

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

To see the final version of this paper please visit the publisher’s website.
Access to the published version may require a subscription.

Author(s): Mouratidis, Haralambos; Sunyaev, Ali; Jürjens, Jan.
Article title: Secure Information Systems Engineering: Experiences and Lessons
Learned from Two Health Care Projects
Year of publication: 2009
Citation: Mouratidis, H; Sunyaev, A; Jürjens, J. (2009) ‘Secure Information Systems
Engineering: Experiences and Lessons Learned from Two Health Care Projects’
CAiSE 2009, LNCS 5565, pp. 231-245
Link to published version: http://dx.doi.org/10.1007/978-3-642-02144-2_21
DOI: 10.1007/978-3-642-02144-2_21

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219372134?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://roar.uel.ac.uk/
http://dx.doi.org/10.1007/978-3-642-02144-2_21

Secure Information Systems Engineering: Experiences
and Lessons Learned from two Health Care Projects

H. Mouratidis1, A. Sunyaev2, J. Jurjens3

1School of Computing and Technology, University of East London, England
haris@uel.ac.uk

2Institut fur Informatik, Technische Universitat Munchen, Germany
sunyaev@in.tum.de

3Computing Department, The Open University, Great Britain
j.jurjens@open.ac.uk

Abstract. In CAiSE 2006, we had presented a framework to support
development of secure information systems. The framework was based on the
integration of two security-aware approaches, the Secure Tropos methodology,
which provides an approach for security requirements elicitation, and the
UMLsec approach, which allows one to include the security requirements into
design models and offers tools for security analysis. In this paper we reflect on
the usage of this framework and we report our experiences of applying it to two
different industrial case studies from the health care domain. However, due to
lack of space we only describe in this paper one of the case studies. Our
findings demonstrate that the support of the framework for the consideration of
security issues from the early stages and throughout the development process
can result in a substantial improvement in the security of the analysed systems.

1 Introduction

Current information systems contain a large number of important and sensitive
information that needs to be protected. Therefore, the need to secure these systems is
recognised by academics and practitioners alike. This is reflected in the current
literature where it is now widely accepted [13] [5] that security should be embedded
into the overall information systems development and not added as an afterthought.
As a result, a number of researchers are working towards the development of
modelling languages and methodologies that can support the consideration of security
as part of the information systems development process, and various approaches
coming from different schools of thought have been reported in the literature(see for
example [13]). Along these lines, a number of model-based security engineering
approaches have been proposed [8][1][2]. In such approaches, a model of the system
is initially constructed and a corresponding implementation is derived from that
model either automatically or manually. An important limitation of these approaches
is the lack of consideration of the earlier stages of the development process, such as
early requirements analysis. To overcome this issue, in previous work, which was
presented in CAiSE 2006 [14], we integrated the UMLsec approach [8] with the

mailto:haris@uel.ac.uk
mailto:sunyaev@in.tum.de
mailto:j.jurjens@open.ac.uk

2 H. Mouratidis1, A.Sunyaev2, J. Jurjens3

secure Tropos methodology [11]. The resulting framework allows the construction of
an initial security requirements model that is constantly refined until a well defined
model of the system has been constructed. In particular, the framework defines a set
of guidelines and transformation steps to enable developers to “translate”, in a
structured manner, the initial high level security requirements models, defined in
Secure Tropos, to a well defined design model defined in UMLsec. Our framework is
different from other works [16][1][2][6][10] trying to integrate security considerations
into the development lifecycle. Existing work is mainly focused either on the
technical or the social aspect of considering security. Moreover, approaches are
usually applicable only to certain development stages. In contrast our approach
considers security as a two dimensional problem, where the technical dimension
depends on the social dimension. Moreover, our approach is applicable to stages from
the early requirements to implementation. The next two sections describe the
application of the framework to the two industrial case studies.

In this paper we report on the application of our framework to an industrial case
study for the development of a Telematics system at a German hospital. We then
reflect on the applicability of this framework and our experiences from its
applications to two industrial case studies from the health care domain, the described
German Hospital Telematics case study and the Single Assessment Process of the
English National Health Service (NHS) case study. The paper is structured as follows.
Section 2 provides a summary of the main elements of the framework to assist readers
not familiar with it. Section 3 discusses the case study and it demonstrates how our
framework was applied and how the security of the Telematics system was improved.
Section 4 reflects on the application of the framework. Our reflection is mainly sub-
divided into three main areas: Framework Development, Lessons Learned, and
Improvements. Section 5 concludes the paper.

2 Secure Tropos meets UMLsec: A model-based security aware
framework

As mentioned above, the framework, under discussion in this paper, has been
presented in CAiSE 2006 [14]. Therefore, the aim of this section is not to repeat the
details of the framework but rather to summarise it, in order to enable the readers of
the paper to understand the following sections. The security-aware process of the
framework includes four main stages: Security Analysis of System Environment,
Security Analysis of System, Secure System Design, and Secure Components
Definition. In each of these stages a number of models are defined that are then
refined in the later stages. In particular, the main aim of the first stage is to understand
the social dimension of security by considering the social issues of the system’s
environment, which might affect its security. In doing so, the environment in which
the system will be operational is analysed with respect to security. In particular, in
line with the Secure Tropos methodology, the stakeholders of the system along with
their strategic goals are analysed in terms of actors who have strategic goals and
dependencies for achieving some of those goals. Then the security needs of those
actors are analysed in terms of security-related constraints that are imposed to those

Secure Information Systems Engineering 3

actors. Such analysis results into the Secure Tropos security-enhanced model. Then,
for each of the actors depicted on the Secure Tropos security-enhanced model,
security goals and entities are identified, in order to satisfy the imposed security
constraints. This information is modelled with the aid of the Secure Tropos security-
enhanced goal model. During the second stage, the technical dimension of security is
analysed by employing modelling and reasoning activities similar to the ones used in
the previous stage, but now the focus is on the system rather than its environment.
The output of this stage is refined Secure Tropos security-enhanced actor and goal
models. During the third stage, the aim is to define the architecture of the system with
respect to its security requirements. To achieve this, a combination of Secure Tropos
and UMLsec models are employed. The Secure Tropos security-enhanced actor and
goal models are furthered refined and provide input to the Secure Tropos architectural
style model, which defines the general architecture and the components of the system.
The Secure Tropos models are then transformed to UMLsec Class and Deployment
diagrams, which are used to model the security protocols and properties of the
architecture. To support the transformation of the Secure Tropos to UMLsec models,
the framework defines a set of guidelines and steps [14]. In particular, two main
transformation guidelines have been defined along with eight steps that describe each
of the guidelines in detail. During the fourth stage, the components of the system are
identified in detail. To achieve this, UMLsec activity diagrams are used to define
explicitly the security of the components and UMLsec sequence diagrams or state-
chart diagrams are used to model the secure interactions of the system’s components.
For example, to determine if cryptographic session keys, exchanged in a key-
exchange protocol, remain confidential in view of possible adversaries, UMLsec
state-chart diagrams can be used to specify the security issues on the resulting
sequences of states and the interaction with the component’s environment. Moreover,
the constraints associated with UMLsec stereotypes are checked mechanically, based
on XMI output of the models and using sophisticated analysis engines such as model-
checkers and automated theorem provers. The results of the analysis are given back to
the developer, together with a modified model, where the weaknesses that were found
are highlighted [9].

3 Case Study

The case study is based on experience during a project with healthcare
professionals of the University Hospital in Munich, Germany. Some of the authors
have long standing project relationships with this establishment and that relationship
was the starting point of the project. The project involved around 13 people, including
the hospital’s head of the computer centre, a number of physicians, a data protection
officer, and a number of computer scientists including some of the authors. Gradually
every insured patient in Germany is to receive a new smart-card based patient card,
which will replace the past insurance cards. This new electronic patient card will be
able to carry administrative functions as well as control access to the health data of
the patient. As such, the electronic patient card is the central part of a Telematics
infrastructure which can provide access to multiple forms of information and can

4 H. Mouratidis1, A.Sunyaev2, J. Jurjens3

store data locally. Besides the storage of data on the electronic patient card, other
applications are possible. These applications include: drug order documentation,
electronic physician letters, treatment cost receipts, emergency case data, general
patient data, and an electronic health record. In accordance with the new German
health reform, the next phase after the introduction of the electronic patient card will
be the electronic patient document. For this reason, the goal is to realize a uniform
Telematics platform as a communication turntable for all parties, involved in the
health care industry. Many different aspects must be considered during the
development and implementation of such a health care Telematics infrastructure. Due
to ethical, judicial, and social implications, medical information requires extremely
sensitive handling. Guaranteeing the protection of the patient-related information and
the health care information-systems is becoming increasingly important. On the other
hand, there is an acceptance problem on the part of the end users (patients, care
providers, cost units). Data collection and requirements elicitation took place through
analysis of existing specifications (that are confidential and cannot further discuss)
and a number of interviews with the stakeholders. Our interviews with a number of
health care professionals [17] revealed that the main problems were deficient
communication between medical practices and hospitals and bad scheduling in
hospitals. All interviewees identified an existent demand for IT support in health care
networks. But at the same time they expressed some worries about the security level
and dependability of using information systems.

Following the steps of our framework, it is important to understand the
environment of the system and reason about the security constraints imposed by that
environment to the various system stakeholders. To keep the analysis of the case
study in a manageable length, for this paper, we focus our analysis on three main
stakeholders: the Patient, the Hospital and the Physician. Security constraints related
to the distribution of medical information are imposed by the environment (such as
German health data protection laws) and also by the Patient. As mentioned above, a
secure Tropos security-enhanced actor diagram is used to initially model this
information, which is later refined by adding the system-to-be, as another actor who
has dependencies with the existing actors. This model is shown in Figure 1. As shown
in that figure, the Physician depends on the Electronic System to access patient
records. However, there are a number of security constraints imposed both to the
Physician and to the Electronic System for that dependency to be valid.

Secure Information Systems Engineering 5

Figure 1: secure Tropos security enhanced actor diagram

The Secure Tropos security-enhanced actor diagram is furthered refined by
analysing the internal goals of the Electronic System. This analysis results in the
Secure Tropos security-enhanced goal diagram that models the various internal goals,
tasks and security constraints of the system. In particular, our analysis indicates that
for the system to satisfy its security constraints, various secure goals are introduced
such as Ensure System Privacy, Ensure Data Integrity, Ensure Data Availability,
Ensure Secure Transfer of Records. These abstract goals have been analysed further
and appropriate secure tasks have been identified such as Encrypt Data, Check Digital
Signatures, Perform Auditing, Transfer Data through Virtual Private Network,
Enforce Access Control and so on.

When all the secure goals and secure tasks of the system have been identified, the
main aim is the identification of a suitable architecture. The core idea of the
physician-hospital architecture that was considered in this application is based on a
separation of the central database into two independent, and stand-alone partial
databases, whose linking returns the inquired answer, just as is the case with a central
database. For the user of the system, the procedure remains transparent. Every kind of
electronic communication between the medical practices and the hospitals is
fundamentally based on one central storage and processing place: the core database.
This core database contains and processes all organizational, administrative, and
medical information about the patient. The idea of this architecture is to split this core
database into two separate databases: first, the so-called "Metadatabase", and
secondly, the "Hospital Information System database" ("HIS-database"). The
"Metadatabase" contains all administrative data of the patient (name, first name, date
of birth, address, insurance data etc.).

6 H. Mouratidis1, A.Sunyaev2, J. Jurjens3

The "HIS-database" contains all medical data (like diagnostic images, data,
pictures, treatment, medicines etc.) of the respective patient. This sensitive health
information does not have a reference to the individual person; it is stored
pseudonymously. Additionally, these two "records" possess an attribute named "ID".
With its assistance, the combination of the two suitable entities (the administrative
data of a patient and his/her health information) can be realized. The two databases
are kept physically separate from each other. They are completely autonomous, i.e.
there is no direct connection between the two databases. The access is gained through
an encrypted connection and is possible to only one of the two databases at any given
point in time.

Following the steps and transformation rules of the framework (see [14]) UMLsec
deployment diagrams are constructed from the Secure Tropos models to represent the
architecture defined in our analysis. When the components of the system have been
defined, the next step involves the verification of the security of the modelled
architecture. For this purpose, UMLsec sequence diagrams are employed and security
properties, identified as important during the analysis of the system (modelled in
Secure Tropos models), such as integrity, secrecy, authenticity are used to evaluate
the architecture and to indicate possible vulnerabilities.

For example, consider figure 2 that illustrates the sequence diagram of the
transmission of data between the user (e.g. Doctor) and the databases. It allows its
secret information to be read using the operation getMetaData(), whose return value
is also secret. That specification violates the security information flow requirement,
since partial information about the time input from the higher sensitivity level
operation getMetaData() is leaked out via the return value of the lower sensitivity
level operation getHISData().

However, our analysis indicated that in order to avoid such violation, the system’s
architecture should include a wrapper with a function of placing artificial inquiries to
the databases. Artificial inquiries are constantly placed against the system in a way
that does not simply place them sequentially after each other; instead, they overlap, at
best several times over the entire time. Through this variation, it is impossible for the
attacker to filter and/or further pursue individual inquiries. Thus, the problem of the
possible time inquiries on the part of the attacker would be solved. The attacker is not
able to plumb individual-queries and has thus no possibility thereby to extract the
numerical data (time stamps).

The refined sequence diagram is shown in Figure 3. If a correct query is posed to
the system, the wrapper simply continues to lead the query. If this is not the case, the
wrapper generates more own queries. Each time, the wrapper examines whether a
query is present, in order to be able to then act accordingly.

Secure Information Systems Engineering 7

Figure 2: Sequence Diagram illustrating transmission of data

The wrapper constantly sends artificial inquiries to the HIS-Database, with each

clock pulse the query is passed on. If a "correct" query against the system has been
placed, the wrapper simply passes on the query. One does not know on which clock
pulse the query falls. The allocation of a date to the appropriate operation sequence is
thus not realizable. The attacker cannot find out which response belongs to which
request, and accordingly, which queries from both databases belong together. With
this discreteness, a more complex distribution for clock pulses is possible as well.
With regards to security verification, there is only one way for the attacker to gain
knowledge of the right assignment between the two databases (i.e. Meta-Database and
HIS-Database).

The attacker could succeed if he can extract which tuple of information has been
queried at which time. Then, the attacker could use this information to find out about
the linking of the information between the two databases.

8 H. Mouratidis1, A.Sunyaev2, J. Jurjens3

Figure 3: Refined Sequence Diagram

Here, the concern is about an indirect loss of information since following our
analysis the system encrypts and securely keep the information. The date of the query
procedure indirectly reveals partial knowledge of the confidential information. The
attacker can possibly assume the information which was queried after each other
and/or time near briefly by the two databases could belong together. The assumption
is based on the fact that in the normal case, after the client requests something from
the server, the server responds relatively timely. It is the same with the two databases,
the HIS-Database and the Meta-Database. First, the user requests something from the

Secure Information Systems Engineering 9

Meta-Database and then simultaneously (so the physician does not have to wait) the
HIS-Database is queried. If the attacker wants to extract the combination of these two
databases, he just has to wait from the Meta-Database-Request until the HIS-
Database-Request and the subsequent answers and would then probably be able to
extract the correct combination. In the above sequence diagram, the secret
information is allowed to be read using the operation getMetaData(), whose return
value is also secret. The data object is supposed to be prevented from indirectly
leaking out any partial information about high via non-high data, as specified by the
stereotype <<no down-flow>>. It is important that the observable information on the
time of query allows no conclusions about the information that are being requested.
Therefore, by applying the UMLsec tool suite [9], one can now make sure that the
proposed design in fact fulfils its security requirements. More importantly by
following the transformation rules and guidance of the framework, we are able to
track specific security solutions (mechanisms) to specific security requirements.

The solution above developed improves on a number of security problems that
current telematics platforms, such as HealthBase, TempoBy, MeDaCom, IHE,
Intermediation platform, RITHME, PICNIC, and NHSnet, suffer. A large number of
telematics platform exist. For our research, we have empirically compared a number
of them, against the system developed by employing our framework. Most of the
telematics concepts use the same security standards and techniques. The assurance of
data security and data integrity is based on the electronic communication with the
following six points: (1) There is only one central storage and processing place - the
database in the clinic/hospital; (2) A special software is installed and implemented at
all attached and entitled points of the network entrance; (3) There is a smart-card
reader at each entitled point of network entrance; (4) The connection is based on a
virtual private network. There is a VPN router and the required clients for it; (5)
Hospitals as well as the medical practices communicate through special firewalls
which have been devised for this kind of electronic communication; (6) The medical
and administrative personal data is transmitted in encrypted form. Having just one,
generally used, central database could be a possible security weakness open to
exploitation, since all stored patient information is concentrated in a single location.
Even though there are several security mechanisms in place for the protection of the
records database as well as for the connection to and from the database; there are no
further protection mechanisms for the data in the case of capture and decryption by an
attacker. The eavesdropping or interception of the transmitted data could happen via
interception of the transmitted packages as well as a direct hardware infiltration of the
database connection within the hospital. An administrator, or a person who is
responsible for the setup and maintenance of the database system, could be an
attacker. The attacker could intercept the transmitted packages, save them locally in
his hard drive and decrypt them without time- or place-restrictions. In the above
mentioned Telematics platforms, the central database contains complete data for each
patient. This means it contains purely administrative data as well as medical
information about the patient. This is the reason, why the protection of the sensitive
information and its access restriction/non-readability to attackers cannot be
presupposed anymore. However, these issues are all dealt with by the architecture
described in the previous section.

10 H. Mouratidis1, A.Sunyaev2, J. Jurjens3

4 Reflection

In this section we reflect on the framework based on its application to the case study
described above, as well as a second case study again from the health care domain.
However, due to lack of space we cannot explicitly describe the application of our
framework to the case study. The project involved health and social care
professionals, such as General Practitioners and Nurses, specialist health
professionals, such as Social Workers, and health care IT professionals. Its main aim
was to analyse and specify the requirements of a software system to deliver the Single
Assessment Process (SAP) [12], a health and social care needs assessment process for
older people in England, with particular emphasis on its security. Two important
conclusions were drawn. First of all, it became obvious from the discussions with
various social care professionals and patients, that privacy was the number one
security attribute required by this system. Secondly, the project identified the lack of
security-aware methodologies that could assist developers in analysing the electronic
Single Assessment Process (eSAP) system with security in mind.

So the following sections discuss our reflections from both these case studies. Our
discussion is mainly sub-divided into three main areas: Framework Development,
which discusses challenges faced during the development of the framework, along
with the solutions provided at that point, and it reflects on whether the given solutions
are satisfactory based on the application of the methodology to the case study;
Lessons Learned, which discusses the lessons learned from applying the methodology
to the case study; and Improvements, which provides an insight about how the
methodology can be improved for the application in large industrial context.

4.1 Framework Development

In this sub-section we reflect on the issues and challenges we faced during the
development of our framework and we discuss, by reflecting on the application of the
framework to the case studies, whether the decisions taken at the framework’s
development stages were successful.
Challenge 1: Integration. A major challenge on the development of the framework
was the seamless transition from the secure Tropos models to the UMLsec models.
Solution: To achieve the above challenge, we decided to employ a functional
integration [15], where individual approaches’ models stay intact and guidelines to
translate the models from one approach to another and indicate the inputs and the
outputs of these models are defined. A number of guidelines and steps were also
defined to support the integration [14].
Reflection: The initial guidelines and the steps defined assisted in the translation of
the models from secure Tropos to UMLsec. However, during the development of the
Telematics system we identified some inconsistencies between the secure Tropos and
the UMLsec models. By investigating this issue, we found out that the problem
existed due to some errors in some of the guidelines. In particular, initially our
guidelines suggested that actor related resources of the secure Tropos security-
enhanced actor models should be translated in a 1-to-1 analogy to attributes of the
UMLsec class models. However, by applying the framework to the Telematics case

Secure Information Systems Engineering 11

study it became obvious that this was not the case, and in most of the cases, a resource
will result in more than one attributes. This was mainly because the secure Tropos
security-enhanced actor models contain analysis information whereas the class
UMLsec models contain design information. Another issue that was raised during the
application of such guidelines was the possible need to formalise them using a
transformation language. This clearly constitutes area of future work.

Challenge 2: Process. An important issue of our work was the development of a
process to support the development of framework.
Solution: We decided to base the development process on the Secure Tropos
development process. In particular, the development process enables the construction
of an early requirements model that is furthered refined, following a top-down
approach, to a security model that is amenable to formal verification with the aid of
automatic tools [9]. The refinement process is governed by a set of rules and activities
[14]. It is worth mentioning that the process is highly iterative.
Reflection: The application of our framework to the case study indicated some
problems. In particular, initially all the information from the early and late
requirement models was effectively refined to the design models. However, during
the application of the framework to the case study, it became apparent that this should
not be the case. This was mainly because the analysis models contain reasoning
information which should not be transformed to the design models. For instance,
analysis models can contain information on different alternatives for satisfying a
particular security constraint. At the initial development of the framework, we would
transform all these alternatives to the design models. However, by applying the
framework to the case study and when trying to transform all the reasoning
information to design, we were faced with a large number of design goal conflicts.
Currently, such conflicts need to be overcome manually but we envisage that in the
future some automatic support can be provided.

4.2 Lessons Learned

In this sub-section we discuss with the aid of a number of questions all the lessons
learned from the application of the methodology.

How easy is the framework to learn?
The described approach results from the integration of two existing security-aware

approaches. As such, a number of software engineers are familiar with their concepts
and notation. Especially, the UMLsec approach effectively uses UML concepts and
notation and therefore it is easy to understand by developers familiar with UML. The
Secure Tropos approach on the other hand, is based on the i* [19]/Tropos [3] notation
and concepts that although not as popular as UML, it is well known in the
requirements engineering area. Therefore, although an initial effort is required to
understand the framework, we expect that developers familiar with UML and/or
Tropos will be able to grasp the concepts and notations of the methodology easily.

12 H. Mouratidis1, A.Sunyaev2, J. Jurjens3

Did you come across any unexpected obstacles during the application of the
framework to any of the case studies?

The application of the framework to the case studies did no yield any unexpected
obstacles. As discussed above, there were some inconsistencies between the models
due to some errors on the guidelines, but we were expecting something like this, since
it was the first time the framework was applied to real-life health care case studies.
On the other hand, once these inconsistencies were solved, the framework worked as
expected and we were able to analyse the environment of the system in terms of its
security and transform this analysis to a design, which we could verify.

Was the framework modified to enable its application to the case studies?
The framework was not modified to fit the case studies, but the application of the

framework to the case studies resulted in a number of modifications as discussed in
the previous section.

How the framework helps the analysis and design of the system with respect

to security?
The application of the framework to the case studies revealed that it helps the

analysis and design of the system with respect to security in various ways:
(i) Developers are able to consider security both as a social aspect as well as

a technical aspect. It is widely known that security is most often
compromised not by breaking dedicated security mechanisms but by
exploiting vulnerabilities in their usage. Therefore, as argued widely in
the literature, it is not enough just to consider security mechanisms and
protocols, but an understanding of the human factor and the environment
of the software system is also required. By considering both the social
aspect and the technical aspect of security, our framework allows
developers to obtain a clear understanding of any potential security
vulnerabilities that might raise from the interplay of the two security
aspects and therefore minimize, leading to the development of secure
software systems.

(ii) The framework allows the definition of security requirements at different
levels and as a result it provides better integration with the modelling of
the system’s functionality.

(iii) Security is not considered in isolation but simultaneously with the rest of
the system requirements. Such treatment of security helps to minimize the
number of conflicts between security and other requirements. Such
conflicts are usually the reason for security vulnerabilities, therefore by
minimizing these conflicts, the security vulnerabilities of the system are
also minimized.

(iv) The framework allows the consideration of the organisational
environment for the modelling of security issues, by facilitating the
understanding of the security needs in terms of the real security needs of
the stakeholders, and then it allows the transformation of the security
requirements to a design that is amenable to formal verification with the
aid of automatic tools. This introduces a well structured approach to
model-based security engineering.

Secure Information Systems Engineering 13

Was the framework appropriate for the health care domain case studies?
In general, the framework was appropriate for the two studies from the health care

domain. The health care sector is quite complex and security issues are affected not
only by related technologies but also from the human factor. The framework allowed
us, in collaboration with the health care professionals involved, to analyse both these
security dimensions by (i) analysing the security issues imposed to the system by its
environment (various stakeholders); (ii) reasoning about different possible solutions
that satisfy the system’s security requirements.

What useful conclusions did you derive for model-based security engineering?
It is worth mentioning that the case studies were not set up to assess the usefulness

of model-based security engineering and/or compare it with other security and non-
security engineering approaches. However, some useful conclusions were drawn.
First of all, it became obvious that, as with all the security-aware approaches, some
extra effort and knowledge is required due to the security aspect. In particular, basic
knowledge is needed about security terminology and theory and extra effort is
required by the developers to analyse and model the security concerns. Therefore, we
expect that model-based security engineering will be an attractive option to
developers looking to develop security-critical systems rather than a general option
for any software system development. Secondly, the production of models that
integrate security concerns, as opposed to the production of models without security
concerns, allows developers to (i) reason in a conclusive way and by taking into
account simultaneously the general requirements of the system together with the
security requirements and therefore identify any conflicts; (ii) develop a extensive and
precise security-aware documentation, something that it is required by common
security standards, such as the Common Criteria [4].

4.3 Improvements

In this section we discuss how the framework can be improved to enable its
application in large industrial context.

Tool Support
Currently the framework is supported by different types of tools corresponding to

the two approaches integrated (i.e. Secure Tropos and UMLsec). The transformation
from the secure Tropos models to the UMLsec models takes place manually (the
Secure Tropos tool produces details of the models developed in XML, which can be
used to feed information on the UMLsec tool). Although, this does not prevent the
application of the framework to large industrial projects, it is a concern in terms of
efficiency and time. The development of a tool to support the transformation of the
models will substantially reduce the time that is required to transform the models and
therefore increase the applicability of the framework to that type of projects. Such
tool will also support the analysis and resolution of design goal conflicts.

14 H. Mouratidis1, A.Sunyaev2, J. Jurjens3

Documentation

Currently, the only documentation about the framework is a set of research papers

and internal reports describing some of its aspects, as well as documentation that
describes the two original approaches, i.e. secure Tropos and UMLsec. It is important,
however, to produce a complete documentation that will explain the original
approaches, the advantages of the integration, the transformation steps, the models
and the new development process. Such documentation will help to understand the
framework and to make it accessible to a larger number of developers. In other words,
it will help to improve the usability of the framework.

Model related improvements

There are two main issues related to the improvement of the models. The first is

related to the version of the UML in which the UMLsec definition is based. Currently,
UMLsec is based on UML1.5. The subsequent release of UML 2.0 raises the question
to what extent the UMLsec approach is dependent on a particular version of UML, or
whether it can be used flexibly with different UML versions (including UML 2.0).
This would be a very interesting question to explore. The second issue is related to the
linkage between the models and the implementation (code). In particular, automatic
generation of text-sequences from the models to provide assurance that the code
correctly implements the models and thus satisfies the security requirements of the
system would be desirable.

5 Conclusions

This paper presented an experience report from the application of a model based
security engineering framework to two case studies from the health and social care
domain (German Hospital Telematics and electronic Single Assessment Process).
Apart from the reflections described above, our experience of employing such
framework to the health care case studies has indicated two important issues related to
each of the individual methodological components of the framework. Secure Tropos
concepts are more intuitive and comprehensible than for instance Object Oriented
concepts for people without information systems engineering background, such as the
majority of health care professionals. As such, this provides an advantage during the
requirements elicitation stage for health care case studies. Using UMLsec, the
extension of the Unified Modelling Language (UML) for secure systems development
and the concept of model-based security requirements, security requirements are
handled as an integrated part of the development and derived from enterprise
information such as security policies, business goals, law and regulation as well as
project specific security demands. These are then updated and refined iteratively and
finally refined to security requirements at a technical level, which can be expressed
using UMLsec, and analyzed mechanically using the tool-support for UMLsec by
referring to a precise semantics of the used fragment of UML. This allows one to
validate design against security requirements early in the development cycle.

Secure Information Systems Engineering 15

References

1. M. Alam, M. Hafner, R. Breu: Constraint based role based access control in the
SECTET-framework A model-driven approach. Journal of Computer Security 16(2):
223-260 (2008)

2. D. Basin, J. Doser, T. Lodderstedt, Model Driven Security for Process Oriented
Systems. In Proceedings of the 8th ACM symposium on Access Control Models and
Technologies, Como, Italy, 2003

3. P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, A Perini. TROPOS: An
Agent Oriented Software Development Methodology. In Journal of Autonomous
Agents and Multi-Agent Systems, Kluwer Publishers Volume 8, Issue 3, Pages 203-
236, 2004

4. Common Criteria, http://www.commoncriteriaportal.org/
5. P. Devanbu, S. Stubblebine. Software Engineering for Security: a Roadmap. In

Proceedings of ICSE 2000 (track on “The future of Software engineering”), 2000.
6. G. Hermann, G. Pernul, Viewing business-process security from different

perspectives. International Journal of electronic Commence 3:89-103, 1999
7. N. R. Jennings, An agent-based approach for building complex software systems,

Communications of the ACM, Vol. 44, No 4, April 2001
8. J. Jürjens, Secure Systems Development with UML, Springer, 2004
9. J. Jürjens and P. Shabalin. Tools for Secure Systems Development with UML. FASE

2004/05 special issue of the International Journal on Software Tools for Technology
Transfer, Springer. 2007.

10. J. McDermott, C. Fox, Using Abuse Case Models for Security Requirements
Analysis. In Proceedings of the 15th Annual Computer Security Applications
Conference, December 1999.

11. H. Mouratidis, P. Giorgini, G. Manson, Modelling Secure Multiagent Systems, in the
Proceedings of the 2nd International Joint Conference on Autonomous Agents and
Multiagent Systems, Melbourne-Australia, pp. 859-866, ACM 2003.

12. H. Mouratidis, I. Philp, and G. Manson (2003) “A Novel Agent-Based System to
Support the Single Assessment Process of Older People” Journal of Health
Informatics 9(3) pp. 149-162, SAGE Publications.

13. H. Mouratidis, P. Giorgini, Integrating Security and Software Engineering: Advances
and Future Visions, Idea Group Publishing, 2006.

14. H. Mouratidis, J. Jürjens, J. Fox, Towards a Comprehensive Framework for Secure
Systems Development, CAiSE 2006, Lecture Notes in Computer Science 4001,pp.
48-62, Springer-Verlag, 2006

15. W. Muhanna, W., An Object-Oriented Framework for Model Management and DSS
Development, Decision Support Systems, 9:2, pp. 217-229, 1993

16. G. Sindre, A. L. Opdahl: Eliciting security requirements with misuse cases. Requir.
Eng. 10(1): 34-44 (2005)

17. A. Sunyaev, Telematik im Gesundheitswesen - Sicherheitsaspekte,tech. rep., TU
Munich, 2006

18. M. Wooldridge, P.Ciancarini, Agent-Oriented Software Engineering: The State of the
Art, In P. Ciancarini and M. Wooldridge, editors, Agent-Oriented Software
Engineering. Springer-Verlag Lecture Notes in AI Volume 1957, January 2001

19. E. Yu, Modelling Strategic Relationships for Process Reengineering, Ph.D. Thesis.
Dept. of Computer Science, University of Toronto. 1995

http://www.commoncriteriaportal.org/

	CAiSE 09cover sheet
	CAiSE09

