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A COMPARISON OF FIXED FINAL TIME OPTIMAL CONTROL
COMPUTATIONAL METHODS WITH A VIEW TO CLOSED LOOP
IMPLEMENTATION USING ARTIFICIAL NEURAL NETWORKS

X Matieni, S J Dodds
Control Research Group, SCoT.
xamat@hotmail.com; stephen.dodds@spacecon.co.uk; s.j.dodds@uel.ac.uk

Abstract: The purpose of this paper is to lay the foundations of a new generation of closed loop
optimal control laws based on the plant state space model and implemented using artificial neural
networks. The basis is the long established open loop methods of Bellman and Pontryagin, which
compute optimal controls off line and apply them subsequently in real time. They are therefore open
loop methods and during the period leading up to the present century, they have been abandoned by
the mainstream control researchers due to a) the fundamental drawback of susceptibility to plant
modelling errors and external disturbances and b) the lack of success in deriving closed loop versions
in all but the simplest and often unrealistic cases. The recent energy crisis, however, has promoted the
authors to re-visit the classical optimal control methods with a view to deriving new practicable
closed loop optimal control laws that could save terawatts of electrical energy by replacement of
classical controllers throughout industry. First Bellman’s and Pontryagin’s methods are compared
regarding ease of computation. Then a new optimal state feedback controller is proposed based on the
training of artificial neural networks with the computed optimal controls.

1. Introduction:

After the establishment of classical linear
feedback control theory and practice in the
1940s, attention was turned to establishing
systematic methods for adjusting the
parameters of controllers to improve their
performances, leading to the concept of
minimising (or maximising) a performance
criterion (Bellman, 1957). Towards the end
of the 1950s and during the 1960s, the so
called modern control theory evolved centred
on the concept of the state of a dynamical
system, which proved to be of fundamental
importance as this formed the foundation
stones of optimal control theory. One of the
drawbacks of this theory, however, is that
closed loop versions in the form of state
feedback control laws offering robustness
with respect to external disturbances and
plant modelling uncertainties are not readily

attainable. Such control laws, however, have

been derived for the time optimal control of a

limited range of plants (Ryan, 1982).

The structure of the general optimal control

problem can be described as follows:

a) The plant or process to be controlled has
the following state space model:

{X(r):f[x(t),u(t),t]
y() =h[x(2).1]

where xeR” is the plant state, ueR" is

(M

the set of control inputs and y e R"” is the

set of measured outputs.

b) There are restrictions on u(z) and x(¢).

¢) A reference signal, r(¢), is provided
that y(¢) is intended to follow.

d) A performance criterion, sometimes
called a cost function, has to be
minimised, having the following
general form,
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J:?G[X(t),u(t),r(t),t]dt. (2)

where T is the end time of the control action.
In (2), the scalar integrand, G(e), is referred
to as the loss function and is a measure of
instantaneous change in the performance.
Hence the performance criterion is
sometimes referred to as the cumulative loss.

The optimal control problem consists of the
determination of the control input,

u(#)=u’(¢) that minimises the performance
criterion, J, subject to constraints on u(z)
and x(¢) imposed by the plant hardware.

Two fundamental approaches to solving the
optimal control problem were originated in
the USA (Bellman, 1957) and in Russia
(Pontryagin, 1959) and these will be
described in the following two sections as
they are proposed by the authors to form the
basis of new closed loop optimal control laws
implemented using artificial neural networks.

2. Dynamic Programming:

A simple regulator problem will serve to
illustrate the dynamic programming approach.
A regulator, in contrast a controller, is

required maintain the output, y(¢), fixed. The
reference input is therefore r(z) = const.

The following example will suffice to

demonstrate the method:

a) A single input, single output plant is
considered having first-order linear
dynamics, with the output, y, as the state
variable:

y(t)=Ay(t)+Bu(t) (3)
b) Since deviations of y from zero are
minimised the performance criterion is

J=[y*e)ar )

c) the controlled input has practical
saturation constraints:

- umax S u(t) S umax (5)
The scalar Hamilton-Jacobi equation has to be
satisfied when J has the required minimum value,
J? (Bellman, 1957) and (Bellman, et. al, 1962):

oJ° oJ°
+

o)
+G(p(0),u” (1),7 (1)1, ) =0

From the statement of the problem, the

terms of (6) are:
aoJ’

(6)

o 0. ™
F(p(0)u°(8) =3 (1) = Ay (2)+ Bu() ®)
Gp(e)u (0).r(e)he, )= »2(0) ©)

Substituting (7), (8) and (9) into (6) gives:

%]y [ay(e)+Bu(t)]+)* (1) =0 (10)
This expression must be minimised with
respect to u(?), subject to the constraint

<u (t) S Upax

(1D

—u
Thus

minl:a(:}]() (Ay(t) +Bu(t)+y* (t)):l

u(t) | Qy
= minlzago Bu (t):l

max —

(12)

u(t) | Oy
Hence the optimal control must satisfy

g JOT 8;} B<0

u’ ()= =
oJ*
—Upaxs SO o B>0
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aJ j (13)
Oy
Substituting (14) into (10) gives:

l:Ay(t)—Bsg{B

u’(t)=—u,, sgn(B

0

a‘ﬁjy j:leyz(t):O (14)

oJ’
0y

Assuming B > 0, this simplifies to:

aJ°
oy

aJ°
oy

B

Ay(¢) +y*(t)=0  (15)

This
equation that has to be solved for J?. The
solution is then substituted into (14) in order

to obtain the optimum u°(¢). Most
importantly, however, Bellman concluded
that this demands the aid of a digital
computer except for simple cases.

is a nonlinear partial differential

3. Pontryagin’s Maximum Principle:

To explain this method, let the general plant (1)
be expressed in the following component form:

5 ()= f]x(0),u(t)], i=1,2--,n (16)

The performance index to be minimised is
as in the previous sections:

J:JT'G[x(t),u(t),r(t),t]dt, (17)

The maximum principle requires that the

optimal control input, u° (¢), that minimises J
will maximise the scalar Hamiltonian function

LOWICHNORION
~G[x(t)u(t),r(t).t]

where p;(¢) is the co-state and obeys the

(18)

following set of differential equations:

Pz(t):Zle((Z))

System (19) is often called the adjoint system

71':1727“'7” (19)

and its state p € R” is known as the co-state.

From (16) and (18), y,(¢) can also be
expressed in terms of 4 and p;, as follows:
OH (t
)'cl.(t):J i=1,2,---,n
8pl-(t)
The necessary conditions of the maximum

principle can be obtained from the dynamic
programming equations by a simple change

(20)

of variables. Reconsidering the
Hamiltonian-Jacobi equation (6):
oJ’
p,(t)=- @1)
Y,
and
oJ°
H\(t)= 22
(¢) o (22)

where ¢ =t is the initial time. Substituting
(21) into (22) yields

H(t)zépi(t)fi[x(t)’u(t)] (23)
~G|x(t),u(t),r (1)1, |

which is the basic Hamiltonian function
(18). In addition, (19) can be obtained from

(21) and (22) as follows:
: dp, d | oJ°
pi(1) :f :J{_ oy; J
o o l (24)
9% eH(1)

ooy, ay(1)

Hence the basic maximum-principle relationships
defined by (18) and (19) have been justified from
the dynamic programming relationship (ie., the
Hamiltonian-Jacobi equation) by a simple change
of variables. It is important to note, however, that
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this is not a proof of the maximum principle
because this derivation assumed the existence of
the derivatives

oJ° oJ°
Ay[ and Ato

On the contrary, there are many cases where
they do not exist but there is a proof
(Bolttyanskii et.al., 1960).

The application of the maximum principle
will now be illustrated by means of the same
example used in Section 2. Thus the plant is

3(e) = Ay(e)+ Bule) (25)
with performance criterion
T= [y (t)dt (26)
0

and control saturation constraints given by
-u, . < u(t) <u,.. (27)

From the above, the wvalues of

S x(6),u(r)] and G y(t),u(z).r(1).1, ]

in the Hamiltonian equation are given by

fi[y(t),u(t)|=Ay(t)+Bu(t) (28)
GLy(1).u(t).r(t).t]=y* (1) (29)
Substituting (28) and (29) into the

Hamiltonian equation, gives

H(t)=p(t)[ Ay(t)+Bu(t)]-y*(t) (30)

Applying the fundamental relationship of
the maximum principle

OH (1)

pi()=-500

5 (1 ey

to (30) yields the first equation to be solved:

Pl =D -0+ 2,00)

oy(t)

(32)

The second equation can be obtained from
the fact that the Hamiltonian is maximised
when the performance criterion is minimised.
Maximising (30) with respect to u(2):

m(a;g[p(t)Bu(t).] (33)
and hence
u’ (t) = sgn(Bp(t)) (34)

This is the equivalent value for u°(z) in
(13) obtained using dynamic programming.
Substituting (21) into (34) gives the second
necessary condition:

y(t)=Ay(t) +Bsgn[Bp(t)].

The solution to this optimal control problem
by the maximum principle has been reduced
to the solution of the nonlinear ordinary
differential equations (32) and (35) for p(?),
which would then be substituted into (34) in
order to obtain the optimum u°(z).

(35)

It is important to note, however, that the
solution of the optimal control problem
using the maximum principle entails finding

the initial co-state, p(¢y), and in all but a

few simple cases, a digital computer is
required to produce a numerical solution
iteratively. This conclusion is similar to that
stated at the end of Section 2 for dynamic
programming.

4. Minimum-Energy Problem:

Some work has been done on optimal control
calculations aimed at minimising the control
energy, exemplified by Pearson (1962). Since
this era, however, interest in optimal control
has reduced in view of the practical
implementation difficulties discussed in the
following section but in view of the current
importance of energy conservation, this
section considers a simple mechanism whose

il e
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position is to be controlled, typical of those in
industry. The state space model is as follows:

{)'cl = X7, )&2 =%(Kau —F)Cz) (36)

where x; is the position to be controlled, u
is the control voltage, K, is the actuator

force constant, M is the mass of the moved
object and F 1is the coefficient of viscous
friction. The wusual control saturation
constraints (5) are assumed to apply.

It is commonly quoted that the square of the
control signal utilised is proportional to
power, and the time integral of power is
energy. For minimising the energy, therefore,

the performance criterion is usually taken as
T

(Izjuzﬁhﬁ
0
Here the loss function represents power

G[x(t),u(t),r(t),t]=u(t)
In this case, the Hamiltonian function is:

H(t)=p (1) (1)

+ py (1) [Kau(t) — Fx, (t)]/M —u*(¢)
The co-state equations are given by applying
(19) to (39):

p1=0, py=p ~(F/M)p,
The general solution may therefore be found
analytically:

(37)

(38)

(39)

(40)

~Ft )

2y ()= py (0)1-e %anZ(O)e_Ft @41

)2 (¢) Xy (¢) and
(F/M) p,(£)x, () in (39) are independent

of the input u(z), the maximisation of the
Hamiltonian function is given by

fi}g;{(K%) s (1) (1)~ (t)} “2)

Since the terms

From (40), there are two cases in which the
Hamiltonian function can be maximised:

Suppose |u| < u,,, . Then to find the optimal

value, u° (¢), of u(z), (41) is differentiated:

a_au[(K%)qu (r)-u* (t)} —0=

K
u (1)=& pa (1) (43)
Therefore, if
M K
|p2 (t)| < 2K_”max’ u’ (1)= 2;[ P2 (1)

a

On the other hand, if |p2 (t)|>2K£u

a

max

then
u’ (t) = Umax Sgn[pz (t)]

These results indicate that the control is
continuous over a fixed range and saturates

(44)

M
whenever |p2 (t)| > 2K— u

a

max °*

For cost function (37), the solution has been
obtained analytically but for a given initial

state, x(0), the corresponding initial co-
state, p(0), is needed to evaluate (41) and

hence determine u° (¢) via (43) and (44).

At this point, however, the authors wish to
draw attention to the impracticality of the
use of cost function (37) for minimum
energy optimal control: 1If the drive of the
motion control system is regenerative, i.e.,
when the mechanism is slowed down, the
excess kinetic energy is returned to the
electric power supply, then the only energy
to be minimised is that dissipated as heat
due to the viscous friction and this should be

taken as the loss function, which is Fx% (t).

The cost function to be minimised is then
the true energy loss:



Advanced in Computing Technology

156

The School of Computing, Information Technology and Engineering, 4™ Annual Conference 2009

T
J = j Fx3 (1) dt (45)

The corresponding Hamiltonian function is:
H(t)=p (t)x (t) (
+py (1 [K u (1) —Fxy ( )]/M—Fx% ()
The co-state equatlons are

p1=0, py=p —(F/M)p, =2Fx, (47)

In contrast to (40), an analytical solution to
(46) is not possible due to the presence of
the plant state variable, x,.

46)

In view of (45), the optimal control is given by

r;l(ag{%pz(f)“(f)}

Even for this simple example, the optimal

(48)

control, u°(¢), could only be determined

numerically since no analytical solution
exists for (46).

5. Towards a Practicable Optimal
Control Strategy:

5.1 Open Loop and Closed Loop Control:

It is evident from the previous sections that
Bellman’s dynamic programming and
Pontryagin’s maximum principle are both
yield optimal but open loop control. They

predict u’(¢), and the corresponding state
trajectory, x(z), of plant (1) given an
accurate plant model and the initial plant
state, x(0). So u’(#) would be first
computed and then applied in real time.

This, however, would be impracticable due
to plant modelling errors and an unknown

disturbance, d(¢),
represented by

the true plant being

1),d(1),1] 49)

= f[x(2)
(t) =h [X'(2), ]
where f[e] and hle] are, respectively,

and h[e] in (1).

Applying a control function, u®(¢), to plant
(49) calculated using plant model (1) would

estimates of f[e]

result in the true state trajectory, x'(¢),

departing from the calculated trajectory,
x(¢). This departure would continue due to

no information about the true plant
behaviour being fed back to the control
computer. Such open loop control is well
known to be sensitive to plant modelling
errors and disturbances. Closed loop control
is highly desirable since it can partially
compensate for such imperfections and
prevent unbounded error build up between

x'(#) and x(7).
tempted to try the simple approach of

designing a model reference controller
(MRC) acting on the known error between

The reader might be

y'(¢) and y(¢), as shown in Fig. 1.

computed off line

and then applied in ‘ d(?)
u® () realtime Refﬂ Plant v'(2)
= {X = f[x,u,d,7]
+ & _ . e,
Model y' =h[x'1] n
Reference |«
Controller Plant Model -
o [x=f[xur]
{Y=h[x,t] y(©)

Fig.1. Attempt to apply MRC to reduce and limit
errors in open loop optimal control.

Although this may work in relatively simple
cases, it is not recommended since the design
of'a model reference controller acting only on

the error, y'(¢)—y (), would, in general, be
difficult for some nonlinear or relatively high

rb? ./“1—|

- .l
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order plants so this is not considered further.
Instead the authors will proceed with the state
feedback approach described below.

It is well known that full state control of a
plant can yield the best possible control,
because the plant state contains all the
information about its instantaneous dynamic
behaviour. Indeed, the optimal control
calculations presented previously yield the

future control, u’(¢), to apply, given the

initial state, x(0), and a constant reference
input, r. If a closed form solution to the
general optimal control problem were to
exist, then the optimal control law would be
a state feedback control law:

w =G (xr) (50)

It is important to note, however, that an observer
would be needed to estimate all the state
variables not directly measured. The following
sub-section presents an approach to obtaining a
closed loop state control law aimed at closely
approximating the ideal one of (50). As stated
previously, the loop closure affords some degree
of robustness against plant modelling errors and
external disturbances but how much depends
upon the particular case and this will be
determined in future work based on the
method presented in the following section.

5.2 State Control based on Artificial
Neural Networks:

Suppose a particular optimal control value,

u’, has been calculated off line that should
be applied to the plant given a state value, x,
and a constant reference input, r. Then, in
principle, an artificial neural network (ANN)

can be trained to reproduce an estimate, a°,

of u’ if it is presented with x and r. Now
this process could be repeated with the same
ANN so that it is capable of reproducing
several different optimal control values

previously calculated off line for different
plant states and reference inputs when
presented with the same plant states and
reference inputs.

Since digital processors operate in discrete
time, the optimal control computational
methods actually yield a set of states,

(x) =[x (1), %5 ()X (1) ] )

and a corresponding set of optimal controls,
<u0k> = [u(’k (¢,), u’t (#),.. u* (thl)J (52)

at N discrete times, fj,t,...,ty_;, for a

constant reference input, i , Where the

superscript, k, refers to the particular
reference input. Let the complete set of
results of these off line computations over a
range of R different reference inputs be

=3 ) )
)= ) ) o)) o

Then, in principle, a suitable ANN could

(33)

and

reproduce an estimate, <ﬁ0>, of <u0>, given

<x> and <r>:<r0,r1,...,rR>. The overall
result would be that the ANN could be used

to directly close the loop with an
approximation to control law (50):

i’ =G’ (x,r) (55)
Fig.. 2 summarises the training and

implementation stages.

The scheme depends upon the important property
of interpolation possessed by ANNSs. The process
of training an ANN to a number of discrete points,
as explained above, results in a form of continuous
multidimensional curve fitting. If the ANN is
presented with a state value, x, and a reference
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input value, r, not included in the original
training set but lying inside the multidimensional
polygonal surface encompassing the training set,

then it should produce a control value, u’, that is a
close approximation to the correct optimal control

value, u’ . The success of this scheme would, of
course, depend on the type of ANN selected
and the number of neurons in the hidden layers.
The reader may refer to texts such as
(Sunan, et. al., 2004) or (Picton, 2000), to
gain insight into the various types of ANN.

Optimal <u0 > Plant Model
Control . o [X=f[x,u,d,t] =
Calculation y=h [x, t]
Training
Weich Algorithm
eight
adjustment @ @ &
()
a) Training

l d(z)

1 Real Plant
> X = f[x,u,d,]
J y’ =h [Xr, 4 ]
ANN acting as optimal
state feedback control law —P]

State
Observer

x(2) |

b) Closed loop implementation

y'(2)

Fig. 2. Application of ANN for optimal state control.
6. Conclusions and Recommendations:

The comparison of the two classical open
loop approaches to solving the optimal
control problem is interesting. The dynamic-
programming method yielded one nonlinear
partial differential equation (15) to be solved

while applying the maximum-principle to the
same problem yielded two nonlinear ordinary
differential equations (32) and (35). Although
both techniques generate equations which
require the aid of digital computers for
solution, the two first-order ordinary
differential equations from the maximum-
principle are considered easier to solve than
the nonlinear partial differential equation. In
general, therefore Pontryagin’s method is
recommended, but Bellman’s method should
still be considered as in particular cases it
might prove to be more straightforward.

In order to determine the attainable closeness
to optimality, it is recommended that the new
scheme depicted in Fig. 2 is first tested with
very simple well known cases for which
exact closed loop optimal controllers already
exist, such as the double integrator plant. The
next recommended step is to test out the
scheme depicted in Fig 2 for the simple
minimum energy control problem presented
in section 4. The variation of the closeness to
optimality with the number of training points
and their distribution within the operating
envelope of the plant should be investigated.
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