control depends on the predicate i < 10. As a result, all three state-
ments are mutually inter-dependent (or in each other’s BSlice);
they form a cluster.

Definition ?? for slice-based clusters permits clusters to over-
lap. An alternative identifies maximal partitions. Such partitions
correspond to statements which closely model the components that
work together within a program. The partitioning can be achieved

(a) B-MSG (b) F-MSG

y-axis: Slice Size (percent of program)
x-axis: Slice Rank (percent of program)
Figure 2: MSGs for the program bc.

by replacing the slice inclusion relationship of Definition ?? with
same-slice:

Definition 3 (Same-Slice Cluster [?])
A Same-Slice Cluster is a maximal set of vertices, V , such that
∀x, y ∈ V : BSlice(x) = BSlice(y).

Along with the internal requirement found in the slice inclusion
definition of a Slice-based Cluster, a Same-Slice Cluster has the
added external requirement that, all vertices in the cluster are af-
fected by the same vertices external to the cluster. Coherent (depen-
dence) clusters extend this external requirement to further include
the external vertices affected by the elements of a cluster. The ex-
tension has the advantage that the entire cluster is both affected by
the same set of vertices (as is the case with same-backward-slice
clusters) and also affects the same set of vertices (as is the case
with same-forward-slice clusters). Incorporating internal depen-
dence and both kinds of external dependence, Coherent Clusters
are defined as follows:

Definition 4 (Coherent Cluster [?])
A Coherent Cluster is a maximal set of vertices V , such that
∀x, y ∈ V : x depends on a implies y depends on a and a depends
on x implies a depends on y.

A slice-based instantiation for the above definition of coherent
cluster is Coherent-Slice Cluster.

Definition 5 (Coherent-Slice Cluster [?])
A Coherent-Slice Cluster is a maximal set of vertices, V , such that

∀x, y ∈ V : BSlice(x) = BSlice(y) ∧ FSlice(x) = FSlice(y)

2.2 Cluster Visualizations with Size-Graphs
Three size-based graphs have been previously considered to vi-

sualize dependence clusters: the Monotone Slice-Size Graph, the
Monotone Cluster-Size Graph and the Slice/Cluster-Size Graph.
First, as illustrated in Figure ??, the Monotone Slice-Size Graph
(MSG) [?] plots a landscape of monotonically increasing slice sizes
where the x-axis includes each slice, in increasing order, and the
y-axis shows the size of each slice as a percentage of the entire
program. MSGs drawn using backward slice sizes are referred to
as backward-slice MSG (B-MSG), those drawn using forward slice
sizes are referred to as forward-slice MSG (F-MSG). In an MSG a
dependence cluster appears as a sheer-drop cliff face followed by
a plateau. For example, the B-MSG in Figure ??a shows a large
plateau depicting a same-backward-slice cluster spanning almost
70% of the program bc.

The second view, illustrated in Figure ??, is the Monotone Cluster-
Size Graph (MCG) [?], which visualizes clusters based on their
cluster size rather than their slice size. In an MCG, cluster sizes
of vertices are plotted on the x-axis in monotonically increasing

(a) B-MCG (b) F-MCG (c) C-MCG

y-axis: Cluster Size (percent of program)
x-axis: Cluster Rank (percent of program)

Figure 3: MCGs for the program bc.

order with the sizes (as a percentage of the entire program) plot-
ted on the y-axis. MCGs can be drawn using the sizes of same-
backward-slice clusters (B-MCG), same-forward-slice clusters (F-
MCG), or coherent-slice clusters (C-MCG). In an MCG a pro-
gram’s (same-slice/coherent-slice) clusters are clearly identified as
steps. For example, MCGs in Figure ?? show the presence of two
large same-backward-slice clusters, three same-forward-slice clus-
ters and three coherent-slice clusters.

Finally, a combination of the MSG and MCG, the Slice/Cluster-
Size Graph (SCG) [?] links slice and cluster sizes. As illustrated in
Figure ?? an SCG plots three landscapes, one for increasing slice
sizes (solid black line), one for the corresponding same-slice cluster
sizes (light gray line), and the third for the corresponding coherent-
slice cluster sizes (dashed red (gray in black & white) line). In
the SCG, vertices are ordered along the x-axis first according to
their slice size, second according to their same-slice cluster size,
and third according to the coherent-slice cluster size. Three values
are plotted on the y-axis: slice sizes form the first landscape, while
cluster sizes form the second and third. Two variants of the SCG are
used: the backward-slice SCG (B-SCG) is built from the sizes of
backward slices, same-backward-slice clusters, and coherent-slice
clusters, while the forward-slice SCG (F-SCG) is built from the
sizes of forward slices, same-forward-slice clusters, and coherent-
slice clusters. SCGs of bc (Figure ??) show three coherent clusters
along with the same-slice clusters. The backward and forward slice
size for the vertices of the clusters are also shown, providing a link
between clusters and the underlying slice sizes.

3. IMPROVED VISUALIZATION
Building on previous visualizations that show only slice and clus-

ter statistics, this section first presents design considerations for the
new visualization. It then describes the proposed visualization’s
four views of a program: the heat-map and three code-based views.
Finally, the section ends with a discussion of the data acquisition
process used to gather data from which the visualizations were gen-
erated.

3.1 Design Consideration
Several guidelines have been proposed for the construction of ef-

fective visualization tools. Two of these are used to ensure that de-
cluvi is of high-quality. First is the framework proposed by Maletic
et al. [?] and second is the interface requirements proposed by
Shneiderman [?]. Maletic et al.’s framework considers the why,
who, what, where, and how of a visualization. For decluvi this
leads to the following:

Tasks - why will the visualization help?
The visualization helps to quickly identify computations in-
volved in clusters of dependence also shows interactions be-
tween these computations. This identification makes it easier
to understand and modify a program. The visualization also

(a) B-SCG (b) F-SCG

y-axis: Slice/Cluster Size (percent of program)
x-axis: Slice/Cluster Rank (percent of program)

Figure 4: SCGs for the program bc where slice sizes are shown
in solid black line, same-slice cluster sizes are shown in light
gray line, and coherent-slice cluster sizes in dashed red (gray in
black & white) line.

helps identify files and functions where multiple clusters are
involved. Here re-structuring will improve cohesion and de-
sign abstraction.

Audience - who will make use of the visualization?
Maintainers will use the visualization to gain overall under-
standing of the program and estimate the impact of changes.
Developers will also use the visualization to check if their
implementation matches their documented architecture and
to identify potential problems in the structure.

Target - what data source is to be represented?
Details of dependence clusters calculated from program.

Medium - where to represent the visualization?
The visualization will involve highly interactive computer
graphics being displayed on a color monitor.

Representation - how to represent the data?
The representation of the data will be through various ab-
stract and concrete views (Sections ?? & ??), allowing both
an overall architectural understanding of the system and also
details of the implementation.

Shneiderman’s requirements are aimed at providing high-quality
interfaces for visualization tools. They include Overview, Zoom,
Filter, Details-on-demand, Relate, History and Extract. These fea-
tures were used to guide the development of decluvi and are pre-
sented in Section ?? making it possible to evaluate the tool’s inter-
face against these requirements.

3.2 Heat-Map View
The Heat-Map View is the first of the four views which work to-

gether to aid an engineer in creating a mental model of system com-
ponents. The high-level understanding provided by this view can
be traced to the source code using the other three views. Together,
the four views assist with locating dependence cluster causes, al-
lowing an engineer to decide whether the clustering is necessary or
a form of ‘pollution’. The views also highlight files and functions
with multiple embedded functionalities; suggesting possible loca-

n~1a

n~2a

n~3a

n~1b

n~2b

n~3b

n~1c

n~2c

n~3c

Figure 5: Heat-Map View for the program bc showing the color
spectrum (shades of gray in black & white) used to represent
cluster size.

tions on which to focus re-factoring efforts in order to improve the
logical separation, cohesion, abstraction, and reduce code deterio-
ration during evolution.

The Heat-Map View is the central starting point to the visual-
ization that displays an overview of all the clusters using color to
distinguish clusters of varying sizes. The same color scheme is also
used to represent the cluster size metric in other abstract and con-
crete views. The view also displays additional statistics such as the
size of the backward and forward slices for each coherent cluster
and number of clusters for each cluster size. Figure ?? shows the
Heat-Map View for bc, which has been annotated for the purpose
of this discussion. The three labels 1a, 1b, and 1c highlight statis-
tics for the largest cluster (Cluster 1) of the program, whereas 2a,
2b, and 2c highlight statistics of the 2nd largest cluster (Cluster 2)
and the 3’s the 3rd largest cluster (Cluster 3). Starting from the
left of the heat-map, using one pixel per cluster, horizontal lines
(capped at 100 pixels) show the number of clusters that exist for
each cluster size. This helps identify cases where there are multi-
ple clusters of the same size. For example, the single dot next to the
labels 1a, 2a and 3a show that there is one cluster of each of the
three largest sizes. A single occurrence is common for large clus-
ters, but not for small clusters as illustrated by the long line at the
top left of the heat-map. This line indicates multiple (uninteresting)
clusters having size one.

On the right of the cluster counts is the actual heat-map (color
spectrum) showing dependence cluster sizes from small to large
going from top to bottom using colors varying from blue to red. In
gray-scale this appear as shades of gray, with lighter shades (corre-
sponding to blue) representing smaller clusters and darker shades
(corresponding to red) representing larger clusters. Red is used
for larger clusters as they are more likely to encompasses complex
functionality making them more important, or “hot topics”.

A numeric scale runs on the right of the heat-map, where the
numbers show the cluster size (measured in SDG vertices) repre-
sented by the color at the same horizontal level as the number. In
Figure ??, the scale for bc runs from 1 - 2432, depicting the sizes
from the largest to the smallest clusters, displayed using bright red
(dark gray) to light blue (light gray), respectively.

Finally on the right of the number scale, two more statistics are
displayed: |BSlice| (labeled 1b, 2b and 3b) and |FSlice| (labeled
1c, 2c and 3c). These represent the sizes of the backward slice and

the forward slice for the vertices that form a coherent cluster. The
sizes are shown as a percentage of the entire program’s SDG size
(vertex count), with the separation of the vertical bars represent-
ing 10% of the SDG size. For example, Cluster 1’s BSlice (1b)
and FSlice (1c) include approximately 80% and 90% of the pro-
gram’s SDG vertices. For this particular example, the FSlice’s and
BSlice’s that make up the top three clusters are very similar in size,
resulting in bars of almost the same length.

3.3 Three Code-Based Views
The level of abstraction offered by a visualization must cope with

the volume of code being visualized, which ranges from thousands
of lines in a moderately sized system to millions of lines in a larger
system. If a view is too detailed it becomes incomprehensible for
the analysis of large systems. On the other hand, if the level of
abstraction is too high, low-level detail is lost. In addition, pro-
grammers are most comfortable in the spatial structure in which
they have written the program. Therefore, a view of the source
is often preferred. However, a single glance at a high-level view of
the entire system allow engineers to ascertain the level of clustering
and understand overall system structure. As a compromise between
these conflicting needs, the visualization provides three different
views that allow a program’s clusters to be viewed at varying levels
of detail: System View, File View, and Source View.

The bird’s eye view shown by the System View is at the high-
est level of abstraction. Each file of the system (containing exe-
cutable source code) is abstracted into a column. This yields the
nine columns for bc, seen in Figure ??a. The name of the file ap-
pears at the top of each column, color coded to reflect the largest
cluster in the file. The vertical length of a column represents the
length of the corresponding source file. To keep the view com-
pact, each line of pixels in a column summarize multiple source
lines. For moderate sized systems, such as the two case studies pre-
sented, each pixel line typically represents eight source code lines.
The color of each pixel line reflects the largest cluster found among
the summarized lines of code, with light gray denoting source code
lines that do not include executable code. Finally, the numbers at
the bottom of each column indicate the presence of the top 10 clus-
ters in the file (1 denotes the largest cluster of the program whereas
10 is the 10th largest cluster).

Decluvi provides options for filtering and relative coloring. Fil-
tering allows a range of cluster sizes of interest to be defined. Only
clusters whose size fall within the range are shown using the heat-
map colors. Those outside the specified range along with non-
executable lines of code are shown in light gray, on grayscale these
appear in the lightest shade of gray. The filtering system incor-
porates a feature to hide non-executable lines of code as well as
clusters outside the specified range. These features help to isolate
particular cluster of interest. In addition, relative coloring allows
the heat-map colors to be automatically adjusted to fit within a de-
fined cluster size range. Relative coloring along with filtering over-
comes the problem where clusters of similar sizes are represented
using similar colors making them indistinguishable. Figure ??a
and Figure ??b shows unfiltered and filtered System View for the
program bc. The filtered view is configured to show only the two
largest clusters using heat-map colors. With absolute coloring these
two clusters have very similar colors because they are close in size.
Relative coloring is used to display the two clusters using colors
from opposite ends of the spectrum; the largest cluster is seen in
Figure ??b in red (dark gray) and the second largest clusters is in
blue (medium gray). Comparing the columns for number.c, in
Figure ??a it is seen that there are multiple clusters displayed in
color from the heat-map (shades of gray) as opposed to that in Fig-

(a) Unfiltered: Displaying all clusters using heat-map colors (b) Filtered: Displaying only Cluster 1 and 2 using heat-map colors
Figure 6: System View for the Program bc showing each file using one column, and each line of pixels summarizing cluster size data
from eight source lines.

ure ??b where only Cluster 1 is shown in red (dark gray), the rest
of the cluster are filtered out (displayed in light gray). The filtering
enables visual separation of a set of clusters (of interest), allowing
one to easily examine the artifacts (lines/functions/files) that make
up the clusters, and understand their interaction.

The File View, illustrated in Figure ??, is at a lower level of ab-
straction than the System View. It essentially zooms into a column
of the System View. In this view, each pixel line corresponds to
one line of source code. The pixel lines are also indented to mimic
the indentation of the source lines and the number of pixels used
to draw each pixel line is the same as the number of characters in
the represented source code line. This makes it easier to relate this
view to actual lines of source code. The color of the pixel line de-
picts the size of the largest cluster to which any of the SDG vertices
representing the corresponding source code line belong. Figure ??
shows the Line View of bc’s file util.c, filtered to show only the two
largest clusters using colors of the heat-map, while smaller clusters
and non-executable lines are shown in light gray. The lines shown
in red (dark gray) and blue (medium gray) belong to Clusters 1 and
2, respectively.

While the first two views aid in locating parts of the system in-
volved in one or more clusters, the Source View allows a program-
mer to see the actual source code that makes up the cluster. This
can be useful in addressing questions such as: Why are the clus-
ters formed? What binds the cluster together? Is there dependence
pollution? The Source View illustrated in Figure ?? is a concrete
view that maps the clusters onto actual source code lines. The lines
are displayed in the same spatial context in which they were writ-
ten, line color depicts the size of the largest cluster to which the
SDG vertices representing the line belong. Figure ?? shows lines
241-257 of bc’s file util.c which has also been filtered to show only
the largest two clusters using colors from the heat-map. The lines
of code whose corresponding SDG vertices are part of the largest
cluster are shown in red (dark gray) and those lines whose SDG

vertices are part of the second largest cluster are shown in blue
(medium gray). Other lines that do not include any executable code
or whose SDG vertices are not part of the two largest cluster are
shown in light gray. On the left of each line is a line tag, which
denotes as a : b|c/d: the line number (a), the cluster number (b),
and an identification c/d for the cth of d clusters having a given
size. For example, in Figure ?? lines 250 and 253 are both part
of the 20th largest cluster (clusters with same size have the same
rank) as indicated by the value of b; however they belong to dif-
ferent clusters as indicated by the differing values of c in their line
tags.

3.4 Data Acquisition
The visualization is generated from backward and forward slices

taken with respect to each vertex of a program’s SDG. The slices
along with the mapping between the SDG vertices and the actual
source code is extracted from the mature and widely used slicing
tool CodeSurfer [?]. The cluster sizes measured by decluvi is in
terms of the SDG vertices; which exclude pseudo vertices intro-
duced into the SDG, to represent, for example, global variables,
which are modeled as additional pseudo parameters by CodeSurfer.
Measuring size in terms of vertices is more accurate than using
lines of code because it is not influenced by blank lines, comments,
statements spanning multiple lines, multiple statements in one line,
or compound statements.

4. USE-CASE AND EVALUATION
This section presents a qualitative evaluation of coherent depen-

dence clusters and their visualization. Two case-studies based on
the programs bc and copia are presented, followed by a discus-
sion of threats to validity. The section ends with the evaluation of
decluvi’s user-interface.

4.1 Case Study: bc

Figure 7: File View (filtered) for the file util.c of Program bc.
Each line of pixels correspond to one source code line. Blue
color (medium gray in black & white) represents 2nd largest
cluster, and red color (dark gray) represents the largest clus-
ter. The rectangle in the first column marks function init_gen
which contains both clusters.

This subsection presents a case study of the program bc. It starts
with a brief description of the program followed by the results of
applying the visualization to the program. The program bc is an
open-source calculator, which consists of 16,763 LOC (lines of
code as counted by the Unix utility wc) and 11,173 SLoC (non-
comment non-blank lines of code as counted by sloc [?]). The
program has nine C files for which CodeSurfer produces 15,076
slices (backward and forward).

The Heat-Map View for bc (Figure ??) shows the presence of
three large clusters and three smaller clusters which are readily dis-
tinguishable from each other. We will focus on these six clusters
(detailed in Table ??) as the rest of the clusters are extremely small:
while the largest clusters consists of 2432 vertices, the 7th largest
cluster consists of a mere 25 vertices.

As seen in Figure ??, Cluster 1 spans all files in bc except for
scan.c and bc.c. This cluster encompasses the core functionality
of the program – loading and handling of equations, converting to
bc’s own number format, performing calculations, and accumulat-
ing results.

Cluster 2 spans five files, util.c, execute.c, main.c, scan.c, and
bc.c. The majority of the cluster is distributed over the last two

Figure 8: Source View (filtered) showing function init_gen in
file util.c of Program bc. Blue color (medium gray in black &
white) represents 2nd largest cluster and red color (dark gray)
represents the largest cluster.

Figure 9: Source View for the file number.c of Program bc
showing the lines whose vertices form the 6th largest cluster.

Cluster Cluster Size Number of
% vertices/lines files spanned

1 32.3% 2432/1411 7
2 22.0% 1655/999 5
3 13.3% 1003/447 1
4 1.6% 117/49 1
5 1.4% 102/44 1
6 0.4% 32/7 1

Table 1: Top Six coherent clusters of bc

files. Even more interestingly, these two files contain only Cluster
2 from the set of the top 6 clusters, which indicates a clear purpose
to the existence of the files. The files are solely used for lexical
analysis and parsing of equations. To aid in this task some utility
functions from util.c are employed. Only five lines of code in ex-
ecute.c are part of Cluster 2 and are used for flushing output and
clearing interrupt signals.

The third cluster is completely contained within the file num-
ber.c and spans 1003 vertices. The cluster encompasses functions
such as _bc_do_sub, bc_init_num, _bc_do_compare, _bc_do
_add, _bc_simp_mul, _bc_shift_addsub, and _bc_rm _lead-
ing_zeros, which are responsible for initializing bc’s number for-
matter, performing comparisons, modulo and other arithmetic op-
erations. Clusters 4 and 5 are also completely contained within
number.c. These clusters encompass functions to perform bcd op-
erations for base ten numbers and arithmetic division, respectively.
Cluster 6 (Figure ??) of bc spanning (32 vertices) 7 lines of code
is formed because of a while loop which checks if the exponent is
zero.

The results of the cluster visualization for bc as described above
reveals its high-level structure. This aids an engineer in understand-

(a) Original (b) Modified
Figure 10: SCGs for the program copia

ing how the artifacts (functions/files) of the program interact to pro-
vide various functionalities. The visualization thus aids in program
comprehension. The following illustrates how the visualization can
also aid in finding potential problems and its causes.

Util.c consists of small utility functions called from various parts
of the program. This file contains parts of Cluster 1 and 2. Both
the separate functionalities identified previously (encompassed by
each of the clusters) make use of the utility functions defined within
the file. Figure ?? shows that two clusters in red (dark gray) and
blue (medium gray) within the file are well separated. The clusters
do not intersect inside any function with the exception of init_gen
(rectangle in first column of Figure ??). The Code View of this
function illustrated in Figure ?? shows lines 244, 251, 254, and
255 in red (dark gray) from Cluster 1, and lines 247, 248, 249, and
256 in blue (medium gray) from Cluster 2. Other lines belonging
to smaller clusters and those not containing any executable code
are shown in light gray. Functions should be refactored to avoid
containing more than one cluster as such functions reduce code
separation (hindering comprehension) and increase the likelihood
of ripple-effects [?]. A common exception to guidelines are initial-
ization functions such as bc’s init_gen, which initializes the parser
code generator. The remaining functions belonging to each cluster
should be separated by splitting util.c into two files, with each file
dedicated to functions interacting with one of the two largest clus-
ters. This would improve logic separation and cohesion at the file
level, making the code easier to understand and maintain.

From bc’s SCGs (Figure ??) two interesting observations can be
made. First, the program bc contains two large same-backward-
slice clusters as opposed to three large same-forward-slice clusters
visible in the light gray landscapes. Secondly, looking at the B-
SCG it can be seen that the space corresponding to the largest same-
backward-slice cluster is occupied by two coherent-slice clusters
shown in dashed red (dark gray) landscape. This indicates that
the same-backward-slice cluster splits into the two coherent-slice
clusters, supporting the conjecture that coherent clusters are more
suited to modeling components of a program than other forms of
dependence clusters.

The visualization reveals the high-level structure for the program
bc and shows how different artifacts (functions/files) of the pro-
gram interact with each other. This makes it easier for engineers to
understand the program. By identifying artifacts of the program
which have multiple embedded functionalities, the visualization
also identifies areas of low cohesion. These can be sources of code
degradation during evolution. By highlighting such problems, the
visualization successfully suggests artifacts that should be the focus
of refactoring efforts. The slice/cluster sizes from the visualization
provides an estimate of the level of difficulty likely to be faced by
testers and maintainers when dealing with program. Artifacts that
are part of larger clusters are harder to test and modify than those
that are part of smaller clusters.

4.2 Case Study copia

Figure 11: File View for the file copia.c of Program copia. Each
line of pixels represent the cluster size data for one source code
line.

This subsection presents a case study of copia, an industrial pro-
gram used for ESA signal processing. The program consists of
1,170 LOC, and 1,112 SLoC. It has only one C file from which
CodeSurfer extracts 7518 slices (backward and forward). The pro-
gram copia has a large coherent cluster spanning 40% of the B-
SCG as shown by the dashed red (dark gray) line (running from
10% to 50% on the x-axis) in Figure ??a.

During the analysis of copia’s File View we were drawn towards
an intriguing structure. There is a huge block of code with same
spatial arrangement (bounded by black rectangle in Figure ??) that
belongs to a single large cluster of the program. It is unusual for so
many consecutive source code lines to have similar length and in-
dentation. Source View of the the corresponding lines revealed that
this unusual large block of code is a switch handling 234 cases.
Upon inspection of copia it was found that the program has 234
small functions that all call one large function, seleziona, which
in turn calls the smaller functions effectively implementing a finite
state machine. Each of the smaller functions return a value that is
the next state for the machine and is used by the switch to call the
appropriate function. The primary reason for the high level of de-
pendence in the program lies in the statement switch(next_state),
which controls the call to the smaller functions. This causes what
might be termed ‘conservative dependence analysis collateral dam-
age’ because the static analysis can not determine that when func-
tion f() returns a 5 this causes the switch statement to eventually
invoke function g(). Instead, the analysis makes the conservative
assumption that a call to f() might be followed by a call to any of
the functions appearing in the switch statement, resulting in a mu-
tual recursion involving most of the program.

This is a clear case of dependence pollution where the next-state
value coupled with the mutual recursion is entirely avoidable. To
show this, we did a simple refactoring (by hand) to simulate the
replacement of the integer variable next state with direct recursive
function calls. This removed the potentially problematic switch

Figure 12: decluvi’s Control Panel showing buttons to toggle views, configure filter range, and hide filtered regions.

statement. The SCGs for both original and modified versions of
the program are shown in Figure ??. As seen in the figure, remov-
ing the switch and its control dependence removes the cluster. As a
result of this reduction, the potential impact of changes to the pro-
gram will be greatly reduced, making it easier to understand and
maintain.

In this particular case study, owing to peculiar coding structure,
the visualization was used to identify the cause of the cluster. This
however is not the primary purpose of the visualization. The visu-
alization as presented can show the existence of clusters, helping in
program comprehension, but cannot pinpoint a cause of the clus-
ters. It currently can only assist in investigating the program for
possible causes. However, it is not difficult to incorporate other
techniques [?, ?] of identifying causes of dependence clusters and
view them using the presented visualization.

Finally, in the B-SCG for copia (Figure ??a) it is seen that the
plots for Backward-Slice Cluster Sizes (light gray line) and the co-
herent cluster sizes (dashed red (gray in black & white) line) are
very similar. This has happened because, in this case the size of
the coherent-slice clusters are restricted by the size of the same-
backward-slice clusters. Although, the plot for the size of the back-
ward slices (black line) seems to be the same from the 10% mark
to 95% mark on the x-axis, the slices are not exactly same size.
Only vertices plotted from 10% through to 50% have exactly same
backward slice. The tolerance implicit in the visual resolution used
to plot the slice sizes obscures this detail.

The case study for copia shows that the visualization can not
only show the existence and distribution of coherent clusters, but
the detailed views can also lead to identification of dependence
pollution. Restructuring of such programs to remove the pollution,
makes the program easier to understand, test and maintain.

4.3 Threats to Validity
In the study, the primary threat arises from the possibility that

the selected programs are not representative of programs in general
(i.e., the findings of the experiments do not apply to ‘typical’ pro-
grams). This is a reasonable concern as we present only two case
studies. The programs presented are however from different do-
mains: one open-source and another industrial, both of which have
previously been the subject of many studies. Also, the programs
studied to date, including the two case studies, are mid-sized. It is
possible that the value of the visualization does not scale to larger
systems. Finally, a threat arises from the potential for faults in the
slicer. A mature and widely used slicing tool (CodeSurfer) was
used to mitigate this concern.

4.4 decluvi’s Interface Evaluation
This subsection provides an evaluation of decluvi’s user interface

against the list of features suggested by Shneiderman [?].

Overview - Gain an overview of the entire collection of data that
is represented.
The abstract Heat-Map View and compact System View pro-
vide an overview of the clustering for an entire system.

Zoom - Zoom in on items of interest.
From the System View it is possible to zoom into individual
files in either a lower level of abstraction (File View) or the
concrete (Source View) form.

Filter - Filter out uninteresting items.
The control panel, shown in Figure ??, includes sliders and
‘fast cluster selection’ buttons. These allow a user to filter
out uninteresting clusters and thus focus only on clusters of
interest. The tool also provides option to hide non-executable
lines and clusters whose size fall outside a specified range.

Details-on-demand: - Select an item or group and obtain details
when needed.
Although details for all items shown in the visualization can-
not be obtained, cluster related details are available. For ex-
ample, clicking on a column of the System View opens the
File View for the corresponding file and clicking on a line in
the File View highlights the corresponding line in the Source
View. Finally, the fast cluster selection buttons allow the user
to demand and get details on a given cluster.

Relate - Clear relationship between the various views.
There is a hierarchical relationship between the various views
provided by decluvi. Common coloring is used throughout to
tie abstract elements of the higher level views with the con-
crete source lines in the Source View. In addition, File View
and Source View preserve the layout of the underlying source
code (e.g., the indentation of the lines).

History - Keep history of actions to support undo, replay and pro-
gressive refinement.
Decluvi currently meets this requirement partially. The var-
ious views of the tool retain their settings and viewing po-
sitions when toggled. However, current version of decluvi
lacks support for undo, replay, or history.

Extract - Allow extraction of sub-collections and of the query pa-
rameters.
The tool provides support for exporting slice/cluster statis-
tics.

5. RELATED WORK
The work presented follows two separate sub-domains of soft-

ware engineering. The first is dependence cluster analysis and the
second is software visualization. The following subsections de-
scribe relevant work from these sub-domains.

5.1 Dependence Clusters
Binkley and Harman [?] were the first to introduce the notion

of dependence clusters that looked into the fine grained structure
of clustering based on vertices of an SDG. They deemed depen-
dence clusters as problems for software maintenance and regarded
them as anti-patterns [?], pollution [?] and bad code smells [?].
Black [?] has even hypothesized a direct relationship between the
size of dependence clusters and number of software faults. Bink-
ley et al. followed up their initial work and presented work on the
causes (low-level [?] and high-level [?]) of dependence clusters.
Islam et al. [?] have recently introduced coherent clusters suggest-
ing that such clusters have the potential to reveal high-level struc-
tures of systems.

5.2 Software Visualization
This subsection first presents the current dependence cluster vi-

sualization techniques. It then goes on to describe tools and tech-
niques used in aiding program comprehension.

Binkley et al. [?] were the first to introduce a graph visualiza-
tion for dependence clusters known as MSG. Islam et al. [?] later
extended this by introducing MCG and SCG. All these three visu-
alizations were however size-graphs aimed solely at showing the
presence of dependence clusters and their statistics. These visual-
izations do not aid in program understanding as they lack a map-
ping to source code.

Seesoft System [?] is a seminal tool for visualizing line oriented
software statistics. The system pioneered the idea of abstracting
source code view to represent each source code line using a line of
pixels. This allowed for visualization of up to 50,000 lines of code
on a single screen. The rows were colored to represent the values
of statistics being visualized. The system pioneered four key ideas:
reduced representation, coloring by statistic, direct manipulation,
and capability to read actual code. The reduced representation was
achieved by displaying files as columns and lines of code as thin
rows. The system was originally envisioned to help in a lot of areas
including program understanding. Ball and Eick [?] also presented
SeeSlice, a tool for interactive slicing. This was the first slicing vi-
sualization system that allowed for a global overview of a program.
Our visualization inherits these approaches and extends them to be
effective for dependence clusters.

The approach pioneered by Seesoft was also used in many other
visualization tools. SeeSys System [?] was developed to local-
ize error-prone code through visualization of ‘bug fix’ statistics.
The tool extended the Seesoft approach by introducing treemaps to
show hierarchical data. It displayed code organized hierarchically
into subsystems, directories, and files by representing the whole
system as a rectangle and recursively representing the various sub-
units with interior rectangles. The area of each rectangle was used
to reflect statistic associated with its sub-unit. Tarantula [?] also
employs the “line of pixel” style code view introduced by Seesoft.
The tool was aimed at visualizing the pass/fail of test cases. It ex-
tended the idea of using solid colors to represent statistics by using
hue and brightness to encode additional information. CVSscan [?]
also inherited and extended the “line of pixel” based representa-
tion by introducing “dense pixel display” to show the overall evo-
lution of programs. The tool has a bi-level code display that pro-
vide views of both the contents of a code fragment and its evolution
over time. Source Viewer 3D [?] is a software visualization frame-
work that is based on Seesoft and adds a third dimension (3D) to
the original approach allowing additional statistics to be visualized.
Augur [?] is also based on the line-oriented approach of Seesoft.
The primary view is spatially organized as in Seesoft with addi-
tional columns to display multiple statistics for each line. Aspect
Browser (Nebulous) [?] provides a global view of how the various
aspect entries cross-cut the source code using “line of pixels” view
and uses Aspect Emacs to get the statistics and provide the concrete
source code view. BLOOM [?] uses the BEE/HIVE [?] architec-
ture, a powerful back-end that supports a variety of high-density,
high-quality visualization one of which (File Maps) is based on the
Seesoft layout.

The final set of systems discussed are those that aim to help in
reverse engineering but are not based on the “line of pixels” ap-
proach. Most of these tools focus on visualizing high-level system
abstractions (often referred to as ‘clustering’ or ‘aggregation’) such
as classes, modules, and packages, using a graph-based approach.
Rigi [?] is a reverse engineering tool that uses Simple Hierarchi-
cal Perspective (SHriMP) views, employs fisheye views of nested
graphs. Creole [?] is an open-source plugin for the Eclipse (IDE)
based on SHriMP. Tools such as GOOSE [?], Sotograph [?] and
VizzAnalyzer [?] work on the class and method levels allowing in-
formation aggregation to form higher levels of abstractions. There

are tools (Borland Together, Rational Rose, ESS-Model, BlueJ, Fu-
jaba, GoVisual [?]) which also help in reverse engineering by pro-
ducing UML diagrams from source code.

6. FUTURE WORK
Future work will involve a wide-scale qualitative study into how

well decluvi supports software comprehension and maintenance.
The feedback and survey results form such work can be used to
further improve decluvi. Preliminary evidence for the success of
such study is found in the case studies of bc and copia where we
identified several improvements that will make decluvi more effec-
tive:

• Addition of intermediate abstractions to visualize clusters at
function, component and directory level. This will make it
easier to understand the inter-play of clusters and help focus
on re-engineering of artifacts containing multiple clusters.
• Improve the algorithm used to calculate color for the pixel

lines in the System View by adding anti-aliasing features to
incorporate cluster size statistics from all summarized lines
of source code.
• Add 3D to visualize the number of clusters of each size to

address cases where multiple clusters have the same size and
cannot be readily distinguished using color.
• Add support for history, undo, and replay to allow users to

backtrack their steps.

7. CONCLUSION
The paper introduced new multi-level dependence cluster visu-

alization that aids in comprehension, maintenance, and reverse en-
gineering tasks. The visualization is realized using decluvi, which
allows dependence clusters to be viewed in terms of source code
rather than statistics. The two case studies show that the new visu-
alization is able to reveal high-level structure of programs and can
also be used to ascertain interaction between the different compo-
nents of a program. The case study for bc illustrates that the visual-
ization identifies artifacts with low cohesion where refactoring will
make the code easier to understand and also reduce code deterio-
ration during software evolution. The visualization also highlights
dependence pollution and its causes in copia that can hinder testing
and maintenance.

The decluvi system along with scheme script for data acquisition
and pre-compiled dataset for several open-source programs can be
downloaded from:
http://www.dcs.kcl.ac.uk/pg/syed/tools.html

8. ACKNOWLEDGMENTS
We would like to thank GrammaTech Inc. (http://www.

gramm atech.com) for making CodeSurfer available.

9. REFERENCES
[1] Chisel Group. Creole Homepage:

http://www.thechiselgroup.org/creole.
[2] GOOSE Homepage: http://esche.fzi.de/

PROSTextern/software/goose/index.html.
[3] Software-Tomography GmbH. Sotograph Homepage:

http://www.software-tomography.com/html/
sotograph.htm.

[4] P. Anderson and T. Teitelbaum. Software inspection using
CodeSurfer. In First Workshop on Inspection in Software
Engineering, pages 1–9, 2001.

[5] M. J. Baker and S. G. Eick. Space-filling software
visualization. Journal of Visual Languages & Computing,
6(2):119 – 133, 1995.

[6] T. Ball and S. Eick. Visualizing program slices. Proceedings
of 1994 IEEE Symposium on Visual Languages, pages
288–295, 1994.

[7] D. Binkley. Semantics guided regression test cost reduction.
IEEE Transactions on Software Engineering, 23:498–516,
1997.

[8] D. Binkley. Source code analysis: A road map. ICSE 2007
Special Track on the Future of Software Engineering, May
2007.

[9] D. Binkley, N. Gold, M. Harman, Z. Li, K. Mahdavi, and
J. Wegener. Dependence anti patterns. In 23rd IEEE/ACM
International Conference on Automated Software
Engineering, pages 25–34, September 2008.

[10] D. Binkley and M. Harman. Locating dependence clusters
and dependence pollution. In 21st IEEE International
Conference on Software Maintenance, pages 177–186, 2005.

[11] D. Binkley and M. Harman. Identifying ‘linchpin vertices’
that cause large dependence clusters. In Ninth IEEE
International Working Conference on Source Code Analysis
and Manipulation, pages 89–98, 2009.

[12] D. Binkley, M. Harman, Y. Hassoun, S. Islam, and Z. Li.
Assessing the impact of global variables on program
dependence and dependence clusters. Journal of Systems and
Software, April 2009.

[13] S. Black. Computing ripple effect for software maintenance.
Journal of Software Maintenance and Evolution: Research
and Practice, 13:263–279, July 2001.

[14] S. Black, S. Counsell, T. Hall, and P. Wernick. Using
program slicing to identify faults in software. In Beyond
Program Slicing, number 05451 in Dagstuhl Seminar
Proceedings, Dagstuhl, Germany, 2006.

[15] G. Canfora. An integrated environment for reuse
reengineering C code. Journal of Systems and Software,
42:153–164, August 1998.

[16] S. Diehl. Software visualization. In ICSE ’05: Proceedings of
the 27th International Conference on Software Engineering,
pages 718–719, New York, NY, USA, 2005. ACM.

[17] S. Eick, J. Steffen, and E. Sumner. Seesoft-a tool for
visualizing line oriented software statistics. IEEE
Transactions on Software Engineering, 18:957–968, 1992.

[18] A. Elssamadisy and G. Schalliol. Recognizing and
responding to "bad smells" in extreme programming. In
International Conference on Software Engineering, pages
617–622, 2002.

[19] J. Froehlich and P. Dourish. Unifying artifacts and activities
in a visual tool for distributed software development teams.
In ICSE ’04: Proceedings of the 26th International
Conference on Software Engineering, pages 387–396,
Washington, DC, USA, 2004. IEEE Computer Society.

[20] K. B. Gallagher and J. R. Lyle. Using program slicing in
software maintenance. IEEE Transactions on Software
Engineering, 17:751–761, 1991.

[21] M. Harman, K. Gallagher, D. Binkley, N. Gold, and
J. Krinke. Dependence clusters in source code. ACM
Transactions on Programming Languages and Systems,
32(1):1–33, 2009.

[22] S. Horwitz, T. Reps, and D. Binkley. Interprocedural slicing
using dependence graphs. ACM Transactions on

Programming Languages and Systems, 12:26–60, January
1990.

[23] S. Islam, J. Krinke, D. Binkley, and M. Harman. Coherent
dependence clusters. In PASTE ’10: Proceedings of the 9th
ACM SIGPLAN-SIGSOFT Workshop on Program Analysis
for Software Tools and Engineering, New York, NY, USA,
2010. ACM.

[24] J. A. Jones, M. J. Harrold, and J. T. Stasko. Visualization for
fault localization. In Proceedings of the Workshop on
Software Visualization, 23rd International Conference on
Software Engineering, May 2001.

[25] J. I. Maletic, A. Marcus, and M. L. Collard. A task oriented
view of software visualization. In VISSOFT ’02:
Proceedings of the 1st International Workshop on Visualizing
Software for Understanding and Analysis, page 32,
Washington, DC, USA, 2002. IEEE Computer Society.

[26] A. Marcus, L. Feng, and J. I. Maletic. 3D representations for
software visualization. In SoftVis ’03: Proceedings of the
2003 ACM Symposium on Software Visualization, New York,
NY, USA, 2003. ACM.

[27] K. J. Ottenstein and L. M. Ottenstein. The program
dependence graph in software development environments.
Proceedings of the ACM SIGSOFT/SIGPLAN Software
Engineering Symposium on Practical Software Development
Environments, SIGPLAN Notices, 19(5):177–184, 1984.

[28] T. Panas, J. Lundberg, and W. Lowe. Reuse in reverse
engineering. In IWPC ’04: Proceedings of the 12th IEEE
International Workshop on Program Comprehension,
page 52, Washington, DC, USA, 2004. IEEE Computer
Society.

[29] S. P. Reiss. Bee/Hive: A software visualization back end.
Proceedings of ICSE 2001 Workshop on Software
Visualization, Toronto, pages 44–48, 2001.

[30] S. P. Reiss. An overview of BLOOM. In PASTE ’01:
Proceedings of the 2001 ACM SIGPLAN-SIGSOFT
Workshop on Program Analysis for Software Tools and
Engineering, pages 2–5, New York, NY, USA, 2001. ACM.

[31] B. Shneiderman. The eyes have it: A task by data type
taxonomy for information visualizations. In VL ’96:
Proceedings of the 1996 IEEE Symposium on Visual
Languages, page 336, Washington, DC, USA, 1996. IEEE
Computer Society.

[32] M.-A. D. Storey, K. Wong, and H. A. Müller. Rigi: a
visualization environment for reverse engineering. In ICSE
’97: Proceedings of the 19th International Conference on
Software Engineering, pages 606–607, New York, NY, USA,
1997. ACM.

[33] L. Voinea, A. Telea, and J. J. van Wijk. CVSscan:
visualization of code evolution. In SoftVis ’05: Proceedings
of the 2005 ACM Symposium on Software Visualization,
pages 47–56, New York, NY, USA, 2005. ACM.

[34] M. Weiser and C. Park. Program slicing. In International
Conference on Software Engineering, 1981.

[35] D. A. Wheeler. SLOC count user’s guide.
http://www.dwheeler.com/sloccount/sloccount.html., 2004.

[36] W. G. Yoshikiyo, W. G. Griswold, Y. K. Y, and J. J. Yuan.
Aspect Browser: Tool support for managing dispersed
aspects. In First Workshop on Multi-Dimensional Separation
of Concerns in Object-oriented Systems—OOPSLA 99, 1999.

