

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

To see the final version of this paper please visit the publisher’s website.
Access to the published version may require a subscription.

Author(s): Capiluppi, Andrea., Knowles, Thomas.
Article Title: Build-Level Components in FLOSS Systems

Year of publication: 2009

Citation: Capiluppi, A., Knowles, T. (2009) ‘Build-Level Components in FLOSS
Systems’ Joint Working IEEE/IFIP Conference on Software Architecture 2009 &
European Conference on Software Architecture 2009 (WICSA/ECSA 2009) 14 – 17
September 2009

Conference details: Joint Working IEEE/IFIP Conference on Software
Architecture 2009 & European Conference on Software Architecture 2009
(WICSA/ECSA 2009) 14 – 17 September 2009

Link to conference website: http://www.wicsa.net/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219372304?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Build-Level Components in FLOSS Systems

Andrea Capiluppi and Thomas Knowles
School of Computing, Information Technology and Engineering

University of East London
London, UK

Email: a.capiluppi@uel.ac.uk, thomasknowles@gmail.com

Abstract—As one of the often cited resources in Software
Engineering, the modularization principle states that the cou-
pling between modules should be minimised, while the cohesion
within modules maximised. Apart from precisely defining what
a module is, this principle should be challenged in empirical set-
tings on two grounds: first, dynamically, to understand whether
a module maintains or changes its behaviour over time; second,
by encapsulating third-party modules, and observing how the
system’s modules cope with the imported ones.

This paper studies the evolution of the components of a
Free/Libre/Open Source Software – FLOSS – system (MPlayer)
which comprises its own modules and several imported, ex-
ternal modules. It studies whether all modules behave in a
consistent way or different patterns are observed.

It is found that few modules keep their behaviour throughout
the life-cycle, and these often comprise the externally imported
modules. The project’s own modules are instead prone to
changes in their behaviour, most often by degrading their
cohesion, therefore increasing the coupling with other modules.

I. I NTRODUCTION AND RELATED WORK

The FLOSS approach to software development has lately
gained much attention in the empirical Software Engi-
neering research community, mostly due to the availability
of software and non-software artefacts (e.g., bug tracking
systems and mailing lists, among others). Albeit the majority
of published works have a non FLOSS-related rationale,
some researchers have started to collect evidence specifically
related to FLOSS systems. Among these late emerging areas,
the topics of FLOSS components and architectures have
been gauged both with research works [1], [2], [3], [4], and
through specifically funded EU projects (QualiPSo1 – Qual-
ity Platform for Open Source Software and QUALOSS2

– QUALity in Open Source Software). These resources
directly respond to the needs of identifying and extracting
existing FLOSS components [5], or of providing options
for choosing the best FLOSS component for inclusion in
a software system [2].

This paper is built on top of two basic architectural
principles: the concept of build-level components [6] and
the principle of architectural decay along the evolution of
software systems [7]. The build-level components are “direc-
tory hierarchies containing ingredients of an application’s

1http://www.qualipso.org/
2http://www.qualoss.org/

build process, such as source files, build and configuration
files, libraries, and so on. Components are then formed by
directories and serve as unit of composition” [6], and these
compose the “folder-structure” of a software system [8], [9].

With reference to software decay, past SE literature has
firmly established that software architectures and the asso-
ciated code degrade over time [7], and that the pressure on
software systems to evolve in order not to become obsolete
plays a major role [10]. As a result, software systems have
the progressive tendency to loose their original structure,
which makes it difficult to understand and further maintain
them [11]. Among the most common discrepancies between
the original and the degraded structures, the phenomenon
of highly coupled, and lowly cohesive, modules is already
known since 1972 [12] and an established topic of research.

Architectural recoveryis one of the recognized counter-
measures to this decay [13]. Several earlier works have been
focused on the architectural recovery of proprietary [13],
closed academic [14], COTS [15] and FLOSS [16], [17],
[18] systems; in all of these studies, systems were selected
in a specific state of evolution, and their internal structures
analysed for discrepancies between thefolder-structureand
concretearchitectures [18]. Repair actions have been formu-
lated as frameworks [19], methodologies [20] or guidelines
and concrete advice to developers [18].

This paper analyses the evolution of the last 8 years (from
2001 to 2009) of the MPlayer3 project. During its evolu-
tion, several of its core developers have been collaborating
also in the FFMpeg4 project, due to the latter including
the libavcodec library, currently the most widely adopted
FLOSS audio/video codec (i.e., coding anddecoding) re-
source. Aside from libavcodec, several other components
from FFMpeg were incorporated into MPlayer during June
2006. At various other points of its evolution, MPlayer users
and developers requested that the project could encapsulate
other multimedia projects and libraries (e.g., limbpeg25,
libfaad26, etc.).

3MPlayer, http://www.mplayerhq.hu
4FFMpeg, http://ffmpeg.org/
5Libmpeg2, a decoder specifically for the MPEG-2 video stream, http:

//libmpeg2.sourceforge.net/
6Libfaad2, forked from the AudioCoding project, http://www.

audiocoding.com/faad2.html

The approach of building by, and the composition of,
several libraries is a common scenario when considering
FLOSS systems (e.g., any Linux distribution is a collection
of components which request and/or provide services to
others via connections), and has been reported in various
venues [21], [4], also related to the issues of licensing of
each component [22].

The selected FLOSS project was chosen for several rea-
sons: first, as stated above, it is composed of its own compo-
nents, as well as imported, third-party components; second,
at present there is no design or documented architecture as
such, but the folders names appear self-explanatory (e.g.,
“gui”, “libdvdcss”); finally, it is written mostly in C and
it has a long-history repository available. At present, the
composition of the MPlayer project, at the component level,
can be summarised as in Figure 1.

Build-Level Components

MPlayer

FFMpeg Others

trunk

gui vidix libavcodec libfaad2

Figure 1. MPlayer – Core and imported components (excerpt)

In order to expand the findings related to the build-level
components, and the results relative to the architectural
decay, this paper proceeds in two directions: first, it studies
the evolutionary behaviour of the identified components
throughout their life-cycle and studies whether recurring
patterns can be observed. Second, it analyses the effects of
the interaction between internal and imported components.
The following research questions have been formulated:

RQ1 Is it possible to apply the definition of “build-level
components” to the MPlayer project?

RQ2 Is it possible to assess the coupling between the
components, both statically and dynamically?

RQ3 Are these components modularised and cohesive
throughout their life-cycle?

RQ4 Do these components follow specific behavioural
patterns? Do they change during the life-cycle?

RQ5 What are the effects of encapsulating third-party
components on the the existing components?

This paper is articulated as follows: Section II introduces
the case study, the data used throughout the paper, how it
was extracted. Section III summarises the main findings on
the proposed empirical analysis, while Section IV concludes.

II. EMPIRICAL APPROACH

A. Description of the System

As stated above, the MPlayer system was chosen because
it does not provide (yet) a proper description of either its
internal design, or how the architecture is decoupled into
components and connectors. By visualising its source tree
composition [9], the folders containing the source code files
appear to be semantically rich, in line with the definitions of
build-level components[6], andsource tree composition[8],
[9]. The 1st column of Table I summarises which folders cur-
rently contain source code within MPlayer (as of 05/2009).

As visible, some components act as containers of other
subfolders, apart from source files, as visible in columns 2
and 3, respectively. Typically these subfolders have the role
of specifying/restricting the functionalities of the mainfolder
in particular areas (e.g., the “loader” folder which provides
support for closed-source streams is further articulated in
QuickTime, DirectX and DirectShow specific folders). The
4th column also gives the description of the main functional-
ities of the component. As per the first research question, it
can be observed that each directory provides the build and
configuration files, for itself and the subfolders contained,
following the definition of build-level components.

The 5th column of Table I provides the originating project
of each component, either from the developers of the
MPlayer project itself, or from external sources. As visible,
5 components have been introduced within MPlayer from
the FFMpeg project, and 7 further libraries/components have
been introduced from other projects. The 6th column details
the month when the component was first detected in the
repository.

The rationale and the description of the last column of
Table I will be explained in the next section.

B. Extraction of Common Coupling

The Subversion code repository of MPlayer was parsed
monthly, and the tree structures were extracted for these
temporal points. On one hand, the number of source folders
of the corresponding tree was recorded in Figure 2. On the
other hand, in order to produce an accurate description of the
concrete architecture as suggested by [18], each month’s data
has been parsed using Doxygen7, with the aim of extracting
the common coupling among the elements (i.e., source files
and headers, and source functions) of the systems. The
following notation was used:

• Coupling: this is the union of all theincludes, depen-
denciesandfunctions calls(i.e., the common coupling)
of all source files as extracted through Doxygen. Two
conversions were made:

1) Thefile-to-file and thefunctions-to-functionscou-
plings were converted intofolder-to-folder cou-
plings, considering the folder that each of the

7http://www.doxygen.org/

Name Folders Files Description From Date Pattern

trunk 29 73 Core files for MPlayer MPlayer 03/2001 Sel f→ Server
drivers 1 13 Driver support for specific graphic cards MPlayer 03/2001 Self
etc 1 6 Configuration files MPlayer 09/2001 Server
gui 6 68 Graphical interface (diverse platforms) MPlayer 05/2007 Self
input 1 14 support for control by joystick, mouse etc MPlayer 03/2002 C/S
libdvdcss 2 13 Library for encrypted DVD support MPlayer 12/2006 Self
libdvdnav 3 19 Library for DVD support MPlayer 02/2009 Self
libdvdread4 2 22 Library for DVD support MPlayer 02/2009 Self
libmenu 1 13 Handling dvd menus MPlayer 12/2002 C/S
libmpcodecs 2 177 (libavcodec-dependent) MPlayer 03/2002 Client
libmpdemux 1 83 (libavcodec-dependent) MPlayer 11/2001 Sel f→Client
libvo 1 93 Video output library MPlayer 03/2001 Sel f→Client
loader 6 89 Support for QuickTime, DirectX and Direct-

Show streams
MPlayer 03/2001 Self

mp3lib 1 27 MP3 decode library MPlayer 03/2001 Sel f→Client
osdep 1 25 Platform-dependent files MPlayer 03/2003 Sel f→ Server
stream 4 106 code for network streaming of audio and video

formats
MPlayer 08/2006 C/S

TOOLS 2 23 Miscellaneous tools and scripts MPlayer 03/2001 Client→C/S
tremor 1 30 Support for OggVorbis audio driver MPlayer 01/2005 Sel f→ Sel f/Server
vidix 4 73 Video output VIDIX (VIDeo Interface for *niX)

support
MPlayer 02/2002 Client→ Sel f

libavcodec 11 615 Extensive audio/video codec library FFmpeg 07/2006 Self
libavformat 1 199 Audio/video container mux and demux library FFmpeg 07/2006 Self
libavutil 7 67 shared routines and helper library FFmpeg 07/2006 Server
libpostproc 1 5 Library containing video postprocessing routinesFFmpeg 07/2006 Client
libswscale 6 20 Video scaling library FFmpeg 07/2006 Self

liba52 1 20 Audio library using theA/52 standard liba52 01/2002 Self
libaf 1 44 Audio filters library libaf 11/2002 Server→C/S
libao2 1 25 Cross-platform audio output library libao2 07/2001 Sel f→Client
libass 1 19 library for ASS/SSA subtitle formats libass 08/2006 Client→ Sel f
libfaad2 2 101 Library for mpeg-4 support libfaad2 09/2003 Self
libmpeg2 1 25 library for decoding mpeg-2 and mpeg-1 video

streams
libmpeg2 03/2001 Self

Table I
MPLAYER COMPONENTS AND CHARACTERISTICS(AS OF 05/2009)

above elements belongs to. A stronger coupling
link between folder A and B would be found when
many elements within A call elements of folder B.

2) Since the behaviour of “build-level components”
is studied here, the couplings to subfolders of a
component were also redirected to the component
alone: hence a couplingA→ B/C (with C being
a subfolder of B) was reduced toA→ B.

• Connection: distilling the couplings as defined above,
one could say, in a boolean manner, whether two folders
are linked by aconnectionor not, despite the strength of
the link itself. The overall number of these connections
is recorded in Figure 2: the connections of a folder to
itself are not counted (for the encapsulation principle),
while the two-way connectionA → B and B → A is
counted just once (since we are only interested in which
folders are involved in a connection). The large spike
in connections of this Figure is due to the introduction
of the FFMpeg components, which introduced some 50
new connections.

Figure 2. MPlayer – Growth of folders and connections

III. R ESULTS

This section provides the results of the empirical in-
vestigation. For each build-level component summarised in
Table I, it was studied how many couplings were actually
involved with elements of the same component, and how

many with other components. For each component, the
following notation was used:

• cohesion: the amount of couplings, in percentage, be-
tween its own elements (files and functions);

• outbound coupling: the amount of couplings, in per-
centage, from any of its elements to elements of other
components, as in requests of services;

• inbound coupling: the amount of couplings, in percent-
age, from any other components, as in “provision of
services”;

Two main behaviours were observed in the components:
a subset has kept most of their behaviour for the whole
life-cycle, while another subset has been modifying theirs
to some degree. The last column of Table I details which
behaviour was detected initially: “Self” refers to a highly
cohesive component, “Client” to a component with a higher
percentage of outbound coupling, and “Server” to a com-
ponent with a higher number of inbound coupling. “C/S”
finally refers to a behaviour where the amount of inbound
and outbound coupling are roughly similar. A right arrow
in the last column of Table I summarises whether a change
(or more than one) was observed in the behaviour of the
component (as in “f rom′′

→ “ to′′).

A. Results – Changing Components

Figure 3 proposes the visualisation of a subset of compo-
nents which modified in some sense their behaviour over
time, “libao2”, “libmpdemux”, “libvo” and “vidix”. The
trends drawn with squares visualise the number of total
couplings in each component, mostly growing. These graphs
show that, when changes in behaviour are detected, they
mostly lower the cohesion level of the component (trend with
diamonds), and increase the amount of inbound or outbound
couplings to other components. “libao2”, “libmpdemux”,
“libvo” all lower their cohesion in favour of a larger amount
of requested services (outbound coupling).

An interesting trend was observed for the “libmpde-
mux” component: around June 2006 its cohesion suddendly
dropped in favour of a larger amount of outbound couplings,
and this was caused by the introduction of the FFMpeg
components in the same period, which this component was
tightly coupled to ever since.

As the only case of component which becomes more
modularised, the graph of “vidix” shows instead that it
achieved a stronger cohesion since its inception, while the
amounts of external dependencies dropped steadily.

B. Results – Stable Components

Figure 4 shows instead a subset of components whose
behaviour was mostly unchanged during their lifecycle,
“libavcodec”, “libfaad2”, “libmpeg2” and “etc”. The first
three represent third-party components, the last one a small
folder (6 files) containing configuration files for the systems
over which MPlayer will be installed. As a common trend,

the first three appear to grow the number of their couplings
in the first part, then becoming quasi-constant. It is also
noticed that the cohesion of these third-party libraries ishigh
(70% and above), and it keeps so during their presence in
the MPlayer system.

The last graph in the series represent a MPlayer own
component, which appears as a pure provider of services:
as long as the number of couplings increases, the amount of
connections from other components increases accordingly,
while no cohesion is detected in the component.

IV. CONCLUSIONS ANDTHREATS TOVALIDITY

This paper studied the evolution of a FLOSS system
(MPlayer) in terms of its build-level components, and anal-
ysed them in two dimensions: at first, dynamically evaluating
their behaviour throughout their life-cycle; secondly, evalu-
ating the effects of third-party components on cohesion and
coupling on existing modules.

This paper proposed several research questions: they are
reported here, with concluding remarks on each. Regarding
RQ1, it was found that the definition of build-level com-
ponents applies to the MPlayer system. Secondly, regarding
R2, the low-level coupling can be extracted via the Doxy-
gen tool, then abstracted to connections to folders, finally
converted to connections between components.

Regarding RQ3 and RQ4, in most parts there seems to
be an ever increasing use of coupling (see Figures 3 and 4),
although the majority of components started off with some
degree of cohesion. At present, few components have kept
their initial degree of cohesion: also, most of the imported,
third-party, modules appear more cohesive than MPlayer’s
own modules. The graphs in Figures 3 and 4 demonstrate
several aspects of behavioural change:

• A reduction of cohesion in favour of coupling between
other components (forming a higher level of inter-
dependencies);

• A more obvious distinction between server and client
side components (see in and out and their separation
from the beginning)

• 3rd party modules becoming more modular with less
incoming connections and greater outgoing (opposite
in first revisions) connections which would instinctively
suggest greater compatibility with the core software.

Finally, regarding RQ5, the notable effects on existing
components are larger coupling and a reduction in cohesion,
(see libao2). Other componets (libmpdemux, libvo) see an
increase in outbound cnnections suggesting a greater serving
of data.

The following threats to validity have been identified: first,
using common coupling is one of probably many alternative
ways to evaluate inter-software connections; second, some
of the components presented in figure 1 are automatically
assigned (though probably accurate), and could be only
subcomponents of a larger component. Finally, if anything

Figure 3. “Changing” behaviour of components

is produced in a different language the paradigm used may
affect the results.

REFERENCES

[1] A. Majchrowski and J.-C. Deprez, “An operational approach
for selecting open source components in a software devel-
opment project.” inEuroSPI – Communications in Com-
puter and Information Science, R. O’Connor, N. Baddoo,
K. Smolander, and R. Messnarz, Eds., vol. 16. Springer,
2008, pp. 176–188.

[2] Ø. Hauge, T. Østerlie, C.-F. Sørensen, and M. Gerea, “An
Empirical Study on Selection of Open Source Software
- Preliminary Results,” inProceedings of the 2009 ICSE
Workshop on Emerging Trends in Free/Libre/Open Source
Software Research and Development (FLOSS 2009), May
18th, Vancouver, Canada, A. Capiluppi and G. Robles, Eds.
Los Alamitos, USA: IEEE Computer Society, 2009, pp. 42–
47.

[3] A. Capiluppi and T. Knowles, “Software engineering in
practice: Design and architectures of floss systems,” inProc of
5th IFIP WG 2.13 International Conference on Open Source
Systems, OSS 2009, 2009, pp. 34–46.

[4] J. Li, R. Conradi, C. Bunse, M. Torchiano, O. P. N. Slyngstad,
and M. Morisio, “Development with off-the-shelf compo-
nents: 10 facts,”IEEE Software, vol. 26, no. 2, pp. 80–87,
2009.

[5] B. Arief, C. Gacek, and T. Lawrie, “Software architectures
and open source software – Where can research leverage the
most?” in Proceedings of Making Sense of the Bazaar: 1st
Workshop on Open Source Software Engineering, Toronto,
Canada, May 2001.

[6] M. de Jonge, “Build-level components,”IEEE Trans. Softw.
Eng., vol. 31, no. 7, pp. 588–600, 2005.

[7] S. G. Eick, T. L. Graves, A. F. Karr, J. S. Marron, and
A. Mockus, “Does code decay? assessing the evidence from
change management data,”IEEE Transactions on Software
Engineering, vol. 27, pp. 1–12, 2001.

[8] A. Capiluppi, M. Morisio, and J. F. Ramil, “The evolution
of source folder structure in actively evolved open source
systems,” in METRICS ’04: Proceedings of the Software
Metrics, 10th International Symposium. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 2–13.

[9] M. d. Jonge, “Source tree composition,” inICSR-7: Proceed-
ings of the 7th International Conference on Software Reuse.
London, UK: Springer-Verlag, 2002, pp. 17–32.

[10] M. M. Lehman, “Programs, cities, students, limits to growth?”
Programming Methodology, pp. 42–62, 1978, inaugural Lec-
ture.

[11] B. Schmerl, J. Aldrich, D. Garlan, R. Kazman, and H. Yan,
“Discovering architectures from running systems,”IEEE

Figure 4. “Stable” behaviour of components

Transactions on Software Engineering, vol. 32, no. 7, pp.
454–466, 2006.

[12] D. L. Parnas, “On the criteria to be used in decomposing
systems into modules,” pp. 139–150, 1979.

[13] J. C. Duẽnas, W. L. de Oliveira, and J. A. de la Puente,
“Architecture recovery for software evolution,” inCSMR 1998
– Proceedings of the 2nd Euromicro Conference On Software
Maintenance And Reengineering, 1998, pp. 113–120.

[14] M. Abi-Antoun, J. Aldrich, and W. Coelho, “A case study in
re-engineering to enforce architectural control flow and data
sharing,”Journal of Systems and Software, vol. 80, no. 2, pp.
240–264, 2007.

[15] P. Avgeriou and N. Guelfi, “Resolving architectural mis-
matches of cots through architectural reconciliation,” inIC-
CBSS 2005 – Proceedings of the 4th International Conference
on COTS-Based Software Systems, 2005, pp. 248–257.

[16] I. T. Bowman, R. C. Holt, and N. V. Brewster, “Linux as a
case study: its extracted software architecture,” inICSE 1999:
Proceedings of the 21st international conference on Software
engineering. Los Alamitos, CA, USA: IEEE Computer
Society Press, 1999, pp. 555–563.

[17] M. Godfrey and H. Eric, “Secrets from the monster: Ex-
tracting mozilla’s software architecture,” inCoSET 2000:
Proceedings of the 2nd Symposium on Constructing Software
Engineering Tools, 2000.

[18] J. B. Tran, M. W. Godfrey, E. H. S. Lee, and R. C. Holt,
“Architectural repair of open source software,” inIWPC 2000:
Proceedings of the 8th International Workshop on Program
Comprehension. Washington, DC, USA: IEEE Computer
Society, 2000, pp. 48–59.

[19] K. Sartipi, K. Kontogiannis, and F. Mavaddat, “A pattern
matching framework for software architecture recovery and
restructuring,” inIWPC 2000: 8th International Workshop on
Program Comprehension, 2000, pp. 37–47.

[20] R. Krikhaar, A. Postma, A. Sellink, M. Stroucken, and
C. Verhoef, “A two-phase process for software architecture
improvement,” inICSM 1999: Proceedings of the IEEE Inter-
national Conference on Software Maintenance. Washington,
DC, USA: IEEE Computer Society, 1999, p. 371.

[21] D. M. German, J. M. Gonzalez-Barahona, and G. Robles,
“A model to understand the building and running inter-
dependencies of software,” inWCRE ’07: Proceedings of the
14th Working Conference on Reverse Engineering. Washing-
ton, DC, USA: IEEE Computer Society, 2007, pp. 140–149.

[22] D. M. German and A. E. Hassan, “License integration pat-
terns: Addressing license mismatches in component-based de-
velopment,” inICSE ’09: Proceedings of the 2009 IEEE 31st
International Conference on Software Engineering. Wash-
ington, DC, USA: IEEE Computer Society, 2009, pp. 188–
198.

