

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

Author(s): Phelan, Shane
Title: Evaluating the 3D rendering of architecture models in a web browser
Year of publication: 2010
Citation: Phelan, S. (2010) ‘Evaluating the 3D rendering of architecture models in a
web browser.’, Proceedings of Advances in Computing and Technology, (AC&T) The
School of Computing and Technology 5th Annual Conference, University of East
London, pp.193-200.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219372379?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://roar.uel.ac.uk/�

Advances in Computing and Technology

The School of Computing, Information Technology and Engineering, 5
th

 Annual Conference 2010

193

EVALUATING THE 3D RENDERING OF ARCHITECTURE

MODELS IN A WEB BROWSER

Shane Phelan.
School of Computing, IT and Engineering, University of East London. Slider Studio

 shane.phelan@sliderstudio.co.uk

Abstract: Due to hardware, software and time constraints it can be a laborious chore to view

Computer Aided Design (CAD) data. Thanks to the emergence of 3D web rendering, it is now a more

streamlined process, and an ever increasingly popular way of displaying CAD data, due in part to the

fact that it is accessible to anyone with an internet connection. This paper reviews and evaluates 3

rendering engines and how they help the flow of getting architectural data into a virtual environment.

1. Introduction.

Traditionally, when rendering 3D objects, it

is common place to use the computers

graphics hardware to compute all the

necessary calculations needed to render 3D

objects.

A lot of the time, programs have to be

installed to run and display these 3D objects.

However, there are a number of situations

where the user is not in a position to install

programs to run 3D rendering software; they

might not own the computer and thus have

no clearance to install programs. The

computer might not have the required space

to install or perhaps does not have the

necessary specification to run the software.

The user might not be computer savvy and

not want the hassle of installing a program.

This is where the emergence of 3D

rendering potential in web browsers is a

significant development in the world of 3D

and virtual environments. It allows 3D

objects to be rendered in real time using a

software renderer rather than the usual

hardware based rendering and pre –

rendered video/cinematics.

Every computer, laptop or net book has

access to a web browser. In effect, this

streamlines the process of a user viewing 3D

content, as all that is required is navigating

to the web page where the 3D object/scene

is published. As a result, architects can

publish their designs on the internet and

allow any interested parties such as councils,

the general public or other architects, to

view, comment on and even interact with

their designs.

One limitation of the software renderer

however, is the amount of detail it is able to

render. All 3D objects can be broken down

into smaller primitive types, for example a

table can be thought of as 5 cubes; 4 to

represent the legs and one to represent the

top that goes across the legs. Again these

cubes can be broken down into a more

primitive state; a cube has 6 faces, each

represented by a collection of lines between

four vertices. If you then divide these faces

diagonally in two, you end up with two

triangles.

With the above table example, there would

be a total of 60 triangles or polygons to be

rendered: 1 rectangle = 6 faces = 12

polygons. Obviously, a detailed table is not

going to be as basic as 5 rectangles wedged

together, and will include rounded edges,

curves etc all adding to the total number of

polygons. Every renderer has a limit to the

number of polygons it can draw at one time;

the general consensus being the more

Advances in Computing and Technology

The School of Computing, Information Technology and Engineering, 5
th

 Annual Conference 2010

194

polygons to draw the more the performance

deteriorates.

2. Rendering Engines

There are a number of web based rendering

engines on the market. These range from

simple open source headers enough to

render primitive objects, to licensed,

powerful and expensive full engines which

the programmer can script off with ease.

These engines usually require a small web

media player plug-in to display the content.

Some common players are Flash player,

Microsoft Silverlight and Shockwave player.

Some engines however, utilise their own

player, an example of this is the Unity3D

engine which uses its own Unity player

plug-in.

The purpose of the rendering engine is to

generate an image from data stored in a 3D

model, and display it on a screen. The type

of data the model stores includes geometry,

lighting, textures and shading (Arkenine-

Moller et al, 2008).

2.1 Important Rendering Features

In order to render 3D models and achieve an

acceptable performance from the software

renderer, it is often necessary to implement

certain features to help increase the

performance.

One such feature is culling techniques.

Back face culling can be thought of as when

looking at a sphere in a 3D scene, generally

only half of the sphere is visible. With this

in mind one draws the conclusion that what

is invisible need not be processed as it

doesn‘t contribute to the image. Therefore,

the back side of the sphere should not be

rendered with the exception being when the

sphere is transparent.

Front facing polygons – polygons where the

normal of the three vertices making up the

polygon is facing towards the camera, are

generally always rendered by the renderer.

Back facing polygons generally are not.

View frustum culling is a technique where a

pyramid shaped volume is projected in front

of the camera and checks to see which

objects are inside it. Any object inside or

partially inside the object will be drawn,

where as any object not inside the frustum

won‘t. The idea behind this is the volume

represents the users field of view, what can‘t

be seen by the user must not be drawn. In

large scenes this type of feature is essential

in order to assist the renderer in what should

be drawn (Arkenine-Moller et al, 2008).

Clipping planes in the frustum also further

reduce the viewing field. Any polygons not

positioned between the near and far clipping

planes will be culled.

Figure 1: Visual description of the view frustum

Architecture models can be meticulously

detailed and require that the Rendering

engine can perform shading techniques.

Shading is the variation of colour and

brightness on a surface when lighting is

used. To create a 3D object that represents a

brick wall is a lengthy procedure, given that

Advances in Computing and Technology

The School of Computing, Information Technology and Engineering, 5
th

 Annual Conference 2010

195

the architect would have to draw out all the

individual bricks etc. This can be avoided

by using texture mapping. The architect can

construct a flat surface and attach an image

of a brick wall over it

Figure 2: Texture mapping process

Another method used to increase the level of

detail further is the texturing technique

bump mapping. Bump mapping is the

process of combining textures and adjusting

each u and v pixel texture co-ordinate with

an elevation displacement map to render an

image with an illusion of depth. An extra

texture, containing the vector data of the

surface is used so the pixel can react to light

(Walsh, P. 2003).

More often than not in 3D applications, the

renderer will have to determine which pixels

of the 3d objects are visible to the viewer,

which ones are in front of the other. Before

graphics hardware was readily available, the

way to solve this problem was to use the

painters algorithm (Foley et al, 1990) this

refers to the techniques painters employ

when painting distant parts of a scene.

The algorithm sorts all the polygons in a

scene by their depth and then renders them

in this order, furthest to closest. The

algorithm does have a tendency to fail in

some cases such as cyclic overlap or

piercing polygons.

A more common way around this problem is

the use of the z-buffering. The z-buffer is

used to hold a single number that represents

the distance at every pixel. Each pixel in the

z-buffer holds a value of the closest pixel

drawn up to that point. When the renderer

goes to draw the object, it checks the depth

of the object against the depth value

currently in the buffer, and draws the object

if its depth is less than the current depth of

the buffer (Walsh 2003).

2.2 Internet browsers

When Sir Timothy John Berners-Lee first

proposed the idea of a web browser in 1989,

it was to enable the communication via

hypertext of information among researchers

(Berners-Lee, 1999). Little did he know that

a mere 20 years later his invention would

facilitate the retrieving, presenting and

traversing of images, audio, video, live

video streaming and 3D applications.

As browsers became more sophisticated and

by using HTML scripting technologies such

as JavaScript, ASP and PHP, developers

started creating browser based games that

used the web browser as a client. However,

with the development of web based graphics

technologies such as Flash and Java, 3
rd

party plug-in based browser games are

becoming more common place. Some of the

more popular plug-ins include Flash, Java,

Shockwave, Unity and silverLight.

The introduction of 3D rendering API‘s

enabled developers to create and display 3D

content in browsers usually through an

external 3D Library. See figure 4 for a

matrix of 3D web libraries/engines. Most

browsers can make use of the above

technologies; however, for large distribution

Advances in Computing and Technology

The School of Computing, Information Technology and Engineering, 5
th

 Annual Conference 2010

196

Source Internet Explorer Firefox Safari Opera

theCounter.com 71.88% 18.23% 4.77% 0.86%

W3Counter.com 51.73% 31.69% 4.07% 0.84%

statCounter.com 58.37% 27.08% 3.28% 2.62%

Mean 60.66% 27.08% 4.04% 1.44%

Median 58.37% 31.34% 4.07% 0.86%

Main Players Browser Hardware Open Source Free Cost Trial Flash C++ Java Scripting ActionScript

Away3D P O P P £0 P P O O O P

Java3D P O P P £0 P O O P O O

JMonkeyEngine O P P P £0 P O O P O O

Xith3D O P P P £0 P O O P O O

jPCT P P P P £0 P O O P O O

Unity3D P P O O $199 P O O O P O

Ogre3D O P P P £0 P O P O O O

realXtend P O P P £0 P O O O P O

Torque3D P P O O $250 P O O O P O

Quest3D P P O O £0 P O O O P O

Topaz3D P O O P £0 P O O O P O

DXStudio P P O O £0 P O O O P O

Sophie3D P O O O 239 € P P O O O P

Hpercosim P O O O $1,000 P O O O P O

Sandy P O P P £0 P P O O O P

Papervision P O P P £0 P P O O O P

alternativa3d P O O O 1,000 € P P O O O P

Figure 3: Browser Usage

of content it is always important for the

technology to at least run on the more

common browsers such as Microsoft‘s

Internet Explorer which enjoys a 71.88%

share of the browser market. Mozilla‘s

Firefox is the next most popular browser

with 18.22% (See figure 3).

2.3 Engines to Evaluate

For the purpose of this paper I will be

paying particular attention to three 3D

engines: Away3D (Away3D, 2009),

Sandy3D (Sandy3D, 2009) and

Papervision3d (Papervision, 2009). These

three libraries run on the Flash environment

and provide their own 3D primitives and

manipulation classes.

The idea for Sandy3d came in 2005, when

the creator, frustrated at the lack of 3D

possibilities in Flash, decided to address this

issue. Sandy3d features advanced 3d

shading effects, viewing volume clipping, a

large set of parsers to import various 3D

formats (3DS, MD2, Collada) (Sandy3D).

 Papervision is an open source project

created by Carlos Ulloa. This project came

from humble beginnings as a simple way to

transform Flash MovieClips to achieve the

illusion of 3D, to being able to fully render

3D objects (Carlos Ulloa, 2009). It features

shaders and materials, animations, CAD

importing (including .ASE, Collada, .DAE,

Max3ds and Google Sketchup) and

rendering, culling algorithms such as

frustum culling, back face culling, multiple

viewports (Papervision, 2009).

The away3D library is a library which has

its roots in Papervision. It was split off from

Papervision to meet the requirements of the

developers who branched it off. They

wanted to offer Flash developers and

designers an advanced 3D engine with

extended features, easy to use and as robust

as possible. Away3d features Shaders,

materials, animation, culling techniques as

Advances in Computing and Technology

The School of Computing, Information Technology and Engineering, 5
th

 Annual Conference 2010

197

of above, advanced normal mapping tools,

simple shadows and simple fog filtering

(Away3d, 2009).

3. Methodology:

In order to evaluate the rendering

effectiveness of the three chosen engines,

experiments must be setup to gauge this

effectiveness. The basic principle of the test

should be; create a scene and camera. Parse

and render CAD data. Script the camera to

move round the scene (tweening), recording

the Fps (Frames per Second) and memory

consumption at regular intervals, add some

user functionality to manipulate the scene

and finally stress the engine to test for

robustness.

A record should be kept for any visible

graphical artefacts. What we are looking for

is the ease of flow from creating CAD data

to displaying it in a virtual environment.

3.1 Important areas to evaluate.

One of the key factors to look at in how

effective a rendering engine is, is to measure

the rate at which the renderer updates and

renders the scene. Usually this is called the

frames per second or ‗Fps‘ of the scene. A

real-time frame is the time it takes the

renderer to complete one full round of tasks

and processing; although, humans generally

cannot see more than 24 frames per second.

This can include drawing the scene to

screen, updating the scene (translating

objects etc) and processing any interactivity

from a user. Generally speaking the higher

the number of frames per second the more

Figure 4: Competitor Matrix

effective the renderer.

Another important area of effectiveness is

the ease of use and robustness of the engine.

It should not take a considerable amount of

time to get a small example up and running,

and the engine should be able to cope with

any unexpected input/data.

3.2 CAD data

The engine must be tested on how effective

it is in dealing with CAD data. How many

different CAD data types can it import, how

fast can it parse the data, how much time it

takes to display the first draw call.

The engine must also be tested for quality of

drawing; it is sometimes common in

rendering engines for graphical artefacts to

appear in parts of the geometry. This can

happen when the renderer fails to correctly z

– sort the geometry. A system of recording

any graphical artefacts must be in place.

CAD data will typically include geometry

with a texture mapped to it. The engine will

have to be tested for quality of the texture

mapping.

3.3 The Architectural CAD Model

The CAD model to be tested is provided by

Slider Studio Ltd – an architectural practice

based In East London. The model is of

sufficient detail to fully evaluate the engines

but also of adequate detail to satisfy the

visualisation needs of the practice.

Modelled in Google Sketch-up (Google

Sketchup, 2009), it will contain the

necessary geometry and textures to visually

represent a housing project they are working

on. It will be exported in the globally

recognised Collada Digital Asset Exchange

(DAE) CAD file format.

3.4 Stress Testing

To test how many polygons the engines can

render at one time and for stress testing

purposes, a number of CAD models will be

created. These will range from simple 500

polygon cylinders with no geometry

Advances in Computing and Technology

The School of Computing, Information Technology and Engineering, 5
th

 Annual Conference 2010

198

intersections and no textures, to more

complicated cylinders with higher levels of

polygons, intersections and textures.

3.5 System Specification

The benchmarking will be performed on a

system consisting of Intel Core 2 Duo –

3.0Ghz processor, four gigabytes of system

memory, 500 gigabyte (7200 RPM) hard

drive and Gainward 8800GT (512Mb)

graphics card. The operating system to be

used is Windows XP 32-bit edition.

4.0 Results and Analysis

The first rendering engine to be tested was

Away3D. The results were good but a bit

expected. The frame rates recorded showed

impressive performance up to 1500

polygons. At 2000 polygons the

performance started to deteriorate. The

architecture model contained 4542 polygons

and this showed in the performance. When

using the basic rendering mode, Away3D

suffered with unnecessary face culling,

where the renderer was culling faces which

shouldn‘t have been. When using the

Correct Z – order algorithm, however, this

problem was overcome but at the expense of

performance – with the frame rate dropping

to unusable levels.
Away3D also suffered with texture mapping

problems. The textures were not mapped

correctly to their respective UV‘s, resulting

in a texture stretching issue. A work around

involving looping through all the materials

in the CAD data and reapplying the texture

at runtime was implemented to fix this issue.

This issue was only present for CAD models

exported from Google Sketchup.

Figure 5: Away3D Stress Testing – No

Intersections or textures

Figure 5.1: Away3D stress Testing – With

Intersections and Textures

Figure 5.2: Away3D – Rendering Results of

the architecture model

The Papervision tests showed good

performance for a software renderer but alas

were not quite as fast as Away3D. In all the

areas recorded, Away3D held the

upperhand. Papervision did suffer from the

Advances in Computing and Technology

The School of Computing, Information Technology and Engineering, 5
th

 Annual Conference 2010

199

culling problem which blighted Away3D‘s

performance, however, there was no texture

issue for Papervision when exporting from

Google Sketchup.

Figure 5.3: Papervision Stress Testing – No

intersections or textures

Figure 5.4: Papervision Stress Testing –

With intersections and textures

Figure 5.5: Papervision – Rendering results

of the architecture model

Sandy3D‘s performance was not as good as

Away3D or Papervision. Notably, the

renderer consumed alot more memory than

the other two engines. Sandy3D, like

Papervision, didn‘t suffer from the texture

clamping issue Away3D experienced when

using a model exported from Sketchup, but

it did suffer from the z – sorting issue

Away3D and Papervision suffered from.

Like Away3D, Sandy3D‘s performance

dropped considerably when rendering more

than 2000 polygons.

Figure 5.6: Sandy3D Stress Testing – No

Intersections or textures

Figure 5.6: Sandy3D stress testing – With

intersections and textures

Advances in Computing and Technology

The School of Computing, Information Technology and Engineering, 5
th

 Annual Conference 2010

200

Figure 5.8: Sandy3D – Rendering results of

architecture model

5. Conclusion

In view of the similarities of the results it

would be acceptable to assume that,

Away3D, as the best performing engine over

all the tests, offers the smoothest

transformation of CAD data into a virtual

environment. It consistently outperformed

Papervision and Sandy3D albeit only

fractionally in places. However, Away3D

does suffer from an unusual problem when

rendering models exported from Google

Sketchup. This problem can be rectified

with a few lines of code, but if we are

looking for a smooth transition this problem

can‘t be ignored. All three engines suffered

with z–sorting problems where the renderer

would cull viewable faces. One technique to

fix this issue lies in Google Sketchup. There

is an option when exporting models to

export two sided faces. With this option

turned off, we noticed a remarkable

improvement in the z–sorting, however,

there were parts of the models where the

viewer could see right through due to the

fact single sided faces were being used.

6. References:

Arkenine-Moller, T. Haines, E. & Hoffman,

N. 2008 ―Real Time Rendering‖, 3
rd

 ed.

USA: A K Peters.

Tim Berners-Lee. 1999. ―Weaving the

Web: The past, Present and future of the

World Wide Web by its Inventor.― UK:

Orion Business.

Foley, J. van Dam, A. Feiner, SK. &

Hughes, JF. 1990. ―Interactive Computer

Graphics: Principles and Practice.― USA:

Addison-Wesley.

Walsh, P. 2003. ―Advanced 3D Game

Programming Using DirectX 9.0.― USA:

Wordware Publishing Inc.

History of Papervision3D. 2006. [Online]

Available at:

http://blog.papervision3d.org/about

[Accessed 18 October 2009]

Away3d Flash Engine. 2007 [Online]

Available at: http://away3d.com [Accessed

18 October 2009]

Sandy 3D Engine (AS3 & AS2) fo Adobe

Flash [Online] Available at:

http://www.flashsandy.org [Accessed 18

October 2009]

3DS Max 3D Modelling And Rendering

Software [Online] Available at:

http://usa.autodesk.com/adsk/servlet/pc/inde

x?siteID=123112&id=13567410 [Accessed

19 October 2009]

Maya 3D animation and Visual Effects

Software [Online] Available at:

http://usa.autodesk.com/adsk/servlet/pc/inde

x?siteID=123112&id=13577897 [Accessed

19 October 2009]

http://blog.papervision3d.org/about
http://away3d.com/
http://www.flashsandy.org/
http://usa.autodesk.com/adsk/servlet/pc/index?siteID=123112&id=13567410
http://usa.autodesk.com/adsk/servlet/pc/index?siteID=123112&id=13567410
http://usa.autodesk.com/adsk/servlet/pc/index?siteID=123112&id=13577897
http://usa.autodesk.com/adsk/servlet/pc/index?siteID=123112&id=13577897

	AC&T 10 193 cs
	1_pdfsam_this one ACT2010

