
ALI: An Extensible Architecture Description Language for
Industrial Applications

R. Bashroush1, I. Spence1, P. Kilpatrick1, TJ. Brown1, W. Gilani2, M. Fritzsche2

1 School of Electronics, Electrical Engineering and Computer Science,

Queen’s University Belfast
{r.bashroush, i.spence, p.kilpatrick, tj.brown}@qub.ac.uk

2 SAP Research CEC Belfast

{wasif.gilani, mathias.fritzsche}@sap.com

Abstract

While Architecture Description Languages (ADLs)

have gained wide acceptance in the research
community as a means of describing system designs,
the uptake in industry has been slower than might have
been expected. A contributory cause may be the
perceived lack of flexibility and, as yet, the limited tool
support. This paper describes ALI, a new ADL that
aims to address these deficiencies by providing a rich,
extensible and flexible syntax for describing
component interface types and the use of patterns and
meta-information. These enhanced capabilities are
intended to encourage more widespread industrial
usage.

1. Introduction

In recent years, Architecture Description Languages
(ADL) have emerged as potential tools for formally
describing system architectures at a reasonably high
level which enables better intellectual control over the
system [1]. ADLs model not only system structure, but
also address component behavior specification as well
as communication protocols. While some ADLs
provide graphical notations (e.g. boxes and lines),
others also provide textual notations.

Architecture descriptions can also be used as a
communication vehicle among the different
stakeholders. With the formality introduced by ADLs
to the architecture description, more architectural
analysis of qualities such as consistency, modifiability,
performance, etc. can be carried out on the system at
an early stage. Although it is not clear yet what aspects
of the architecture should be included or excluded from
the architecture description (e.g. behavior, structure,
interfaces, etc.), it is widely agreed within the ADL
community that software architecture is a set of

components and the connections among them
conforming to a set of constraints.

Although some ADLs have been put to industrial
use [2], the majority of ADLs have not scaled-up and
remain confined to small-scale case studies. A number
of potential limitations demonstrated by current ADLs
were identified in previous work [3]. Among these
limitations are: over constraining syntax, single view
presentation of the architecture and lack of tool
support. The ALI ADL has been designed to address
these limitations. The rationale behind the ALI
notation was discussed in [3]. Among the main
concepts driving the ALI notation are: flexible
interface description, architectural pattern description,
formal syntax for capturing meta information, and
linking the feature and architecture spaces. ALI built
on our experience with the ADLARS [4] ADL and
adopted many of the solution space provided by
ADLARS such as its support for Software Product
Lines.

In this paper, we introduce the different parts of the
ALI notation to show how the goals of [3] are realized
in the language. ALI comprises seven parts:

1. meta types: which provides a notation for
capturing meta-information

2. interface types: which provides a notation for
creating types of interfaces

3. connector types: where architectural
connectors are defined

4. component types: where architectural
components are defined

5. pattern templates: where design patterns are
defined

6. features: where the system features are
catalogued

7. system: where the system architecture is
described

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219371951?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

In the following, the different parts of the ALI
notation are discussed. Section 9 concludes with a
discussion.

2. Meta types

Meta types provide a formal syntax for capturing
(meta-)information related to the architecture. A meta
type is defined by the information it contains. The
information is captured within fields, where each field
has a data type (text, number, etc.) and a name (tag).
Consider the example below for defining a meta type
called MyMetaType1:

meta type MyMetaType1 {

 tag creator, description: text;

 tag cost, version: number;

 tag edited*: date;

}

In this example, the keyword “meta type” is used

to start a meta type definition. MyMetaType1 is the
name of the meta type being specified. Each meta type
contains a number of tags which can be either textual,
numeral or date (if needed, the tag types could be
extended to include: enumeration, character, etc.). In
the example above, five tags are defined, two textual,
two numeral and one date. The date tag “edited” is
marked with an asterisk ‘*’ to indicate an optional tag.

Once meta types are specified, meta objects
conforming to these types can then be created
throughout the architecture. These meta objects are
attached to architectural elements (e.g. components,
connectors, etc.) to provide a corner for appending
additional information related to these elements. Below
is an example meta object that conforms to the meta
type given in the example above.

meta: MyMetaType1 {

 creator: “John Smith”;

 cost: 5,000;

 version: 1;

 edited: 12-02-2006;

 description: “A GUI component ...”;

}

A meta object could also conform to more than one

meta type. It is also possible to create meta objects that
do not conform to any meta type. This enhances the
language flexibility. However, little automated analysis

can be done over such informally provided
information.

The formal specification of meta information would
considerably enhance the development of CASE tool
support that could harness these meta objects and
conduct automated analysis on the data (e.g.
cost/benefit analysis, project timing/scheduling, etc.
based on what meta information is available). Other
meta information might include: design decisions,
component compatibility, etc. which, when extracted
and formatted using proper CASE tools, allow
automated architecture documentation to be achieved
on-the-fly.

In general, it is expected that the meta types will be
created once and used repeatedly within different
systems developed by the same enterprise. A standard
set of information required (tags) may be first
identified by the project management team (or any
other stakeholder), and then provided to architects to
conform to. This insures that critical information is
always provided within an architecture description.
The flexible syntax also allows the architects to
augment this information with fields (tags) that they
may need temporarily or internally within the
architecture team.

3. Interface types

Interface types have been introduced to ALI to
allow for the usage of multiple interfaces within a
system description. The practice would be to create a
set of common interface types needed within an
application domain once (e.g. WSDL, IDL, Invocation,
etc.), and then use these interfaces in the design of
components and systems.

The interface type definition is divided into two
sections:

 Syntax definition: where the syntax of the interface

description is specified using a subset of the
JavaCC [5] notation.

 Constraints: where the interface binding

(connectivity) constraints are specified. These
include:
- Should match: here the terms (identified in the

syntax definition section using the JavaCC
notation) that should match between two
interfaces to be considered compatible
(allowed to bind) are identified. For example,
in a functional interface, for two interfaces to
be compatible, the function names and
argument types should match.

- Protocols supported: a list of the protocols that
this interface type can support for

communication is provided. E.g.: IIOP,
HTTP, method invocation, etc.

- Allow multiple bindings: This is a Boolean
value that states whether multiple binding is
allowed on this interface. Example: this
property is set to true on a server socket
interface to allow for binding multiple client
socket interfaces; on the other hand, it is set to
false on the client socket interface.

- Factory: This is a Boolean value that states
whether the interface is a factory. A factory
interface means that when a connection
request is received on this interface, a new
connection dedicated interface is created to
handle that particular request while the main
interface continues to listen to new incoming
requests. Example: server socket interfaces in
java are factories. On the other hand, C++
sockets are not. In C++, the factory
functionality is to be implemented by the
programmer if needed.

- Persistent: This is a Boolean value which when
set to true indicates a persistent interface (the
internal data of the interface component is
kept unchanged after the current connection
has ended) and when set to false indicates a
transient interface (internal data is reset to
initial values when the current connection is
terminated).

Below is an example for defining an interface type

functional:

interface type functional {

 syntax definition: {

 "Provided" ":" "{"

 ["function" <PROV_FUNCTION_NAME>

 "{"

 "impLanguage" ":"

 <PROV_LANGUAGE_NAME> ";"

 "innvocation" ":"

 <PROV_INVOCATION> ";"

 "paramterlist" ":"

 "("[<PROV_PARAMETER_TYPE> [","

 <PROV_PARAMETER_TYPE:]*]? ")" ";"

 "return type" ":"

 <PROV_RETURN_TYPE> ";"

 "}"]* "}"

 // Required: etc.

 }

 constraints: {

 should match: {

 PROV_INVOCATION_NAME,

 PROV_PARAMETER_TYPE

 }

 protocols supported: { RMI-IIOP, JRMP }

 allow multiple bindings: false;

 factory: false;

 persistent: false;

 }

}

For further details about the notation used for

specifying the interface syntax, please refer to JavaCC
[5].

It is important to emphasize here that the interface
type definition is not meant to be read by humans, but
rather created once and then read by CASE tools that
would verify the interface descriptions and bindings
made throughout the architecture definition.

4. Connector types

As in Acme[6] and other ADLs, connectors are
considered first class citizens in ALI.

Below is a simple example of a connector type
definition:

connector type SOAP/HTTP {

 interfaces {

 a, b of type WSDL;

 }

 layout {

 if (supported(FULL_DUPLEX_FEATURE))

 connect a and b;

 else

 connect a to b;

 }

}

The connector type definition consists of two parts

 interfaces: where the connector interfaces are

defined. These resemble the input/output terminals
of the connector. A connector must have at least
two interfaces (for input/output) while
theoretically there is no restriction on the
maximum number of interfaces allowed. For
example, a bus connector would need to have a

number of bi-directional interfaces to serve all
components connected to the bus. On the other
hand, a simple connector like the one in the
example above has only two interfaces (of type
WSDL, where WSDL is an interface type that
should be defined in the interface type section).

 layout: The layout section describes the internal
configuration of the connector. It shows how the
connector interfaces are connected internally, that
is, how the traffic travels internally from one
interface to another. There are two types of
configurations allowed between connector
interfaces:

- unidirectional connections (to): which
specify that the data/requests received
on one interface to be output on
another interface. This is done using
the keywords: “connect” and “to”.
Example: connect a to b; outputs the
data/requests received on the a
interface to the b interface.

- bi-directional connection (and): which
specify that the data/requests received
on one interface be output on another
interface and vice versa. This is done
using the keywords: “connect” and
“and”. Example: connect a and b;
outputs the data/requests received on
the a interface to the b interface and
vice versa. The keyword “all” can be
used to connect a connector interface
to all other interfaces of the connector
using a bi-directional or unidirectional
communication as described above.
For example, connect a to all
makes the input on interface a
available as output on all other
interfaces of the connector. In contrast,
connect a and all makes the input
on a available on all other interfaces
and the input on all other interfaces
available on a. The statement: connect
all to all can be used to create bi-
directional connections among all ports
(connect all and all is not defined).

As with interface types and meta types, a set of

connector types can be defined per domain which can
then be reused across multiple projects within that
domain.

In the example given above, the connector
definition is linked to the system feature model to
allow for connector customization based on features
selected. This is done using the if/else structure and
the keywords “supported/unsupported.” So, in the

example above, if the system supports the
FULL_DUPLEX_FEATURE, interfaces a and b are
connected as bi-directional (using “and”); otherwise,
they are connected as unidirectional (using “to”). This
syntax introduces a high level of configurability to the
connector definition which provides better support for
defining configurable and product line architectures.

Meta objects can be attached to connector types by
simply defining the meta object (as explained in
section 2) inside the connector type definition
(anywhere between the start and end brackets).

5. Component types

Component type definition form a crucial part of the
ALI notation. In this section, a very brief description is
given due to space limitation.

The component type definition consists of two
sections:

 interfaces: which specifies the different component

interfaces. These interfaces are described
conforming to defined interface types (included in
the interface type section). A component can have
one or more interfaces of different types.

 sub-system: where the internal structure (sub-
system) of the component is described. The sub-
system section is divided into three sections:

- Components: where the different sub-
components included within the
component are defined

- Connectors: where the different
connectors to be used in connecting sub-
components are defined

- Configuration: where the way in which
sub-components are connected is
described. Three methods can be used to
connect components:

a. Using connectors: where a
connector mediates the
connection between two or more
components.

b. Direct connection: where
component interfaces are bound
directly without the use of a
connector.

c. Using patterns: where
predefined connection patterns
can be used to connect a set of
components according to a
selected architectural pattern.
More details on architectural
patterns are given in the next
section.

Below is an example of a component type
definition:

component type MyComponentType1

{

//a meta object attached to the component type

 meta: MyMetaType1 {

 description: “this is an example component”;

 cost: 20,000;

 // etc.

 }

 interfaces: {

 // specifying a functional interface

 myInterface1 of type functional {

 Provided: {

 function myAddFunction

 {

 impLanguage: "Java";

 invocation: "add";

 parameterlist: ("int");

 return: "void";

 } // etc.

 }

 Required: { }

 //no required functions specified

 }

 if(supported(Provide_WSDL_Interface_Feature))

 {

 myInterface2 of type WSDL {

 // WSDL interface description

 }

 }

}

sub-system: {

 components {

 comp1<custom_feature_set1>: ComponentType1;

 if(supported(Some_Feature_A))

 comp4<custom_feature_set4>:

 ComponentType3;

 else

 comp4<custom_feature_set5>:

 ComponentType3;

 //etc.

 }

 connectors {

 conn1<custom_feature_set1>: ConnectorType1;

 // etc.

 }

 configuration {

 //1 - connecting components using connectors

 connect comp1.interface1 with conn1.a;

 connect comp2.interface1 with conn1.b;

//2 - connecting components without connectors

 bind comp3.interface1 with comp1.interface2;

//3 - connecting components using patterns

 if(supported(Some_Feature_B)){

 Client_Server(ServerComponent1.interface1,

 [ClientComponent1.interface1,

 ClientComponent2.interface1,

 ClientComponent3.interface2]

);

 }

 }

}

In the example above, we begin the component

description using the keyword ‘component type’
followed by the component type name, MyComponent1
in this example.

The first section of the component definition
contains a meta object which conforms to meta type
MyMetaType1.

The second section is the component interfaces
section where two interfaces are defined:
myInterface1 of type functional (an interface type that
was defined as an example in section 3) and
myInterface2 of type WSDL that only exists if the
feature Provide_WSDL_Interface_Feature is
supported by the system.

We could define as many interfaces as we wish,
where we could link the existence of interfaces to the
support/unsupport of system features. We could also
attach meta objects to interfaces simply by defining
them within the scope of the interface definition
(somewhere between the two curly brackets of the
interface definition).

It is recommended that interface definitions
conform to defined interface types as per the example
above (functional and WSDL types). However, to allow
for maximum flexibility, it is possible to define
interfaces that do not conform to any pre-defined
interface type, in which case, no analysis or automated
tool support can be enabled over that interface
definition or any connection made over it (similar to

the concept of creating arbitrary meta objects that do
not adhere to any meta type definition). This is done by
dropping the interface type name that follows the
interface name in the interface definition. For example,
one could define a port-like interface without having
an interface type readily available:

myPortInterface3 :

{

input in1, in2, in3;

output out1, out2, out3;

}

However, it will not be possible to verify whether

the connection between this interface and any other
interface within the system is valid or not (as the
interface syntax and constraints are not formally
defined). This could be practical at early design stages
when the exact interface type specification is not clear.
When the interface type matures enough throughout
the design process, an interface type is defined for this
type of interface, and then the interface type name is
appended to the interface definition above to allow for
verification, and perhaps automated analysis with the
aid of appropriate CASE tool support.

The third section in the component definition is the
description of the sub-system. In the example above,
three components are defined in the components
section, each customized with a different feature set.
Also, a component of type ComponentType3 is defined;
however, its customization is dependent on the
existence of the feature Some_Feature_A.

Similarly, a number of connectors are defined in the
connectors section within the sub-system description.

The configuration section shows how the
components and connectors defined in the sub-system
section are configured (connected). As explained
earlier, there are three ways in which components can
be connected and these are demonstrated in this
example.

6. Pattern templates

The ALI notation allows for the definition and
usage of Architectural Patterns. This is done using
pattern templates. Pattern templates are first defined
and then used throughout the architecture with a simple
call to the pattern template needed. Pattern templates
take as an argument the interfaces to be connected
according to the pattern template definition.

Pattern templates are defined in similar way to the
definition of functions (methods) in programming
languages. A pattern template definition contains:

 Pattern name: a unique pattern name
 Arguments: the set of interfaces to be connected.

Single interface and/or arrays of interfaces can be
passed as arguments. In the case of arrays of
interfaces as arguments, the minimum and
maximum number of interfaces passed can be
specified.

 Definition: the specification of how the interfaces
are to be connected (the pattern). The syntax used
for defining patterns is very simple and provides
support for:
- connecting interfaces: using the same syntax

used in the connections section of the
connector type definition (discussed in
section 4).

- defining loops: to allow for connecting arrays
of interfaces. The syntax used here is the
same syntax used in C for creating for loops.
Note here that the arrays of interfaces start
at index 1 and not at 0 (like in C).

Below is an example that defines a Client/Server

pattern:

pattern templates:

{

 Client_Server(server : InterfaceType1,

 clients [1..N] : IntefaceType1

)

 {

 for(i = 1 ; i <= N ; i++)

 connect clients[i] and server;

 }

}

In this example, the Client_Server pattern takes as
an argument one interface called server of type
InterfaceType1, and an array of interfaces called
clients (with [1..N] meaning a minimum of one
client interface) of type InterfaceType1. The pattern
is defined as: for all N clients, create a bi-directional
connection with the server interface (refer to section 4
for more details on the use of the keywords:
“connect”, “and”, and “to” for connecting interfaces).

An example of how to invoke the Client/Server
pattern template to connect a number of component
interfaces was given within the example in section 5.

7. Features

The feature description section provides a catalogue
of the features used within the system. The feature
definition consists of:

 Alternative names: In many cases, different groups

within the development process refer to the same
feature using different names. This part of the
feature definition keeps track of the different
names (if any) that are used to reference the same
feature (within the different design and
development groups involved in the project).

 Feature parameters: A feature can carry a number
of parameters (textual, numerical, etc.). For
example, if the feature is “Manual Gearbox”, the
parameter would be the “number of gears”
available (a numerical value).

Below is an example of how features are defined in

ALI:

features {

 featureA {

 alternative names: {

 Developer.X, Evaluator.F112

 }

 parameters: {

 (windowTitle: text),

 (windowWidth,windowHeight: number)

 }

 }

 // etc.

}

In the example above, featureA was defined
showing that it is referred to as “X” by the
development team and as “F112” by the evaluation
team. The feature encompasses three parameters, one
textual and two numerical.

The features defined in this section are usually
extracted from the feature model of the system. This is
carried out at a prior stage of embarking on the
architecture design. CASE tools could be used to read
feature models and populate this section (work on this
aspect is ongoing in our group). This is an important
part of the notation as it makes ALI independent of any
particular feature modeling technique.

8. System

Finally, the system section is where the overall
product (or product line) architecture is specified. The

syntax used in this section is the same as the syntax
used in the sub-system section (described in
component types, section 5) with the major difference
that the system section is not contained within any
component definition but rather provides the
description of the overall system architecture (rather
than a sub-system of a component). As a result, the
keyword “external” can be used in the system
description section to reference interfaces of external
systems (when needed) providing a means of capturing
the system interaction with its environment (operating
system, other systems, etc.).

Below is an example of the overall structure of the
system section showing how the external keyword
could be used to reference external interfaces (parts
similar to the example given in section 5 are replaced
with “. . . ” due to space limitation):

system {

 components { ... }

 connectors { ... }

 configuration

 {

 ...

 bind comp1.interface

 with external.windowHandleAPI;

 }

}

9. Discussion

Potential limitations within existing ADLs which
might be restricting their use to small-scale case-
studies were discussed in [3]. Restrictive
syntax/structure, lack of tool support, and single view
presentation are among the limitations identified. In
this paper we have presented the different parts of the
ALI notation which were designed to address the
identified limitations. ALI built on our experience with
ADLARS [4] and introduced a blend between
flexibility and formalism. While flexibility gives
freedom for the architect during the design process,
formalism allows for architecture analysis and
potential automation using proper CASE tool support
(e.g. on-the-fly architecture documentation, code
generation, etc.).

Among the new concepts in ALI, the notation
provides no pre-defined interface types. Instead, ALI
introduces a sub-language that gives users the
flexibility to define their own interface types. Also, the
notation focuses on capturing architectural meta-

information and introduces formal syntax (meta types
and meta objects) for this purpose.

Continuing the theme of flexibility, ALI permits the
user significant scope for defining architectural
patterns. In essence, patterns may be defined and
instantiated in similar fashion to function calls in
programming languages.

Among the successful concepts adopted from
ADLARS, ALI supports the relationship between
components, connectors, patterns etc. in an architecture
description and features in the feature model using first
order logic. This direct link between the architectural
structure and the feature model [7] allows the capture
of complex relationships that might arise between the
two spaces in real-life systems.

The textual notation described in this paper serves
as a central knowledgebase for the architecture
description. CASE tools may then be used to extract
the necessary information from this knowledgebase to
be presented as different views of the architecture. The
centralized approach would help alleviate multiple
architectural views mismatch when the different views
are maintained separately [8].

As for future work, two items top the list for the
work on the ALI project. The first is to develop a
CASE toolset for the notation. The toolset will benefit
from the experience gained with designing the
ADLARS Development Studio [9, 10]. And the second
is to explore the potential for providing round-trip to
code. The ability to go from architecture to code and
back seems to be attracting more interest and
momentum in industry (e.g. the work on Model Driven
Architecture, MDA[11]).

10. References

[1] P. Clements, R. Kazman, and M. Klein, Evaluating

Software Architecture: Methods and Case Studies: SEI
series in software engineering. Addison-Wesley, 2002.

[2] R. v. Ommering, F. v. d. Linden, J. Kramer, and J.
Magee, "The Koala Component Model for Consumer

Electronics Software," IEEE Computer, pp. 78-85,
March 2000.

[3] R. Bashroush, I. Spence, P. Kilpatrick, and T. Brown,
"Towards More Flexible Architecture Description
Languages for Industrial Applications," Gruhn and F.
Oquendo (Eds.): EWSA 2006, Lecture Notes in
Computer Science, Volume (4344),, pp. 212-219,
September 2006.

[4] R. Bashroush, T. J. Brown, I. Spence, and P.
Kilpatrick, "ADLARS: An Architecture Description
Language for Software Product Lines." In proceedings
of the 29th Annual IEEE/NASA Software Engineering
Workshop, Greenbelt, Maryland, USA, April 2005. pp.
163 - 173.

[5] "The Java Compiler Compiler [tm] (JavaCC [tm]) -
The Java Parser Generator.,"
https://javacc.dev.java.net/.

[6] D. Garlan, R. Monroe, and D. Wile, "Acme:
Architectural Description of Component-Based
Systems," in Foundations of Component-Based
Systems, G. T. Leavens and M. Sitaraman, Eds.:
Cambridge University Press, 2000, pp. 47-68.

[7] T. Brown, R. Gawley, R. Bashroush, I. Spence, P.
Kilpatrick, and C. Gillan, "Weaving Behavior into
Feature Models for Embedded System Families." In
proceedings of the 10th International Software Product
Line Conference SPLC 2006, Baltimore, Maryland,
USA, August 2006. pp. 52-64.

[8] J. Muskens, R. Bril, and M. Chaudron, "Generalizing
consistency checking between software views." In
proceedings of The 5th International Working
Conference on Software Architecture, WICSA-05,
Pittsburgh, PA, November 2005. pp. 169- 180.

[9] R. Bashroush, I. Spence, P. Kilpatrick, and T. J.
Brown, "Deriving Product Architectures from an
ADLARS Described Reference Architecture using
Leopard," ACM SIGSOFT Foundations of Software
Engineering FSE-12, October 2004.

[10] R. Bashroush, I. Spence, P. Kilpatrick, and T. J.
Brown, "Towards an Automated Evaluation Process for
Software Architectures." In proceedings of the
IASTED international conference on Software
Engineering SE 2004, Innsbruck, Austria, February
2004. pp. 54-58.

[11] OMG, "Model Driven Architecture,"
http://www.omg.org/mda/.

