

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

To see the final version of this paper please visit the publisher’s website.
Access to the published version may require a subscription.

Author(s): Ceccato, Mariano; Di Penta, Massimiliano; Nagra, Jasvir; Falcarin,
Paolo; Ricca, Filippo; Torchiano, Marco; Tonell, Paolo.
Article title: The Effectiveness of Source Code Obfuscation: an Experimental
Assessment
Year of publication: 2009
Citation: Ceccato, M. et al. (2009) ‘The Effectiveness of Source Code Obfuscation:
an Experimental Assessment’ In: 17th IEEE International Conference on Program
Comprehension (ICPC-09), Vancouver (Canada) May 17-19, 2009, IEEE pp 178 -
187
Link to published version: http://dx.doi.org/10.1109/ICPC.2009.5090041
DOI: 10.1109/ICPC.2009.5090041

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219372248?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://roar.uel.ac.uk/
http://dx.doi.org/10.1109/ICPC.2009.5090041

The Effectiveness of Source Code Obfuscation: an Experimental Assessment

Mariano Ceccato1, Massimiliano Di Penta4, Jasvir Nagra5, Paolo Falcarin3,
Filippo Ricca2, Marco Torchiano3, Paolo Tonella1
1Fondazione Bruno Kessler–IRST, Trento, Italy

2Unità CINI at DISI, Genova, Italy
3Politecnico di Torino, Italy

4University of Sannio, Dept. of Engineering, Benevento,Italy
5University of Trento, Italy

ceccato|tonella@fbk.eu, dipenta@unisannio.it, jas@nagras.com,paolo.falcarin|marco.torchiano@polito.it, filippo.ricca@disi.unige.it

Abstract

Source code obfuscation is a protection mechanism
widely used to limit the possibility of malicious reverse engi-
neering or attack activities on a software system. Although
several code obfuscation techniques and tools are available,
little knowledge is available about the capability of obfus-
cation to reduce attackers’ efficiency, and the contexts in
which such an efficiency may vary.

This paper reports the outcome of two controlled experi-
ments meant to measure the ability of subjects to understand
and modify decompiled, obfuscated Java code, compared to
decompiled, clear code.

Results quantify to what extent code obfuscation is able
to make attacks more difficult to be performed, and reveal
that obfuscation can mitigate the effect of factors that can
alter the likelihood of a successful attack, such as the attack-
ers’ skill and experience, or the intrinsic characteristics of
the system under attack.

Keywords: Empirical studies, Software Obfuscation,
Program comprehension

1 Introduction

Software protection has become a central issue for dis-
tributed applications providing remote services (e.g., video
on demand). In fact, such services are often provided under
strict use conditions and service agreement. By tampering
with the client code of such applications, attackers may gain
personal benefits or unfair treatments and they could access
the remote services without complying to the service con-
ditions (e.g., without paying the service fee). Source code
obfuscation is widely used to prevent or limit malicious at-
tacks aimed at altering the program’s behavior in an illegal

or non-permitted way. In fact, attackers can take advan-
tage of static and dynamic analysis methods, first of all to
understand the code and locate the features of interest in
the implementation, and ultimately to break any protection
and implement the modifications necessary to achieve their
goals. Attackers can decompile, trace, debug, analyze stat-
ically and dynamically and of course inspect the (decom-
piled) source to perform their task.

Despite the proved theoretical impossibility of building
general purpose obfuscators [2], implementations of ob-
fuscators do exist and they are actually used in practice.
Available obfuscators provide limited though effective pro-
tection against malicious reverse engineering, transforming
the code into a semantically equivalent program which is
harder to understand for an attacker even if automatic code
analysis tools are used [7]. Obfuscation transformations can
be classified into three groups [6]:layout obfuscations, re-
move relevant information from the code without chang-
ing its behavior;data obfuscations, transform application
data and data structures (e.g., data encoding, data splitting);
and,control-flow obfuscations, alter the original flow of the
application. The obfuscation technique considered in this
work, identifier renaming, is an instance of layout obfus-
cation. It removes relevant information from the code by
changing the names of classes, fields and operations into
meaningless identifiers.

Apart from common wisdom about the protection ca-
pabilities provided by source code obfuscation, very few
works dealt with the problem of quantifying the benefits
achieved through obfuscation. One of the attributes typi-
cally used to measure the strength of obfuscation is thepo-
tency[6], which represents the amount of obscurity added
to the code, i.e., how much more complex to understand and
to analyze is the obfuscated code with respect to the original
one.

We conducted two controlled experiments aimed at em-
pirically assessing the potency of identifier renaming, oneof
the most widely used obfuscation technique. Specifically,
we considered whether the capability to perform compre-
hension and change tasks was affected by obfuscation. We
also quantified the effects of obfuscation, whenever the at-
tack tasks could be successfully completed, by measuring
the attacker’s efficiency in task execution. In fact, benefits
can be obtained from obfuscation even if the attack is not
completely prevented, when mounting an attack involves a
substantially increased amount of time, compared to break-
ing the original code. In addition to the average scenario,
we take into account the worst-case scenario (i.e., the most
effective attack), since in practice the best attacker can eas-
ily distribute the instructions to break an application once
he is successful. For the same reason, in our experiments
we compare the behavior of skilled vs. novice attackers.
We also investigate whether there are systems intrinsically
easier or harder to attack.

The experiments presented in this paper represent a first
contribution toward building a comprehensive, quantitative
knowledge on the benefits coming from obfuscation against
attackers of various skills and for various kinds of systems
being protected. Moreover, other than testing the presence
of a significant effect of obfuscation on the attack efficiency,
which could easily be expected, this paper deals mainly
with determining thesizeof such effect (i.e., the magnitude
of the difference between efficiencies experienced with and
without obfuscation), and analyzing the interaction of ob-
fuscation with other context factors, such as the attacker’s
ability and experience, and the characteristics of the system
under attack.

The paper is organized as follows: Section 2 gives the de-
tails of the experimental design. Experimental results (Sec-
tion 3) are followed by a discussion, in Section 4, which
includes analysis of the threats to validity. After a discus-
sion of related work (Section 5), Section 6 concludes the
paper and outlines directions for future work.

2 Experiments definition and planning

This section reports the definition, design and settings of
the experiments in a structured way, following the template
and guidelines by Wohlinet al. [13].

Thegoalof this study is to analyze the effect of a source
code obfuscation technique namedIdentifier renamingwith
thepurposeof evaluating its ability in making the code re-
silient to malicious attacks. Thequality focusregards how
this obfuscation technique reduces the attacker’s capabil-
ity to correctly and efficiently understand and modify the
source code. Investigating the effect of obfuscation on the
attack efficiency is a crucial point in our experimentation:
although we are aware that an attacker could be able to com-

plete an attack on obfuscated code anyway, she/he could
be discouraged if such an attack requires a substantial ef-
fort/time. Results of this study can be interpreted from mul-
tiple perspectives: (i) a researcher interested to empirically
assess the Identifier renaming obfuscation technique; and
(ii) a practitioner, who wants to ensure high resilience to at-
tacks to subsystems of a distributed application deliveredto
the clients, running in an untrusted environment.

Thecontextof this study consists ofsubjectsinvolved in
the experimentation and playing the role of attackers, and
objects, i.e., systems to be attacked. Subjects are mainly
graduate students, either Master or PhD students. The study
consisted in two experiments: Exp I was performed with
10 Master students from the University of Trento and Exp
II with 22 PhD students from Politecnico di Torino. Mas-
ter students have a good knowledge on Java programming
(they previously developed non-trivial systems as projects
for at least 3 exams), and an average knowledge about soft-
ware engineering topics (e.g., design, testing, software evo-
lution). All subjects attended at least one software engineer-
ing course where they learned analysis, design and testing
principles.

The systems used to conduct the experiment are two
client-server applications developed in Java, aCar Race
game and aChatsystem.CarRaceis a network game that
allows two players to run a car race. The player that first
completes the total number of laps wins the race. During
the race, players have to refuel at the box. The number of
completed laps and the fuel level is displayed on the upper
part of the window. The client consists of 14 classes, for a
total of 1215 LOC (both clear code and obfuscated code).
ChatClient is a network application that allows people to
have text based conversation through the network. Conver-
sations can be public or private. The client consists of 13
classes, for a total of 1030 LOC (both clear and obfuscated
code). The obfuscation was performed on the bytecode us-
ing theSandMarktool1, which replaces identifiers with ran-
domly generated ones.

2.1 Hypotheses formulation and variable
selection

Following the study definition reported above, we can
formulate the null hypotheses to be tested:

H01 the source code obfuscation does not significantly de-
crease the efficiency of an attacker to perform acom-
prehensiontask.

H02 the source code obfuscation does not significantly de-
crease the efficiency of an attacker to perform achange
task.

1http://sandmark.cs.arizona.edu/

Table 1. Tasks.
T1 In order to refuel the car has to enter the box. The box area is

delimited by a red rectangle. What is the width of the box entrance
(in pixel)?

C
a

rR
a

ce T2 When the car crosses the start line, the number of laps is increased.
Identify the section of code that increases the number of laps the
car has completed (report the class name/s and line number/swith
respect to the printed paper sheets).

T3 The car can run only on the track and obstacles have to be avoided,
if a wall is encountered the car stops. Modify the application such
that the car can take a shortcut through the central island.

T4 The fuel constantly decreases. Modify the application suchthat
the fuel never decreases.

T1 Messages going from the client to the server use an integer as
header to distinguish the type of the message. What is the value of
the header for an outgoing public message sent by the client?

C
ha

t T2 When a new user joins, the list of the displayed “Online users” is
updated. Identify the section of code that updates the list of users
when a new user joins (report the class name/s and line number/s
with respect to the printed paper sheets).

T3 Messages are sent to a given room, if the user is registered inthe
room and if the message is typed in the corresponding tab. Mod-
ify the application such that all the messages from the user go to
“Room 1” without the user entering the room.

T4 Messages are sent and displayed with the timestamp that marks
when they have been sent. Modify the application such that the
user sends messages with a constant timestamp = 3,00 PM.

The above two hypotheses areone-tailed, since we are
interested in analyzing the effect of obfuscation in one di-
rection, i.e., to investigate whether the obfuscationreduces
the attacker’s efficiency to understand the source code and
to perform a change task.

The null hypotheses suggest we have two dependent
variables, i.e., theefficiency in performing comprehension
tasks, and theefficiency in performing change tasks. To
measure the attacker’s capability to perform a comprehen-
sion task (achieved comprehension level), we asked sub-
jects to run the application, look at the client source code,
and perform two comprehension tasks, (T1 and T2 in Ta-
ble 1). The above tasks were conceived so that only one
correct answer is possible, thus correct answers were evalu-
ated as one, wrong answers as zero. To measure the success
subjects had in change tasks (success of change tasks), we
asked them to mount two attacks (T3 and T4 in Table 1)
against the two different systems. It is important to note
that the proposed tasks are representative of realistic attacks
that a hacker could perform on a distributed game or on a
chat e.g., gaining unlimited fuel, or accessing to restricted
messages. Since attacks can be thought of as maintenance
tasks, we evaluated the correctness of the attack by running
test cases on the code modified by the subjects, and evalu-
ated the attack as successful if test cases passed. A test suite
was defined for each change task. The test suite reproduces
the interaction scenario of the attack to be performed.

The efficiency of a subject in performing comprehension
or change task is evaluated as:

∑
2

i=1
Corri∑

2

i=1
T imei

(1)

whereCorri = 1 if the i − th comprehension or change
task was correctly performed, 0 otherwise, andT imei is
the time in minutes needed to perform the task. In other
words, the efficiency is measured as the number of correctly
performed task per minute.

The main factor of the experiment—that acts as an in-
dependent variable—is the presence of the treatment during
the execution of the task. The two alternative treatments
are (i) decompiled source code, derived from obfuscated
(with identifier renaming) code, and (ii) decompiled clear
code. Decompilation was performed using the Jad 1.5 de-
compiler2.

Among the co-factors that can potentially affect the re-
sults, we identified and measured the following ones:

• The subjects’ Experience:, i.e., comparing Master and
PhD students.

• The subjects’ Ability:the subjects’ Ability was evalu-
ated by resorting to the average grades obtained in the
previous related exams. In Italy grades vary between
18 (lowest grade) and 30 (highest grade), however all
our subjects had grades above 21. We identified three
Ability levels (low, medium, andhigh) corresponding
to the intervals: [22-24], [25-27], and≥ 28.

• The Systemto be attacked: as detailed in Section 2.2,
to use a balanced design we need two systems: Chat-
Client and CarRace. Although they are comparable in
terms of size and complexity, subjects may perform
differently on different systems.

• The Lab, i.e., whether there is a learning effect across
subsequent experiment laboratories.

• Learning across subsequent tasks: in the same way,
we analyze whether there is a learning effect as the
subjects perform the four subsequent tasks.

For each co-factor, we test (see Section 2.4) the effect on
the efficiency in performing the attack—as defined in equa-
tion (1)—and the interaction with the main factor’s treat-
ments. In other words, the following two hypotheses are
tested:

H0c the co-factor has no significant effect on the efficiency
of subjects in performing an attack.

H0ci the co-factor does not significantly interact with the
presence of obfuscation to influence the efficiency of
subjects in performing the attack.

These hypotheses are two-tailed, because we do not
know a-priori the direction of a possible influence of co-
factors.

2http://www.kpdus.com/jad.html

Table 2. Experiment design.
Group A Group B Group C Group D

Lab 1 CarRace (O) CarRace (C) Chat (C) Chat (O)
Lab 2 Chat (C) Chat (O) CarRace (O) CarRace (C)

(O) = Obfuscated, (C) = Clear.

2.2 Experiment design

We adopt a balanced experiment design intended to fit
two Lab sessions (2-hours each). Subjects are split into
four groups, each one working in Lab 1 on a system with
a treatment and working in Lab 2 on the other system with
a different treatment (see Table 2). Ability levels are equally
distributed across groups. The design ensures that each sub-
ject works on differentSystemsin the twoLabs, receiving
each time a different treatment. Also, the design allows for
considering different combinations ofSystemand treatment
in different order acrossLabs. More important, the chosen
design permits the use of statistical tests (e.g., analysisof
variance) for studying the effect of multiple factors.

2.3 Experimental procedure and material

This section details the procedure we followed to per-
form the experiments, and the material employed. Before
each experiment, subjects were properly trained with lec-
tures on obfuscation techniques, and with exercises hav-
ing the purpose of performing comprehension tasks on the
(non-obfuscated) source code of an electronic record book.
Right before the experiment, we provided subjects with a
detailed explanation of the tasks to be performed during the
lab; no reference was made to the study hypotheses.

To perform the experiment, subjects used a personal
computer with the EclipseTM development environment—
which they are familiar with—including syntax highlight-
ing and debugger, and the Java API documentation avail-
able. We distributed to subjects the following material,
available online for replication purposes3:

• a short textual documentation of the system they had
to attack;

• a jar archive containing the server of the application.
The server was executed locally by the subjects to
avoid any network related problem. However, we did
not provide the source code and checked that subjects
did not decompile it;

• the decompiled client source code, either clear or ob-
fuscated depending on the group the subject belonged

3http://selab.fbk.eu/ceccato/replicationpackages/idrenamingpackage.zip

to (see Table 2). Subjects had decompiled code avail-
able rather than source code because, in a realistic at-
tack, they cannot access source code; instead, they can
decompile the binary or the bytecode; and

• slides explaining the experiment procedure.

The experiment was carried out according to the follow-
ing procedure. Subjects had to:

1. read the application description;

2. import the client source code in EclipseTM;

3. run the application (CarRace or ChatClient) to famil-
iarize with it;

4. for each of the four tasks to be performed: (i) ask the
teacher for a paper sheet describing the task to be per-
formed; (ii) mark the start time; (iii) read the task and
perform it; and (iv) mark the stop time and return the
paper sheet;

5. after completing all tasks, create an archive containing
the modified project and send it to the teacher by email;

6. complete a post-experiment survey questionnaire.

During the experiment, teaching assistants and profes-
sors were in the laboratory to prevent collaboration among
subjects, and to check that subjects properly followed the
experimental procedure.

After the experiment, subjects were required to fill a
post-experiment survey questionnaire. It aimed at both
gaining insights about the subjects’ behavior during the ex-
periment and finding justifications for the quantitative re-
sults. The questionnaire contains 18 questions (see ex-
perimental package or a longer technical report [4] for
details)—most of them expressed in a Likert scale [9]—
related to:

• the clarity of tasks and objectives (Q1 – Q4);

• the difficulties experienced when performing the dif-
ferent tasks (comprehension and change) (Q5 – Q7);

• the confidence in using the development environment
and the debugger (Q8, Q10);

• the usefulness of the EclipseTM renaming and debug-
ging features (Q11, Q12);

• debugger frequency of use (Q9), number of executions
in debugging mode (Q14) and execution mode (Q13);

• the percentage of total time spent on looking the source
code, and on executing the system (Q15, Q16);

• to what extent subjects considered the analysis of ob-
fuscated code hard (Q17);

• whether subjects considered important executing the
system to better understand the behavior of obfuscated
code (Q18).

2.4 Analysis method

Different kinds of statistical tests need to be used to ana-
lyze the results of this experiment.

Two non-parametric tests are used to test the hypotheses
related to differences in the subjects’ efficiency in perform-
ing comprehension and change tasks (H01 andH02). First,
an unpaired analysis—i.e., an analysis of all data grouped
by different treatments of the main factor—is performed us-
ing the Mann-Whitney, one-tailed test [10]. Given the cho-
sen experiment design, it is also possible to use a paired test,
i.e., the Wilcoxon, one-tailed test [10]. Such a test allows
to check whether differences exhibited by subjects with dif-
ferent treatments (clear and obfuscated code) over the two
labs are significant.

While the above tests allow for checking the presence of
significant differences, they do not provide any information
about the magnitude of such a difference. This is particu-
larly relevant in our study, since we are interested to inves-
tigate to what extent the use of obfuscation decreases the
attacker’s efficiency. To this aim, we used the Cohend ef-
fect size, which indicates the magnitude of a main factor
treatment effect on the dependent variables. The effect size
is considered small for d≥0.2, medium for d≥0.5 and large
for d≥0.8 [5]. For independent samples—to be used for un-
paired analyses—it is defined as the difference between the
means (M1 andM2), divided by the pooled standard devi-
ation: d = (M1 − M2)/σ. For dependent samples—to be
used for paired analyses—it is defined as the difference be-
tween the means (M1 andM2), divided by the standard de-
viation of the (paired) differences between samples: (σD):
d = (M1 − M2)/σD.

To provide a picture of what a worst case scenario (best
attacker) could look like we compute, for each experi-
ment and for each system used in the experiment, the low-
est times (expressed in minutes) achieved in correctly an-
swering comprehension questions (T1, T2) and performing
change tasks (T3, T4). We compare the difference between
the obfuscated and clear cases to the pooled standard devia-
tion (as for the Cohend). We deem relevant the differences
that are≥ σ. Although we cannot claim statistical signifi-
cance and therefore no specific hypothesis was formulated,
we believe this measure provides useful insights.

The analysis of co-factors, i.e., the test of hypotheses
H0c, H0ci, as well as the hypothetical effect of confound-
ing factors such as system and lab, is performed using a
two-way Analysis of Variance (ANOVA), and interactions

are visualized using interaction plots. Although ANOVA is
a parametric test, it is considered quite robust also for non-
normal and non-interval scale variables.

Regarding the analysis of survey questionnaires, we
evaluate questions related to objectives clarity, availability
of enough time and general difficulties subjects might have
encountered (Q1-Q4, Q8, Q10) by verifying that the an-
swers are either Strongly agree (1) or Agree (2). We test
medians, using a one-tailed Mann-Whitney test for the null
hypothesisQ̃x ≥ 3, where 3 corresponds to “Undecided”,
and Q̃x is the median for questionQx. A similar anal-
ysis is performed, only for subjects receiving obfuscated
code, for questions related to the use made of the debug-
ger (Q9), the difficulty in comprehending obfuscated code
(Q17) and the usefulness of executing the system to under-
stand it when the code is obfuscated (Q18). For the ques-
tions related to the ability of subjects in performing compre-
hension, feature location, and change tasks (Q5, Q6, Q7),
answers of subjects receiving clear code were compared
with answers of subjects receiving obfuscated code. In this
case a two-tailed Mann-Whitey test is used for the null hy-

pothesisQ̃Clear = ˜QObfuscated. A similar comparison is
also performed for questions concerning the usefulness of
debugging (Q11) and automatic renaming (Q12), and for
questions concerning the number of executions (Q13), de-
buggings (Q14) and time spent looking at the code (Q15)
and running the system (Q16).

In all the statistical tests performed, we adopted a 95%
significance level, i.e., we accept a 5% probability of com-
mitting a type I error.

3 Results

This section reports results for the two experiments, with
the aim of testing the hypotheses formulated in Section 2.1.
Raw data of results are included in the replication package4,
while detailed analyses are reported in a longer technical
report [4].

3.1 Efficiency of comprehension and
change tasks

Figure 1 shows, for comprehension and change tasks,
boxplots of the number of correct answers per minute. Ta-
ble 3 reports descriptive statistics of the unpaired analy-
sis, including the number of subjects who participated to
the experiments, mean, median, standard deviation, Mann-
Whitney test p-value and Cohend effect size. For com-
prehension tasks, subjects working with clear code signif-
icantly outperform subjects with obfuscated code in both
Exp I and II, with alarge effect size (d≥0.8). There are

4http://selab.fbk.eu/ceccato/replicationpackages/idrenamingpackage.zip

Clear Obfuscated Clear Obfuscated

0.
00

0.
05

0.
10

0.
15

0.
20

0.
25

0.
30

of

 c
or

re
ct

 a
ns

w
er

s/
tim

e
[m

in
.]

Exp I Exp II

(a) Comprehension

Clear Obfuscated Clear Obfuscated

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

of

 c
or

re
ct

 a
ns

w
er

s/
tim

e
[m

in
.]

Exp I Exp II

(b) Change

Figure 1. Boxplots of attack efficiency.
Table 3. Efficiency of attacks.

Exp Clear Obfuscated p eff.
N mean median σ N mean median σ value size

I 9 0.08 0.08 0.05 10 0.02 0.01 0.02 <0.01 1.66
II 19 0.15 0.14 0.10 22 0.06 0.05 0.06 <0.01 1.02

(a) Comprehension

Exp Clear Obfuscated p effect
N mean median σ N mean median σ value size

I 9 0.14 0.11 0.12 10 0.06 0.05 0.04 0.05 0.95
II 19 0.24 0.22 0.17 22 0.07 0.07 0.07 <0.01 1.29

(b) Change

slightly different number of subjects for different treatments
because 1 subject in Exp I and 3 subjects in Exp II did not
attend the second laboratory. For change tasks, subjects
with clear code significantly outperform subjects with ob-
fuscated code in both Exp I (p-value=0.05), and Exp II (p-
value<0.01). Also for change tasks, the effect size ishigh
for both Exp I and II.

In addition to unpaired analysis, we also performed a
paired analysis, comparing performances of each subject
in the two laboratories, with different treatment and object.
This was possible for the 9 subjects of Exp I and 19 sub-
jects of Exp II who attended both labs. Table 4 reports for
each experiment the number of subjects, descriptive statis-
tics of differences, Wilcoxon paired test p-value and Co-
hend effect size for dependent samples. As shown, again
for comprehension tasks there are significant differences in
both Exp I and II, with alarge effect size (d≥0.8) in Exp
I and amediumeffect size (d≥0.5) for Exp II. For change
tasks, differences are significant for Exp II only. The effect
size islarge for both experiments. It has to be noticed that
5 subjects out of 9 in Exp I and 2 out of 19 in Exp II were
not able to perform the change tasks.

Overall, while unpaired analysis indicates a rejection for
both H01 andH02, for paired analysisH02 cannot be re-
jected in Exp I.

Table 4. Efficiency: paired analysis.
Exp N diff diff σ p effect

mean median value size
I 9 0.06 0.06 0.05 0.01 1.07
II 19 0.08 0.08 0.11 < 0.01 0.78

(a) Comprehension

Exp N diff diff σ p effect
mean median value size

I 4 0.14 0.12 0.16 0.12 0.91
II 17 0.19 0.16 0.19 < 0.01 0.99

(b) Change

3.2 Worst case scenario

Finally, as explained in Section 2, we provide a picture of
a worst case scenario by analyzing the lowest times. Results
are shown in Table 5, where the pooled standard deviations
smaller than the difference of lowest times are highlighted
in boldface. We observe two relevant differences for the
ChatClient system, both in Exp I. The best time for obfus-
cated code in T1 is 25 times higher that for clear code, while
no one could complete correctly T2 on obfuscated code,
compared to 20 minutes required for clear code. As far as
CarRace is concerned, we observe relevant differences for
T1 in Exp I—15 obfuscated vs. 2 clear—and for T3 in both
experiments, 12 vs. 3 in Exp I and 10 vs. 1 in Exp II. In

Table 5. Lowest times for successful attacks.

Exp Treatment ChatClient CarRace
T1 T2 T3 T4 T1 T2 T3 T4

I Clear 1 20 3 15 2 7 3 1
Obfuscated 25 NA 18 9 15 7 12 3
σpooled 4.8 13.7 23.5 6.2 3.8 1.2 5.0 5.7

II Clear 1 3 2 3 2 2 1 1
Obfuscated 5 2 4 1 4 2 10 <1
σpooled 10.8 5.0 8.6 4.9 3.4 5.4 4.7 3.6

Times are expressed in minutes.

Table 6. Two-way ANOVA by Treatment & Ex-
perience.

Df Sum Sq Mean Sq F value Pr(>F)
Treatment 1 0.09 0.09 17.70 0.0001
Experience 1 0.04 0.04 7.21 0.009
Treatment:Experience 1 0.00 0.00 0.35 0.56
Residuals 56 0.28 0.00

(a) Comprehension

Df Sum Sq Mean Sq F value Pr(>F)
Treatment 1 0.27 0.27 17.19 <0.001
Experience 1 0.04 0.04 2.27 0.14
Treatment:Experience 1 0.02 0.02 1.02 0.32
Residuals 46 0.72 0.02

(b) Change

all 5 cases where we observed a relevant difference, higher
lowest times were observed for the obfuscated code.

3.3 Analysis of co-factors

This section reports the analysis of co-factors. First, we
analyze whether the subjects’ Experience (master vs. PhD
students) had a significant effect on the efficiency in per-
forming comprehension and change tasks. Table 6 reports
results of the two-way ANOVA by Treatment & Experience.
For comprehension tasks, the subjects’ Experience has a
significant effect, although it does not interact with the main
factor’s treatments. As it can be noted from Figure 1 and
from descriptive statistics in Table 3-a, the comprehension
level for PhD students (Exp II) is, for both clear and ob-
fuscated code, higher than for Master students (Exp I). For
change tasks, the subjects’ Experience has no significant ef-
fect nor any interaction with the main factor’s treatments.
However, looking at the interaction plot of Treatment &
Experience (for maintenance tasks) in Figure 2, it can be
noticed that, when the code is obfuscated, the difference
between the less experienced master students and the more
experienced PhD students is reduced. If comparing the two
experience levels, the effect size isMedium (d=0.66) for
clear code andSmall(d=0.26) for obfuscated code.

Similarly, we analyze whether the subjects’ Ability (low,
medium and high ability levels) had an effect on the effi-
ciency in performing comprehension and change tasks. Re-
sults of the two-way ANOVA by Treatment & Ability are

0.
10

0.
15

0.
20

0.
25

Treatment

m
ea

n
of

 C
or

re
ct

/T
im

e
[m

in
.]

Clear Obfuscated

 Experience

PhD
Master

Figure 2. Interaction plot of Treatment & Ex-
perience for change tasks.

0.
05

0.
10

0.
15

Treatment

m
ea

n
of

 C
or

re
ct

/T
im

e
[m

in
.]

Clear Obfuscated

 Ability

m
h
l

Figure 3. Interaction plot of Treatment & Abil-
ity for comprehension tasks.

shown in Table 7. The only effect visible, this time, is an
interaction of the Ability with the main factor’s treatment
for comprehension task, although marginally significant (p-
value=0.074). The interaction is clearly visible in the plot of
Figure 3: for obfuscated code the gap between low, medium
and high Ability subjects is reduced: in other words, the ob-
fuscation reduces the capability of highly skilled subjects to
understand the obfuscated code, making them as good as
low Ability subjects.

We also analyzed whether the particular System used in
the experiment (i.e., CarRace or ChatClient) could have in-
fluenced the results. The two-way ANOVA by Treatment
& System indicated, for both experiments, a significant in-
fluence (p-value=0.01 for Exp I, and 0.001 for Exp II) of
the System on the task efficiency, considering both compre-
hension and change tasks together (results were consistent
with those of the two types of task considered separately). If

Table 7. Two-way ANOVA by Treatment & Abil-
ity.

Df Sum Sq Mean Sq F value Pr(>F)
Treatment 1 0.09 0.09 17.67 0.0001
Ability 2 0.02 0.01 2.00 0.15
Treatment:Ability 2 0.03 0.01 2.73 0.074
Residuals 54 0.27 0.00

(a) Comprehension

Df Sum Sq Mean Sq F value Pr(>F)
Treatment 1 0.27 0.27 15.51 0.0003
Ability 2 0.01 0.00 0.15 0.86
Treatment:Ability 2 0.00 0.00 0.09 0.91
Residuals 44 0.77 0.02

(b) Change

0.
05

0.
10

0.
15

Treatment

m
ea

n
of

 C
or

re
ct

/T
im

e
[m

in
.]

Clear Obfuscated

 System

Car
Chat

Figure 4. Interaction plot of Treatment & Sys-
tem.

considering together data from both experiments, ANOVA
also indicated a mild interaction between System and the
main factor’s treatment (p-value=0.05). This result can be
interpreted by looking at the interaction plot of Figure 4: al-
though the CarRace is always easier to attack than the Chat-
Client, the difference is reduced when obfuscating the code.
In other words, the obfuscation makes systems easier to be
attacked (like the CarRace) as difficult as systems that are
intrinsically harder to be attacked (like ChatClient).

Finally, we found no significant effect of the Lab factor
(p-value=0.40 for Exp I and 0.27 for Exp II) nor any learn-
ing across subsequent tasks T1-T4 (p-value=0.36 for Exp I
and 0.13 for Exp II).

3.4 Survey questionnaire analysis

Only a few problems emerged from the analysis of sur-
vey questionnaire questions (Q1, Q2, Q3, Q4, Q8, Q10)
related to the overall subjects’ ability to perform the tasks
in the time needed and to the clarity of the lab objectives.

Subjects of Exp I, regardless of the treatment, experienced
problems regarding the time needed to perform the task, and
to use the debugger. No particular problem was experienced
in Exp II (more experienced subjects).

Then, we compared the answers provided by subjects,
when using clear and obfuscated code, on the difficulties
encountered in code comprehension (Q5), location of the
feature to be understood/changed (Q6), and in perform-
ing the change task (Q7). In Exp I, subjects felt that
the obfuscation makes feature location more difficult (p-
value=0.04), while there is no difference for code compre-
hension (p-value=0.52) and change (p-value=0.20). In Exp
II, subjects felt that obfuscation makes all three activities—
comprehension, feature location and change—more diffi-
cult (p-value<0.01 in all cases). Also, we investigated the
perceived usefulness of the main tools available to the sub-
jects, i.e., the use of the debugger (Q11) and the renam-
ing facility provided by Eclipse (Q12). The debugger was
found useful only by subjects in Exp II both for clear and
obfuscated code. The renaming facility was found useful by
all subjects only for the obfuscated code.

When performing comprehension and change tasks, we
investigated whether there was a variation—between sub-
jects with clear and obfuscated code—in the number of sys-
tem executions (Q13) and executions in debugging mode
(Q14) indicated as needed to perform the task, the percent-
age of time spent looking at the code (Q15) and running
the system (Q16). A significant difference was found in
Exp I, where subjects felt they needed to execute the sys-
tem more time when it was obfuscated (Q13, p-value=0.04),
while in Exp II more executions were performed in debug-
ging mode (Q14, p-value=0.01), although subjects said they
used the debugger for obfuscated code as often as for clear
code (Q9, p-value=0.38 in Exp I and 0.20 in Exp II). Re-
sults suggest that in Exp I subjects used system executions
as a way to better understand obfuscated systems rather than
debugging as subjects of Exp II, since they felt debugging
difficult to be performed (as reported in the answers to ques-
tion Q10). Finally, subjects from both experiments agreed
(p-value<0.01) that the obfuscated code was more difficult
to understand (Q17), and that system execution is neces-
sary for understanding purposes (Q18), as a complement to
static code analysis.

4 Discussion

Differences in efficiency between subjects receiving
clear and obfuscated code are always significant with large
effect sizes. If looking at average and median efficiency ex-
perienced by subjects with clear and obfuscated code (Ta-
ble 3), it can be noticed that the efficiency is two to four
times higher when having clear code available. This re-
sult can be interpreted as follows: when obfuscated code is

available, the attacker would require, to successfully com-
plete an attack, two to four times the time needed with clear
code.

Also, results of worst case scenarios indicate that, in
most cases, subjects with clear code needed less time than
subjects with obfuscated code to successfully complete an
attack. Although, as indicated in survey questionnaires, ob-
fuscation makes it more difficult to conduct comprehension,
feature location and change tasks, having enough time avail-
able, an attacker would be able to achieve his objectives.
In most cases the time available to complete an attack is
limited, because other protection mechanisms are used in
conjunction with obfuscation. For example, (part of) the
client code may be periodically replaced/updated with new
versions, which makes an attack useless if not performed
within the expiration time of a given version.

An important role is played by factors such as the attack-
ers’ experience, ability, and the system ease of comprehen-
sion and maintenance. Results suggest that:

• The presence of obfuscation reduces the gap be-
tween highly skilled or experienced attackers and low
skilled/experienced ones. In our experiments, we
noticed that the subjects’ experience plays a signif-
icant role for change tasks (the capability of mod-
ifying an unknown, difficult to be maintained sys-
tem is achieved with years of work), while personal
skills influence the ability of performing comprehen-
sion tasks. When the code is not obfuscated, highly
experienced/skilled subjects perform attacks signifi-
cantly better than low experienced/skilled ones. The
presence of obfuscation makes the system difficult to
be attacked for highly skilled/experienced subjects as
for low skilled/experienced ones.

• The ability of attackers to understand and change a sys-
tem is, as one can expect, significantly influenced by
the intrinsic characteristics of the system itself. This
depends on factors such as the system architecture and
design, the presence of adequate requirement and de-
sign documentation (not available in both systems used
in our experiments) or the quality of the source code
(structure, identifiers, comments). What can be no-
ticed when the code is obfuscated is that obfuscation,
again, reduces the gap, this time between systems eas-
ier to be attacked and systems harder to be attacked.

4.1 Threats to validity

We identified the main threats to the validity that can af-
fect our results: construct, internal, conclusion, and external
validity threats.

Construct validitythreats concern the relationship be-
tween theory and observation. They are mainly due to how

we measure the capability of a subject to perform an at-
tack. As explained in Section 2, the chosen tasks are rep-
resentative of realistic attacks. Also, the measurements we
conceived—comprehensionquestions with one possible an-
swer and test cases to assess code correctness—are as objec-
tive as possible. Clearly, the ability to understand the ques-
tions we asked might not fully reflect the comprehension
achieved by the attacker for that particular attack. Also, the
test cases we used only cover the scenario we asked to mod-
ify in the attack task. Alternative scenarios are not tested,
as well as code not directly involved in the scenario that
might have been impacted by the change. Finally, the way
subjects’ ability was assessed is objective, although we are
aware that exam grades may not fully reflect subjects’ skills.

Internal validity threats concern external factors that
may affect an independent variable. The chosen design al-
lowed us to control a series of factors, such as ability, sys-
tem, and learning effect. Subjects were not aware of the
study hypotheses, and were told not to be evaluated on the
performance exhibited during the experiment.

Conclusion validityconcerns the relationship between
the treatment and the outcome. We used non-parametric
tests (Mann-Whitney and Wilcoxon), not requiring data
normality. The only parametric test used is the ANOVA
which is however robust to deviation from normality. Sur-
vey questionnaires, mainly intended to get qualitative in-
sights, were designed using standard ways and scales [9].

External validity concerns the generalization of the
findings. First, only one type of obfuscation—identifier
renaming—was considered. Work-in-progress aims at ex-
perimenting further techniques and performing a compari-
son among them. Then, although we considered two differ-
ent distributed systems belonging to different domains and
having a different complexity, further studies with differ-
ent systems are desirable. Last, but not least, the study was
performed in an academic environment. Although for this
type of experiment (hacker attack) it is not interesting to ex-
periment with industrial developers, we are aware that the
expertise of students could be far from that of hackers. This
threat was at least mitigated (i) by considering graduated
students only, (ii) by analyzing the worst case scenario, and
(iii) by performing a co-factor analysis by ability. All in all,
many hackers are not that different from best students (high
Ability subjects/worst case scenarios in our experiments).

5 Related Work

In the past, the evaluation of the increased complexity in-
troduced by obfuscation has been mainly addressed through
code metrics. Collberget al. [6] proposed the use of com-
plexity measures (e.g.,potency) in obfuscator tools to help
developers choosing among different obfuscation transfor-
mations. More recently, Udupaet al. [12] used the amount

of time required to perform automatic de-obfuscation to
evaluate the usefulness ofcontrol-flow flatteningobfusca-
tion, relying on a combination of static and dynamic anal-
ysis. Gotoet al. [8] proposed thedepth of parse treeto
measures source code complexity. Anckaertet al. [1] at-
tempted at quantifying and comparing the level of protec-
tion of different obfuscation techniques. In particular, they
proposed a series of metrics based oncode, control flow,
data anddata flow: they computed such metrics on some
case study applications (both on clear and obfuscated code),
however without performing any validation on the proposed
metrics. Rather than proposing new metrics, we aim at ex-
perimentally assessing obfuscation techniques, by measur-
ing the success of an attack and the efficiency of an attacker
in performing it, on both clear and obfuscated source code.

The work more similar to ours is an experimental study
on the complexity of reverse engineering binary code [11].
The authors of this study asked a group of 10 students (of
heterogeneous level of experience) to perform static analy-
sis, dynamic analysis and change tasks on several C (com-
piled) programs. They found that the subjects’ ability was
significantly correlated with the success of reverse engi-
neering tasks they had to perform. Our study goes beyond:
first, we compare—by using statistical tests and effect size
measures—the capability and efficiency of subjects in per-
forming attack tasks on clear and obfuscated code. Thus
we can quantify the increased effort necessary to reverse
engineer an obfuscated program, with respect to the effort
necessary for a non-obfuscated one.

In a companion paper [3] we describe the design and
planning of this experimentation, and briefly summarize
early results (only unpaired analysis) of Exp I. The present
work extends it by adding a further experiment (Exp II),
reporting paired analysis, and analyzing the effect of co-
factors and the answers provided by subjects to survey ques-
tionnaires.

6 Conclusions

We have described and discussed the results obtained
from two experiments, designed to evaluate the potency of
source code obfuscation. In particular, we focused on iden-
tifier renaming, one of the most widely used obfuscation
methods.

Results show that identifier renaming significantly de-
creases the efficiency of attacks, at least doubling the time
needed to complete a successful attack (even in the worst-
case scenario, i.e., against the best attacker). In addition,
obfuscation reduces the gap between novice and skilled at-
tackers, making the latter less efficient, and makes systems
that are easier to attack in clear more similar to those that
are intrinsically harder to break.

Our future work will include replication of the study in

different settings and contexts, so as to corroborate our find-
ings and extend their validity. In particular, we plan to as-
sess other obfuscation techniques (e.g., opaque predicates),
by performing a comparative assessment of their effects.

References

[1] B. Anckaert, M. Madou, B. D. Sutter, B. D. Bus, K. D. Boss-
chere, and B. Preneel. Program obfuscation: a quantitative
approach. InQoP ’07: Proc. of the 2007 ACM Workshop on
Quality of protection, pages 15–20, New York, NY, USA,
2007. ACM.

[2] B. Barak, O. Goldreich, R. Impagliazzo, S. Rudich, A. Sa-
hai, S. Vadhan, and K. Yang. On the (im) possibility of
obfuscating programs.Lecture Notes in Computer Science,
2139:19–23, 2001.

[3] M. Ceccato, M. Di Penta, J. Nagra, P. Falcarin, F. Ricca,
M. Torchiano, and P. Tonella. Towards experimental eval-
uation of code obfuscation techniques. InProc. of the 4th
Workshop on Quality of Protection, pages 39–46. ACM, Oct
2008.

[4] M. Ceccato, M. Di Penta, J. Nagra, P. Falcarin,
F. Ricca, M. Torchiano, and P. Tonella. The ef-
fectiveness of source code obfuscation: an experimen-
tal assessment. Technical report, University of Sannio
– http://www.rcost.unisannio.it/mdipenta/icpc09-tr.pdf, Jan
2009.

[5] J. Cohen.Statistical power analysis for the behavioral sci-
ences (2nd ed.). Lawrence Earlbaum Associates, Hillsdale,
NJ, 1988.

[6] C. Collberg, C. Thomborson, and D. Low. A taxonomy of
obfuscating transformations. Technical Report 148, Dept.of
Computer Science, The Univ. of Auckland, 1997.

[7] C. Collberg, C. Thomborson, and D. Low. Watermarking,
tamper-proofing, and obfuscation - tools for software pro-
tection. IEEE Transactions on Software Engineering, 28,
2002.

[8] H. Goto, M. Mambo, K. Matsumura, and H. Shizuya. An
approach to the objective and quantitative evaluation of
tamper-resistant software. InThird Int. Workshop on Infor-
mation Security (ISW2000), pages 82–96. Springer, 2000.

[9] A. N. Oppenheim.Questionnaire Design, Interviewing and
Attitude Measurement. Pinter, London, 1992.

[10] D. Sheskin. Handbook of Parametric and Nonparametric
Statistical Procedures (4th Ed.). Chapman & All, 2007.

[11] I. Sutherland, G. E. Kalb, A. Blyth, and G. Mulley. An em-
pirical examination of the reverse engineering process for
binary files.Computers & Security, 25(3):221–228, 2006.

[12] S. Udupa, S. Debray, and M. Madou. Deobfuscation: re-
verse engineering obfuscated code.Reverse Engineering,
12th Working Conference on, Nov. 2005.

[13] C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell,
and A. Wesslén.Experimentation in Software Engineering -
An Introduction. Kluwer Academic Publishers, 2000.

	ICPC 09 cover sheet
	icpc2009

