

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

Author(s): Belaunde, Mariano; Falcarin, Paulo; Jezequel, Jean-Marc.
Article title: A Model-driven Framework for Professional Service Designers and
Developers
Year of publication: 2008
Citation: Belaunde, M; Falcarin, P; Jezequel, J.M. (2008) A Model-driven
Framework for Professional Service Designers and Developers, In: ICIN
(International Conference on Intelligent Networks): Services, Enablers and
Architectures, Adera (FRA), ICIN 2008, Bordeaux, Oct 2008.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219372072?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://roar.uel.ac.uk/

A Model-driven Framework for Professional Service Designers
and Developers

Mariano Belaunde Paolo Falcarin Jean-Marc Jezequel

Orange Labs,
8 Avenue Pierre Marzin,
F-22300 Lannion, France

mariano.belaunde@orange-ftgroup.com

Politecnico di Torino, Dipartimento di
Automatica e Informatica (DAUIN),

Corso Duca degli Abruzzi 24,
I-10129, Torino (Italy)

paolo.falcarin@polito.it

Inria/Irisa,
Campus de Beaulieu,

F-35042 Rennes Cedex
jean-marc.ezequel@irisa.fr

Abstract

A Service Creation Environment (SCE) aims to
speed-up the process of designing, developing,
deploying, testing and maintaining telecommunication
services. This paper describes the solution build in the
context of the IST SPICE collaborative project. The
developed SCE exploits generative techniques to
produce implementations from abstract service
definitions as well as a flexible execution engine
capable to manage variability in component usage and
selection.

1. Introduction

Agility in service creation is becoming a crucial mean
for a telecom company to differentiate from other
telecom competitors as well as to compete against
aggressive new actors coming from the IT and internet
industry. Service creation agility is also necessary to
allow third party service providers to develop their
business proactively within the fast-evolving world of
today.

A key factor for improving time-to-market time to
develop new services is the ability to reuse service
components in design and in runtime. Un-surprisingly,
the SOA paradigm [2] (Service Oriented Architecture)
has gained a major interest within telecom
manufacturers, operators and third party players:
potentially, it simplifies dramatically the integration of
complex communication components like SMS
sending and GSM localization within a service logic
that combines its use with ordinary Internet/IT
components - Personal Agenda, Interest Points and so
on. Various telecommunication operators, like Orange,
have started to open the access to its network resources
through the exposition of their telecommunication
enablers in the form of SOAP web services [3]. The

expectation is that third party providers will develop a
plethora of new services that will generate revenue due
to the usage of operator network resources.

Another aspect of agility in service creation is the
ability to realize services that can run on top of
different execution technologies and that have client
code that is compatible with a wide range or mobile
terminals. Furthermore, the execution of a service may
consist of various components executing in parallel in
different locations, each using a different execution
technology, and at the end being synchronized.
Support of heterogeneity may also be motivated by the
rapid evolution of technology which demands frequent
changes in the implementation of services.

To achieve this purpose, the principle of separation of
concerns between specification and implementation
becomes crucial and here is where model driven
technologies come to play. The SPICE project has
defined a service description language, named
SPATEL (SPice Advanced TELecommunication
language) which allows to capture service definitions
and compositions in a technology "agnostic" way. The
SCE Developer Studio implements this language and
provides automatic mappings to various technologies
using modern transformation technology [1] based on
meta-modeling.

2. The SPATEL language

The SPATEL language first of all provides means to
describe a service as a black-box, that is, merely as an
interface exposing: the list of service operations, the
list of accepted or emitted asynchronous events and, if
relevant, a list of noticeable side-effects (like "an SMS
in sent"). In addition each service operation can be
annotated either with "semantic" information (like
"what's the goal of the service", or the meaning of an

input parameter) as well as annotated with non-
functional features (security, cost, response timeouts
and so on). These annotations refer to concepts defined
in external ontologies, and hence its exploitation relies
on the overall consistency of the used ontologies and
their acceptance by the different involved actors. The
semantic information is intended for service discovery
and automatic service composition. Some of the non
functional properties are exploited when generating the
code implementing the service - mainly for handling
security; others are intended for intelligent automatic
composition. We should point out however, that a
large-scale exploitation of these semantic and non
functional property annotations is nowadays restricted
by the lack of standardization: there is, for instance, no
widely shared way to represent the semantics of the
concepts used to describe a translation service.

The SPATEL language also allows describing the
service as a white-box, that is, exposing the
specification of the logic of a service operation as
potentially a composition of other services. In contrast
with more "traditional" request/response services, a
service operation in our context may be long-running
and have its execution being stopped waiting for the
arrival of asynchronous event occurrences. The
selected formalism to represent such kind of behavior
are state-machines since they allow to describe quite
appropriately multi-modal behavior mixing voice-
based interaction with GUI based interaction. Specific
constructs are hence included in SPATEL to support
voice dialogs.

Last but not least, the SPATEL language allows
specifying GUIs for the interface client part. This is
done using a generic approach to avoid inventing yet a
new widget system: rather than defining concepts like
ComboBox and TextInput, the language defines the
ability to describe a hierarchy of GuiElements with
GuiProperties. This part of the specification is
typically used to generate specialized J2ME [4] clients.

3. The SPATEL Engine

Having a language sufficiently abstract and expressive
for the telecom domain is not sufficient for realizing an
effective framework. Most of the intelligence is to be
placed in the model transformers, the code generators
and in the target execution engines. A specific
transformer generates code for a BPEL [5] engine.
This transformer works well for simple orchestrations
but is indeed not usable for more complex service
logic involving voice interactions. A native execution

engine for the SPATEL language has hence been
developed under the name of SPATEL Engine. This
engine, written in Python language [13], benefit from
easy-writing and rapid development features
characterizing Python applications.

The SPATEL Engine can be seen as a framework that
implements natively the SPATEL language:

- To the concept of Service Interface in SPATEL
corresponds a Python class, sharing exactly the same
structure: same visible operations and same exposed
attributes. This class acts either as a client proxy for
the service - a glue component connected to a
potentially remote implementation - or as the "real"
implementation, to be defined locally.

- To the concept of State Machine in SPATEL
corresponds a State Machine implemented in Python.
Similarly to some VoiceXML [6] systems, the state
machine is loaded into memory once at the activation
of the service. Then each session object - representing
the usage of the service by a user - has a pointer to
store its position in the execution of the state machine.

The SPATEL engine relies on an HTTP server to offer
multi-threaded and asynchronous support. A session
mechanism is explicitly maintained by the framework
to allow keeping alive the context when dealing with
long-running services.

Two forms of execution are supported: one uses CGI
protocol [7], the other uses servlets on top of
TOMCAT [8]. In the first case, the HTTP server
invokes Python CGI which rebuilds the saved context
at each invocation. In the second case a Jython
interpreter [9] is used to connect Java [12] and Python
[13].

4. The Clubber Service Use Case

In this section we describe the Clubber service
scenario which has been developed in the IST SPICE
project to demonstrate the capabilities of the Service
Creation Environment. A mobile social networking
service for dancing clubs allows clients of clubs to
send free-call invitations to friends based on
pseudonyms and to receive bonus fees in case of
acceptance. This service implies collaboration between
components provided by the operator (pseudonym-
based access to telecommunication enablers) and
components provided by a third party service provider
(which develops the orchestration and access a pre-

existing Club database). The free-call scenario is
depicted by the Figure 1 below:

Figure 1: Free Call Clubber Scenario

Firstly, Monica, which is within a dancing club, opens
a dedicated widget application in its mobile phone and
(1) sends a free call request to one of its friends
(Mariano) to invite him to join the club. The composite
service logic will build the content of the invitation as
follow: (2) checking the pseudonyms; (3) retrieving
the coordinates of the invited user to prepare a route
map request to access the club; (4) retrieving the
Monica photo, (5) retrieving the Club icon, (6)
booking the click-to-call reference for the free call, and
finally (7) sending the invitation template to the
operator so that he can (8) push to the destination user.
In fact, there are privacy concerns in this scenario: the
3rd party is not allowed to have means to know who
invited who and to look at localization (map) and
identification data (Monica photo). For that reason, as
indicated in Figure 1, most of the intermediate results
are returned encrypted. They are decrypted by the
operator prior the final delivering of the invitation
page. The last step of this scenario is the (9) activation
of the click-to-call link by the target user which
provokes the call.

To implement this service, the operator firstly provides
to the 3rd party service provider the SPATEL service
interfaces of the invoked components that are under is
responsibility. Then the 3rd party provider is able to
define its composition logic using the specific UML
[10] graphical form for SPATEL. The Figure below
shows an excerpt of this model:

Clubber
orchestrate()

Clubber
orchestrate()

PseudoAuthManager

checkLogin(login,psw)
checkIsRegistered(pseudoId)

PseudoAuthManager

checkLogin(login,psw)
checkIsRegistered(pseudoId)

FreeCallRequest(clubId,src,tgt,pwd)FreeCallRequest(clubId,src,tgt,pwd)

AUTH.checkLogin(src,tgt,pwd)AUTH.checkLogin(src,tgt,pwd)

AUTH.checkIsRegistered(tgt)AUTH.checkIsRegistered(tgt)

Wait

Figure 2: Graphical modelling

In Figure 2 the "orchestrate" operation is specified by
means of a state machine in which we see that a
FreeCallRequest asynchronous event is expected when
the Wait state is reached. Specific nodes represent the
invocation of service component like the
PseudoAuthManager component to check
pseudonyms. This invoked interface is opaque is
respect to the 3rd party provider since only the
signature is exposed to him.

5. Model-driven process

We describe here briefly the model-driven process to
run a composite SPATEL service like the one defined
in the Clubber use case. Initially, (1) the service
designer defines and/or imports service interfaces and
state machines. (2) Service interfaces and other entities
are translated as Python class skeletons, and SPATEL
state machines are translated into the equivalent state-
machine in Python. Opaque operations which are not
connected to existing remote services require manual
completion. The following steps are (3) the testing of
the service using a fully generated web-based
interface, (4) the generation of various widget
applications running on different mobile phones.
Finally, (5) if reuse of the composite service is
relevant, the new service can be promoted as a new
service available as a SOAP web service.

Implementation

Web TestingMobile GUI
-

Interface + Service Logic
SPATEL

22

33

4

5

Web Service

11

Figure 3: Service Creation Generative Process

Control

2

Monica Mariano

Call Activation

8

9

1

Renderer

7

Route

3

Photo

4 6

Call Ref

5

Icon

Apart from an important increase in productivity, the
two interesting capabilities offered by this model-
driven process are to enable two kinds of variability: a
vertical flexibility which allows service logic to run in
potentially various execution platforms. In the case of
our scenario, the logic runs in an instance of the
SPATEL engine as well as on top of a BPEL engine. A
second kind of variability, that we call horizontal
flexibility allows replacing an invoked component by
another, by simply adapting the implementation on the
basis of a neutral common interface. In our scenario
example, the click-to-call component used to provide
the phone call facility has two alternative
implementations that can be called by the composite
logic: an implementation based on Asterisk platform
[11] or a dedicated enabler offered by Orange. To
facilitate horizontal flexibility, when dealing with
SPATEL Engine, the code generator produces in fact
various variants for each service operation: a fake
version - which does nothing but is useful for earlier
simulation, a local version - which is supposed to
contain the local default implementation, and finally a
"remote" version, which merely links to an existing
SOAP or HTTP GET/POST service. To activate the
last variant, the service designer needs to populate a
web service registry and indicate, through a declarative
deployment descriptor, how parameters are mapped to
those expected by the connected web service.

Another noticeable capability that is obtained thanks to
code generation is the ability to insert automatically
code to handle security constraints on the invocation of
operations: an operation may be visible and yet not be
available to unregistered users.

6. Conclusion

In this paper we have presented a framework for agile
development of telecommunication services which
make use of model driven technologies. This
framework is firstly based on the definition of a
domain specific language, named SPATEL, which
uses UML interfaces and UML state machines for
describing services in a technology agnostic way. The
framework exploits the specific capabilities of the
SPATEL Engine to allow testing, simulating and/or
performing a real execution of the modeled composite
service.
Unsurprisingly, we found out that is the tightly
combination of a domain-specific language with a
dedicated native execution technology allows to obtain
more effective results in terms of service creation

agility. The link between the two is done thanks to
generative techniques. However, maintaining a clean
conceptual separation between the design language and
the execution technology remains of a major
importance since, in case of replacement of a support
technology, it potentially allows preserving the
investment done to design new services. Also the fact
that telecommunications services are essentially
distributed and involve potentially different kinds of
terminals is another reason for maintaining the
distinction between design and implementation, and
between executable models and executable code.

ACKNOWLEDGMENTS

This work has been partially funded by the European
Commission, under contract IST-027617, project
SPICE (Service Platform for Innovative
Communication Environment).

7. References

[1] [MDA]. OMG, "Model Driven Architecture", document
ormsc/2000-11-05, Nov 2000.
 Web link: http://www.omg.org/mda/
[2] [SOA]. OASIS, "OASIS Reference Model for Service
Oriented Architecture V 1.0", Aug 2, 2006.
Web link: http://www.oasis-open.org/
 committees/download.php/19679/soa-rm-cs.pdf.
[3] [SOAP] Simple Object Access Protocol, version 1.2.
 Web link: http://www.w3.org/TR/soap12-part0/
[4] [J2ME] Sun, Java 2 Micro Edition, Connected Limited
Device Configuration 1.0, JSR 30.
 Web link: java.sun.com/javame/index.jsp
[5] [BPEL] OASIS, Web Services Business Process
Execution Language Version 2.0 (BPEL), 2007 11 April,
 Web link: www.oasis-open.org/committees/wsbpel/
[6] [VoiceXML], W3C/VoiceXML Forum: Voice Extensible
Markup Language, doc:http://www.w3c.org/TR/2007
/REC-voicexml21-20070619/
[7] [CGI], Common Gateway Interface, W3C standard
 Web link: http://www.w3.org/CGI/
[8] [TOMCAT], Apache Software Foundation, Tomcat
project. Web link: http://tomcat.apache.org/
[9] [JYTHON], Python interpreter in Java
 Web link: http://www.jython.org
 [10] [UML]. OMG, "Unified Modeling Language V 2.1.2",
document: formal/2007-11-04, Nov 2007.
 Web link: http://www.omg.org/spec/UML/2.1.2/
[11] [ASTERISK] Open source PBX & telephony platform
 Web link: http://www.asterisk.org/
[12] [JAVA] Java language, at http://java.sun.com
[13] [PYTHON] Python language, at http://www.python.org

	ICIN 08 cs
	Poster-01

