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CLOSED-LOOP CONTROL USING A BACKPROPAGATION 

ALGORITHM: A PRACTICABLE APPROACH FOR ENERGY 

LOSS MINIMISATION IN ELECTRICAL DRIVES 
 

                      Xavier Matieni, Stephen J. Dodds and Sin W. Lee 
School of Computing, Information Technology and Engineering, University of East London 

                    xamat@hotmail.com, stephen.dodds@spacecon.co.uk, s.w.lee@uel.ac.uk 

 
Abstract:  In general, optimal controls are computed off line and subsequently applied in real time 

but this approach is impracticable due to lack of robustness with respect to the plant modelling errors 

and unknown external disturbances. Closed loop versions of these optimal controls could circumvent 

this problem but are only available in the analytical form for very simple cases, not including 

minimisation of frictional energy loss in motion control systems, which is the aim of the research 

programme.  The approach suggested by Matieni and Dodds (2009), however, overcomes this 

obstacle by training an artificial neural network (ANN) to reproduce the optimal control values 

computed off-line from given states and reference inputs, thereby yielding a closed loop solution.  The 

purpose of this paper is to present the results of an initial simulation experiment to assess the 

capability of a Multilayered Perceptron (MLP), in the backpropagation mode, to perform a direct state 

feedback function, which, to the authors‘ knowledge, is new.  A known linear state feedback 

controller for a double integrator plant is used for this purpose. The control law is used to train the 

MLP.  Then a simulation of the closed loop system formed using this MLP is compared with a 

simulation of the known linear state feedback control system.  The results show that the closed loop 

step response with the MLP closely follows that of the conventional system. 

 

 

1. Introduction  

 

The long established open loop methods of 

Bellman et. al. (1962), known as ‗Dynamic 

Programming‘, in the USA and Pontryagin 

(1960), a Russian mathematician, with the 

‗Maximum Principle‘, compute optimal 

controls off line and apply them 

subsequently in real time. During the period 

leading up to the 21
st
 century, these methods 

have been abandoned by the mainstream 

control researchers due to the fundamental 

drawback of susceptibility to plant 

modelling errors and external disturbances 

and the lack of success in overcoming this 

drawback by deriving closed loop versions 

in all but the simplest and often unrealistic 

cases.       

Bryson et. al. (1975) in his works on the 

numerical solution of optimal programming 

and control problems, investigated the 

possibility of closing the loop iteratively by 

the gradient method. The first-order gradient 

and second-order gradient methods 

demonstrated vast improvements in the first 

iterations but, unfortunately, displayed poor 

overall convergence, which means that the 

optimal solution could not be obtained fast 

enough for real time implementation. Also 

Ryan (1982) stated that explicit optimal 

closed-loop solutions have been obtained in 

a variety of cases of up to fourth order but 

frequently exhibit a high level of 

complexity, which may prove to be 

unacceptable in many practical applications. 

This is especially evident in the time-

optimal feedback control laws for certain 

third and fourth-order plants, many of which 

involved logarithmic and exponential 

functions of the plant states which are 
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computationally too demanding for 

commonly used digital processors in many 

control applications. He carried out 

investigations of third and fourth-order 

linear, single-input plants, and nonlinear, 

multi-input plants some of which exhibited 

such complexity that explicit closed-loop 

solutions are not available at the present and 

unlikely to be obtained in the future. The 

method pursued in this research programme 

circumvents these difficulties.  

In principle, an MLP can mimic any 

continuous state feedback controller 

yielding smooth outputs. During the training 

process, the parameters of the network, i.e., 

the neuron input weights, are being adjusted 

to minimise the error between the desired 

control input, u, and the control input, unn, 

generated by the neural network.  The 

ultimate aim is to use the MLP to reproduce 

the function of the computed optimal 

controls referred to above but in a closed 

loop control structure with the possibility of 

yielding some robustness against plant 

modelling errors and external disturbances, 

as proposed by Matieni and Dodds (2009).  

This paper, however, is restricted to a first 

step in which the ability of an MLP to 

reproduce the behaviour of a simple linear 

state feedback control law for a double 

integrator plant is investigated. 

The conventional performance measure for 

MLP training is the mean-square error or the 

sum of the squared errors over the training 

sample. Such a performance measure is a 

function of the free parameters of the 

system, i.e., the neuron input weights. This 

function may be visualized as a 

multidimensional error-performance surface 

with the free parameters as coordinates. It is 

important to note here that the MLP has 

really provided an approximation to a 

function of several variables. In the single 

input plant control application, it is the 

control variable as a function of the plant 

state variables and the reference input. 

 

2. Simulation of the MLP realisation 

of linear state feedback control of a 

double plant: 
 

A linear second order plant model is 

accurate enough for many real applications 

found in the fields of spacecraft control; 

chemical process control, bio-engineering, 

aircraft control, etc.  This justifies the use of 

a double integrator plant for this initial 

investigation. Fig. 1 shows the Simulink 

block diagram of the conventional linear 

state feedback control, used as a standard of 

comparison for the trained MLP controller. 
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Fig. 1: Simulink diagram of MLP based control 

of a double integrator plant together with 

conventional control as bench mark. 

 

The plant states, x1 and x2 are available to the 

conventional linear state feedback control law 

and the plant states,  x1nn and x2nn, are 

available to the MLP based control law, 

together with the reference input yr. Applying 

Mason‘s rule to derive the desired closed loop 

transfer function for the conventional system 

yields 

 
2

2 1r

y s rbc

y s s bg s bg
. (1) 

The controller parameters are chosen to 

yield a non-overshooting step response with 
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unity DC gain and a settling time (5% 

criterion) using the 5% settling time formula 

of Dodds (2008) with n= 2: 

n 2
1.5 1 4.5 9 2s c c cT n T T T  (2) 

where cT  is the time constant of the identical 

first order cascaded subsystems of which the 

required closed loop system can be 

considered to be composed. Hence the 

desired closed loop transfer function is: 

22

2

s

2 2

s

9 21
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y s T T

T

T T
 (3) 

Comparing (1) and (3) then yields the 

controller gains 

 
1 22

81 9
,

4 s s

g g
bT bT

 (4) 

and the reference input scaling coefficient 

 
2

81

4 s

r
bcT

 
The closed loop control law is then 

 1 1 2 2ru ry g x g x
 (5) 

With the same plant states x1, x2 and the 

reference input, yr, the MLP controller will 

be trained to reproduce an input variable, 

unn, of the same value as u from the 

conventional controller, using (5). 

The m-file used for the MLP training is as 

follows: 

M-file 

%%Position control 

c=5 

b=3 

%%Demanded settling time [s] 

Ts=0.2 

g1=81/(4*b*Ts^2*c) 

g2=9/(b*Ts) 

r=81/(4*b*Ts^2*c) 

yr=[1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 1 -1 

1 1 1 0 0 -1 0 1 -1 -1 1 0 -1 -2 2 -2 2 1 2 1 1 

-1 0 2 -2 2 2 -1 2 3 -3] 

x1=[0 0 .0455 -.0455 .1074 -.1074 .1503 -

.1503 .1749 -.1749 .1878 -.1878  .1942 -

.1942 .2 -.2 0 0 0 1 -1 1 0 1 -1 1 -1 0 1 -1 0 1 

0 -2 -2 -2 2 2 -1 -1 2 0 0 2 -2 -2 1 2 -3] 

x2=[0 0 1.6466 -1.6466 1.3389 -1.3389 

.8165 -.8165 0.4426 -0.4426 .2250 -.2250 

0.1098 -0.1098 0 0 0 0 1 0 -1 -1 1 0 -1 1 -1 -

1 -1 1 1 0 -2 -2 0 0 2 -2 2 2 0 0 0 -2 1 -2 -2 -

1 2] 

u=r*yr-g1*x1-g2*x2  

%neural network controller which copies the 

behavior of the conventional controller 

given yr, x1 and x2 

% conjugate gradient method which belongs 

to a class of second –order optimisation 

methods known as conjugate-direction 

methods, is used in its particular version of 

Fletcher-Reeves formula. 

p = [yr;x1;x2]; 

t = [u]; 

net=newff(minmax(p),[30,1],{'tansig','pureli

n'},'traincgf'); 

net.trainParam.show =49; 

net.trainParam.epochs = 100; 

net.trainParam.goal = 0.25; 

net.trainParam.time=inf; 

net.trainParam.min_grad=1e-6; 

net.trainParam.max_fail=5; 

net.trainParam.searchFcn='srchcha'; 

net.trainParam.scal_tol=20; 

net.trainParam.alpha=0.001; 

net.trainParam.beta=0.1; 

net.trainParam.delta=0.01; 

net.trainParam.gama=0.1; 

net.trainParam.low_lim=0.1; 

net.trainParam.up_lim=0.5; 

net.trainParam.maxstep=100; 

net.trainParam.minstep=1.0e-6; 

net.trainParam.bmax=1; 

[net,tr]=train(net,p,t); 

unn = sim(net,p);  

gensim(net,-1) 
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Table 1 shows the data used for the MLP 

training which defines an operational 

envelope within which the closed loop 

system will lie during execution of the step 

response used for the investigation. The last 

column shows the error between the control 

variable generated by the MLP and the 

conventional linear state feedback 

controller. 

Table 1: Data used to produce the target 

values of u and the error u - unn 

yr 1 -1 1 -1 

x1 0 0 0.455 -0.455 

x2 0 0 1.6466 -1.6466 

u 33.75 -33.75 -

6.30525 

6.30525 

unn 33.656

5 

-33.6343 -

7.2185 

8.2399 

error 0.093

5 

-0.1157 0.9132

5 

-1.9346 

 

yr 1 -1 1 -1 

x1 0.1074 -0.1074 0.1503 -0.1503 

x2 1.6466 -1.3389 0.8165 -0.8165 

u 10.04175 -10.0418 16.4299 -16.430 

unn 10.2262 -10.1334 17.0444 -17.373 

error -0.18445 0.09165 0.61452 0.94283 
 

yr 1 -1 1 

x1 0.1749 -0.1749 0.1878 

x2 0.4426 -0.4426 0.225 

u 21.20813 -21.2081 24.03675 

unn 20.4464 -21.3289 24.4422 

error 0.761725 0.120775 -0.40545 
 

yr -1 1 -1 

x1 -0.1878 0.1942 -0.1942 

x2 -0.225 0.1098 -0.1098 

u -24.0368 25.54875 -25.5488 

unn -23.4649 25.9755 -25.4952 

error -0.57185 -0.42675 -0.05355 
 

yr 1 -1 1 -1 

x1 0.2 -0.2 0 0 

x2 0 0 0 0 

u 27 -27 33.75 -33.75 

unn 26.7435 -

27.821 

33.6565 -33.63 

error 0.2565 0.821 0.0935 -0.1157 

 

The control value, unn, produced by the MLP 

controller is a fairly close approximation of 

the one from the conventional controller.  

As would be expected, this yields an MLP 

based control system step response that is 

close to the step response of the 

conventional control system, as is evident in 

Fig. 2.  

 
Fig.  2: Superimposed step responses of the 

conventional and MLP based state feedback 

controllers with a settling time of Ts=0.2[s]. 

Fig. 3 shows the relatively small error 

between these step responses.  

 
Fig. 3: Error, y ynn 

Fig. 4 shows a plot of the corresponding 

control variables from the conventional and 

MLP based controllers. 
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F

ig. 4: Control variables from conventional 

and MLP based control laws 

Fig. 5 shows the error between these controls.   

 
Fig. 5: Control error, u  unn 

 

It is important to realise that the errors 

shown in Table 1 are only for the training 

points while the errors of Fig. 5 indicate the 

interpolation ability of the MLP because the 

states presented to the MLP during the 

simulation are not the same as those 

presented to it during the training. 

These results demonstrate the success of the 

training process.  The performance, of 

course, is affected by the accuracy of the 

approximation achieved during the training 

and this is monitored during execution of the 

Matlab MLP training software by means of 

the plot shown in Fig. 6 which displays the 

mean square error versus the training time 

(epochs). It is evident that the error decreases 

very rapidly to the acceptably small value 

selected as an input parameter of the 

software.  

Fig. 7 shows plots from the training software 

for analysis of the network response with 

respect to training, validation, and test. The 

task is to put the entire data set through the 

network and then perform the linear 

regression between the network outputs and 

the corresponding targets. 

In this case, the outputs are tracking the 

target with acceptable accuracy and the R-

values, i.e., the correlation coefficients, are:  

Training=1, Validation=0.99412, and 

Test=0.9898 with an average of R=0.99762.  

3. Further observations: 

It was found that the backpropagation with 

the gradient descent algorithm is generally 

very slow because it requires small learning 

rates for stable learning.  

From the authors experience of previous  

simulations, it appears that networks are 

sensitive to the number of neurons in their 

hidden layers. Too few neurons can lead to 

underfitting. Too many neurons can 

contribute to overfitting, in which all the 

training points are well fitted, but the fitting 

curve oscillates wildly between these points. 

4. Conclusions and 

Recommendations: 

The overall result shows that the MLP has 

been used to directly close the loop with a 

good approximation to the linear state 

feedback control law.  

Since optimal control laws respecting 

control saturation constraints are nonlinear, 

the next step is to investigate the ability of 

the MLP to reproduce the well known time 

optimal state feedback control of a double 

integrator plant. Successful completion of 

this task will lead to the investigation of 

closed loop MLP control minimising the 

frictional energy wastage in an electric 

drive, the training data being generated from 

optimal control calculations using 

Pontryagin‘s method. 
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Fig. 6: Performance at 52 epochs showing that the target has been met 

 

 
Fig 7: Linear regression
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