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Abstract 
 

With current trends towards moving variability 

from hardware to software, and given the increasing 

desire to postpone design decisions as much as is 

economically feasible, managing the variability from 

requirements elicitation to implementation  is 

becoming a primary business requirement in the 

product line process. Nowadays, a medium size 

software system may encompass hundreds if not 

thousands of variability points introducing a new level 

of complexity that current techniques struggle to 

manage. In this paper, we present a new approach to 

variability management by introducing a multiple 

views model (4VM) where each view caters for specific 

set of concerns that relate to a particular group of 

stakeholders. 

  

 

1. Introduction 
 

Within Software Product Lines, features play an 

important role in specifying the fixed and variable parts 

of the architectures of product families and 

configurable systems.  In its simplest form, a feature is 

an aspect of a system, such as a behavior or an 

attribute, from the end user’s point of view. Feature 

Modeling emerged from the work by KC Kang et al [1] 

on domain analysis techniques.  

Managing variability within the feature model is a 

key step for the success of a product family. Variability 

management is about managing the commonalities and 

variabilities within a product line. Commonalities are 

structured lists of assumptions that are true for all 

product members. Variabilities are structured lists of 

assumptions about how product members differ. 

A classic example of variability is found in mobile 

phone product lines where variabilities include: the 

screen size, number of keys, language, etc.  

A Variation Point identifies a variability within the 

product line and its possible bindings by describing 

several variants. A variant is a possible way to realize 

or bind a variation point at a specified stage of the 

development process (design time, compilation time, 

run-time, etc.) [2].  

Bachmann and Bass [3] proposed a classification 

for architectural variabilities (Functional, Data, 

Control, Technology, etc.) while Svahnberg and Bosch 

in [4] talked about different levels of variability 

(Product Line, Product, Component, etc.). 

As variability is geared more towards software, and 

as more products are being included within a single 

product line, current complex systems tend to comprise 

a large number of variability points which makes 

traditional manual feature modeling techniques 

cumbersome and difficult to use. As a result, a number 

of variability management techniques have emerged.  

Among those are FODA [1] and FORM [5] by KC 

Kang et al; FeatuRSEB [6] which combined aspects of 

the FODA method and the Reuse-Driven Software 

Engineering Business (RSEB) [7] method; and Bosch’s 

modeling techniques [8]. Other commercial 

methodologies and tools include BigLever Software 

Gears [9] and Pure::Variants [10].  

Although current techniques provided many useful 

facilities for managing variability, a number of 

limitations are still exhibited. The ability to encompass 

and present a large number of variability points along 

with their relationships in one view remains a 

challange. While some chose to use different 

presentation techniques (e.g. three dimensional space, 

special purpose output devices and panels, etc.) to try 

to alleviate this limitation, we approached the problem 

by dividing the feature model into a number of views, 
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where each view caters for a specific set of concerns 

and relates to a particular group of stakeholders.  

In the following, we begin in section 2 by discussing 

the scope and concerns covered by our model. Section 

3 then introduces the Four Views Model (4VM) and 

gives details of each of the views. Finally, we draw 

conclusions in section 4. 

 

2. The 4VM Scope  
 

In this section, we discuss some variability 

management requirements and concerns which we have 

identified through experience and collaboration with 

other research and industrial partners. These 

requirements are in the form of information and 

relationships that should be captured about features in a 

feature model. The Four Views Model (4VM) is built 

around these concerns. More concerns can be added to 

the list in the future to accommodate special 

application domain or enterprise requirements (e.g. 

feature evolution, etc.). 

 

2.1. Feature dependency 
 

Within real-life systems, features in a model affect 

each other in a number of ways. Some features cannot 

be supported unless other feature(s) are supported in a 

product (mutually dependent); other features cannot be 

supported in the same product at the same time 

(mutually exclusive).  

For example, consider an automobile product family 

where: engine size (e.g. 1.1L, 2L, etc.), gearbox (e.g. 

Auto, Manual – gears:4,5,6 etc.), and chassis type 

(sport, saloon, estate, etc.) are among the features of 

the product family. The number of gears in a gearbox is 

dependent on the engine size; so an engine size 1.1L 

and a 5-gear gearbox may be mutually exclusive 

(cannot coexist in the same product). Similarly, chassis 

type is dependent on the engine size; an estate chassis 

may require at least an engine size of 1.8L (mutually 

dependent). 

Dependencies can be quite difficult to model, 

especially those that relate to quality attributes. Hence, 

dependencies should not only be represented as first 

class citizens in any feature model, but also the 

technique used for capturing dependencies should 

allow for complex dependency representation. 

 

2.2. Feature interaction 
 

While the presence or absence of features within a 

feature model may affect the existence of other features 

(feature dependency), feature interaction is concerned 

with how different feature combinations affect the 

system architecture. Features are realized in an 

architecture using different components and 

configurations. Different feature combinations might 

lead to the inclusion of different architectural 

components and configurations. 

For example, consider two optional features: 

FeatureA and FeatureB. Assume that, if FeatureA is 

supported by a product, it is realized in the architecture 

using Component1; similarly, if FeatureB is supported, 

it is realized in the architecture using Compnent2. 

Within a product that supports FeatureA, if supporting 

FeatureB means only the inclusion of Component2 in 

the product architecture, then these features are 

considered independent (do not interact). However, if 

supporting FeatureB (at the same time as FeatureA) 

means the inclusion of other components than 

Component1 and Component2 (and perhaps the 

exclusion of Component1 and/or Component2), then 

FeatureA and FeatureB are considered to be interacting 

features. 

Predicting feature interaction in a system is a 

challenging task. Minimizing feature interaction is 

considered good practice as it reduces the architecture 

complexity when relating features to architectural 

structures. One way to minimize feature interaction is 

by restructuring the feature model and introducing new 

features to abstract those interactions (which we refer 

to as feature abstraction and is discussed in section 3). 

 

2.3. Variability binding time 
 

As discussed earlier, variation points are places in 

the design or implementation where variation occurs. 

Variability is due to unmade decisions that are left 

open as long as economically feasible. However, 

specifying the point in time when a variation point is to 

be bound to a specific variant is important.  

A number of possible binding times have been 

identified and used in industry. Examples are: 

- Design time: where the decision about a 

variability point is made at the design stage. 

Beyond that point (e.g. implementation stage, run 

time, etc.), this variation point is not visible. An 

example of a design time binding is to allow for 

linking features to the inclusion/exclusion of 

architectural components as well as the 

reconfiguration of the architecture. This is design 

time variability and binding. 

- Implementation time: the variation point is not 

decided upon until implementation. For this 

binding time, variation points appear at the code 

level. A good example of implementation time 



variability with C/C++ is the use of pre-processor 

directives. In the compiled version of the system 

(the executable), variability points introduced 

using pre-processor directives are invisible. 

- Link time: this is when the variation point is not 

decided upon until linking time. An example of 

link time variability is MS Windows Dynamic 

Link Libraries (DLLs).  

- Load time: the variation point is not decided upon 

until the load of the system. Load time variability 

can be introduced using a number of mechanisms 

such as configuration files. 

- Run time: Depending on the application, this 

tends to be the most desirable binding time. This 

is when variation points are left open until the run 

time when the end user can make the decision on 

how to bind the variability. However, due to price 

(cost, effort, time to implement, etc.) and 

complexity (complexity of the system, size of 

code, etc.) this is not always a feasible option. 

There are numerous examples of run time 

variability where variation points are bound 

including, for example, using the application’s 

“options” or “settings” menu. 

 

2.4. Feature implementation time 
 

In industry, software systems are usually built 

incrementally; there is rarely a software product that is 

built as a final release from the first edition. Products 

are usually enhanced and features added to them 

continuously over time. Planning for future releases of 

products, the features to be implemented in these 

products, and the timing, is a key step for the success 

and sustainability of a product line.  

So, feature implementation time should also be 

captured within the feature model as it contributes to 

product versioning. 

 

2.5. Cost/Benefit analysis 
 

The effort needed and cost involved in realizing 

features as well as their foreseen benefit should be 

documented in the feature model. This provides 

valuable input to the overall project costing and the 

product versioning process. 

Although in general it is not an easy task to specify 

the cost/effort and benefit involved in realizing a given 

feature, adequate estimates can be obtained using 

information gathered and experiences gained from 

previous similar projects. 

 

2.6. Open/Closed sets of features 
 

Within industrial projects, it is rarely the case that 

the architect is furnished with the system’s 

comprehensive and complete set of features. Rather, 

features are continuously added (and modified) to the 

initial feature model over time - even after the system 

design process has commenced.  

Designing a system around an open and changing 

set of features that can be modified anytime is a very 

challenging task. To overcome this problem, some 

industries differentiate between two types of features: 

closed and open features.  

Closed sets of features are sets of features that 

cannot be changed or modified by the architect or the 

development team and serve as the core of the product 

or product line. Modifying such features requires the 

approval of a management appointed committee or a 

designated authority which would analyze the impact 

and feasibility of any requested modification to such 

features.  

On the other hand, open sets of features are those 

that tend to change over time (for example due to 

technology advance or the addition of new features) 

and are less likely to affect the overall system when 

altered. Such features can be modified and changed by 

the project manager, architect, or the development team 

depending on the nature of the feature. 

Such information should be clearly specified in the 

system feature model. 

 

2.7. Negative features 
 

Naturally, the development of feature models has 

typically focused on the features that are to be 

supported by a product or product line. Little attention 

has been paid to features that are not to be supported 

by a given product (or a range of products). Limiting 

the features supported by different products within a 

product line supports the development of product 

ranges, for example, varying from low-end products 

(that support a minimum number of features) to high-

end ones (with most/all of the features enabled).   

Negative features are features that are specified not 

to be supported by a given product(s). If such negative 

features are specified, the product (or product line) 

architecture should be designed in a way to prohibit the 

enabling of such features by end users of the product.  

If such features are not identified and counted for at 

a very early stage in the design process, they could lead 

to different kinds of problems based on the nature of 

the product line. 



In more critical application domains, overlooking 

negative features could have more adverse effects. For 

example, overlooked negative features  had more 

serious consequences within a US Department of 

Defense (DoD) funded project that was aimed at 

developing a GPS (Global Positioning System) based 

product family. The products within the family varied 

from low precision civilian based products to high 

precision high-end military versions. However, end 

users buying the low end civilian products, with simple 

tweaking of the system, were able to get access to the 

services and precision available for the high-end 

military systems. 

 

2.8. Alternative feature names 
 

Variability management exists at the different stages 

of the development life-cycle, from requirements, to 

architecture design and implementation. Different 

teams (e.g. stakeholders, architects, developers, etc.) 

use their own mechanisms to manage variability and to 

express features. So, it is possible that the same feature 

could be referred to by different names within different 

teams. Hence, it is important to keep track of the 

features and their alternative names within the feature 

model. 

 

2.9. Feature cardinality 
 

It is always desirable to delay design decisions as 

much as is economically feasible (creating variation 

points). However, variation points come with a price 

(increased complexity of the system, performance 

degradation, increase in cost and marketing time, etc.). 

One potential solution to alleviate the effect of open 

variation points is by attaching a limited number of 

possible variants that could be bound to a given 

variation point. This is usually referred to as feature 

cardinality. 

 

2.10. Multiple views 
 

It is generally agreed that different stakeholders 

have interest in viewing different aspects (views) of the 

product line variability model. So, it is important for a 

variability management mechanism to be able to 

extract and present relevant information about the 

family model in dedicated views for different groups of 

stakeholders (users, system analysts, developers, etc.). 

This could considerably contribute to alleviating the 

graphical overload when showing all the information in 

one view (compared to multiple views). This forms the 

basis of the 4VM model and is discussed in more detail 

in the following section. 

 

3. 4VM 
 

In the previous section a number of issues which 

need to be captured within a feature model were 

identified and discussed. In this section, the Four 

Views Model for Variability Management (4VM) is 

introduced. The 4VM proposes a four view 

presentation of the feature model. The 4VM addresses 

all the issues and concepts identified in the previous 

section. The views adopted in the 4VM model are: 

- Business View: where the information related to 

the project management, cost/benefit analysis, etc. 

is presented. 

- Hierarchical & Behavioral View: where the way 

the different features are organized (usually 

presented in a tree structure) along with the 

behavior attached to each feature is presented. 

- Dependency & Interaction View: where the 

dependency and interaction among features is 

presented. 

- Intermediate View: where some design decisions 

are injected into the feature model to take it one 

step further towards the architecture domain in an 

attempt to bridge the gap between the feature 

model and the system architecture. 

 In the following section, each of these views is 

discussed in detail and example views are taken from 

the network emulator case study [11]. 

 

3.1. Business view 
 

The Business View is aimed at the project business 

and management stakeholders. It acts as a portal for 

inputting and presenting information related to: 

- Feature implementation time 

- Feature Cost/Benefit analysis 

- Open/Closed sets of features 

- Negative features 

These properties are usually specified and used by 

the project managers to carry out system-wide business 

analyses which support decision making such as when 

to introduce features within a product line; what 

features are feasible from a business perspective, etc. 

An example business view is shown in Figure 1 below. 

In this example, a sample business view is displayed 

using a prototype tool for the network emulator case 

study [11]. A red circle indicates a mandatory feature 

while a green circle indicates an optional/alternative 

feature. A line across the circle (e.g. Effects, Packet 

Classifier, etc.) indicates a closed feature or feature set, 



that is one that cannot be deleted or modified by the 

architects/developers.  

 

 
Figure 1. 4VM - Business view example 

 

We could also see in the example above that the 

Effects feature (and sub-features) is marked as closed. 

This means that only a designated authority can modify 

this feature set (add new effects, modify existing 

properties, etc.). By right clicking over the feature, it is 

possible to change feature properties such as its cost, 

implementation time, etc. Also, the tool could allow for 

generation of project costing (based on the information 

contained within the feature model), feature 

introduction timeline (product versioning), etc. 

 

3.2. Hierarchical & Behavioral view 
 

The Hierarchical and Behavioral View is the view 

provided by most existing feature modeling techniques. 

In this view, information related to the structure of the 

feature model and the behavior of the features is 

captured. Among other potential users, this view is 

mainly targeted at architects and developers. 

Within our group, work is in progress for 

developing CASE tool support for this view [12] where 

the Use Case Maps (UCM) notation [13] is being used 

to model feature behavior. Figure 2 below shows an 

example (taken from the network emulator case study) 

of what is typically presented within the Hierarchical 

and Behavioral view. 

 

 
Figure 2. 4VM - Hierarchical & Behavioural view example 

  

3.3. Dependency and Interaction view 
 

Due to the size and complexity of feature 

dependency and interaction within real-life systems, a 

separate view is created within the 4VM to model these 

relationships. The Dependency and Interaction View is 

complementary to the Hierarchical and Behavioral 

View.  

In this work, feature dependency and feature 

interaction are defined as follows: 

- Feature Dependency: a feature-to-feature 

dependency where the inclusion of one or more 

features affects one or more features within the 

system. 

- Feature Interaction: a feature-to-architecture 

dependency where the inclusion of one or more 

features affects the architecture structure 

(different component sets and/or configurations, 

etc.). 

In this view, logic design is proposed to capture the 

dependency and interaction relationships. Once the 

relationships are modeled, standard logic algorithms 

can be used to simplify the models. 

The feature dependency model takes as input the 

user selected feature set and verifies it against the 



model pointing out any conflicts within the feature 

selection.  

Once feature dependency is verified, the selected 

feature set is fed to the feature interaction model that 

outputs a new mutually exclusive set of features with 

new features introduced to abstract feature interaction 

which is a novel approach proposed to handle feature 

interaction.  

Returning to the network emulator case study [11], 

consider the “requires” relationship that exists between 

Modifying/encoding IP packets and Sending/Receiving 

IP packets. For a system to support Modifying and 

encoding of IP packets, it should be able to receive 

(and send) such packets in the first place. Assume that 

a new feature is to be added to the system to introduce 

the support for secure communication. Although secure 

communication (using IPSec) will not affect the 

sending and receiving of packets at the network level, it 

would require a change to the coding (encryption is 

added to the process) and decoding (decryption is 

added to the process) of IP packets. Figure 3 below 

shows the dependency and interaction view for IP 

support in the network emulator case study. 

In this example, the feature dependency model 

captures the dependency of Modify/Ecnode IP feature 

on Send/Receive IP feature. This is done using an AND 

gate. If Send/Receive IP feature is not selected, 

Modify/Ecnode IP feature cannot be selected. The 

mapping of textual relationship description into logic 

circuits can be relatively straightforward where “not” 

maps to inverters, “and” to AND gate, and “or” to OR 

gate. With more complex expressions and 

relationships, existing logic methods and algorithms 

can be used at a later stage to simplify the overall 

model.  

In Figure 3, the first column to the left shows what 

options the architect has to choose from. An empty 

circle means an optional feature.  

Once the architect makes his selection, the selection 

is validated against the dependency model and any 

conflict is reflected in the second column (the middle 

one). The architect could then go back and choose a 

different feature set to resolve the conflict. 

Once a non-conflicting feature set is selected, it is 

then passed to the interaction model where interactions 

are resolved by introducing new abstract features. In 

the example above, the Modify/Ecnode IPSec feature 

was introduce to abstract the interaction between 

Modify/Ecnode IP feature and Secure Comm feature. 

The advantage of resolving feature interaction at 

this stage is that it minimizes architecture complexity 

by making the relationship between the feature set and 

the architecture structure a one-to-many relationship 

rather than a many-to-many relationship. This is 

achieved by making the feature set a mutually 

independent set with the introduction of abstract 

features. 

 

 
Figure 3. 4VM - Dependency and Interaction view example 

 

The graphical notation used in this example is for 

demonstration purposes. Logic gates can be replaced 

with other shapes that are friendlier to non-hardware 



architects. Also, textual logic expressions can be used 

instead of a graphical notation. 

 

3.4. Intermediate view 
 

Finally, the intermediate view has been introduced 

in an attempt to bridge the gap between feature 

modeling and the architecture design. This gap exists 

between the two domains due to the fact that the feature 

model is based on end-user and stakeholder concerns 

while the architecture structure is designed to 

accommodate technical concerns.  

To bridge this gap, the intermediate view proposed 

attempts at injecting design decisions into the feature 

model to take it one step further towards the 

architecture domain. As such, it may be regarded as an 

intermediate stage between feature model and system 

architecture. 

The structure of the intermediate view and the 

selection of the design decisions to be injected in the 

feature model to create the intermediate view depend 

heavily on the architecture design approach used. For 

example, in the network emulator case study [11], 

ADLARS [14] was used as the ADL for the 

architecture design and description. ADLARS 

partitions the space into three dimensions: Concurrency 

(captured within Tasks), Structure and Functionality 

(captured within Components) and Behavior (Captured 

by Interaction Themes). So, the feature model would be 

much easier to map to architecture structures if it shows 

what features are to be implemented concurrently and 

what features are mere functionality. By injecting such 

design decisions in the feature model, we end up with 

the intermediate view which is easier to follow at the 

architecture design process. 

A small part (due to lack of space) of the 

intermediate view of the network emulator case study is 

shown in Figure 4 below.  

Figure 4 shows three types of features:  

- Concurrency features: which are features that 

require a separate thread of execution each, and 

map to different ADLARS tasks within the system 

architecture description. 

- Functionality features: which are features that 

describe system functionality (usually as a part of 

a specific thread of execution) and map to 

ADLARS components and sub-components 

within the system architecture description. 

- External features: these are features that are 

external to the system or product family (over 

which we have no control) and with which the 

system would need to interact. These are 

classified in three types: 

 Platform: related to the platform the system is 

running on (RTOS, Unix, Win32, etc.) 

 Third party software: e.g. TUNDrive, a piece 

of third party software that provides user 

applications with a virtual Ethernet 

network interface card over Unix based 

systems (the one used in the network 

emulator case study). 

 Networking technologies: e.g. TCP/IP, IPX, 

etc. in case our system needs to 

communicate over the network (which is 

the case for the network emulator). 

Also, to better identify with ADLARS (where Tasks 

are composed of Components, etc.), the features within 

the intermediate view are related in three ways: 

- Composition: which is represented by a bottom up 

arrow and means that a given feature is composed 

of the features below it. For example, the 

“Forward Packets” feature (Figure 4) is composed 

of two features, “Packet Receiver” and “Packet 

Sender”. 

- Realization: which is represented by a top down 

arrow and means that a given feature is realized or 

deployed by the features below it, that is, the 

parent feature is a template feature implemented 

by one of the children features. For example, the 

“Interrupt Communication” feature could either 

be: “Read Packets”, “Write Packets” or “Forward 

Packets”.  

- Environment: which relates the variability of a 

feature to an external feature (environment). For 

example, the “Packet Sender” feature is related to 

what network protocol is used (e.g. TCP/IP, IPX, 

etc.) which is an environment feature. 

It is worth mentioning here that the intermediate 

view model developed and described in this section is 

designed to work best within an architecture process 

that starts with feature modeling and uses ADLARS for 

architecture design and description. For other design 

approaches and ADLs (e.g. ALI [15]), appropriate 

intermediate views can be developed accordingly. 
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Figure 4.  4VM - Intermediate view example



4. Conclusion 
 

In this paper, a number of feature modeling needs 

are identified and discussed. These needs are 

summarized below: 

- Capturing complex feature dependency 

- Capturing and resolving feature interaction 

- Specifying variability binding time 

- Specifying feature implementation time (product 

versioning) 

- Capturing information related to the feature 

Cost/Benefit analysis 

- Specifying Open and Closed sets of features 

- Specifying Negative features 

- Capturing alternative feature names 

- Specifying feature cardinality 

- Allowing for multiple views 

Then, a multiple-view model feature modeling 

technique is introduced. The Four View Model for 

Variability Management (4VM) technique proposes the 

distribution of the feature modeling information into 

four views where each view is be dedicated to a 

particular theme and stakeholders. These views are: 

- Business View: where the information related to 

the project management, cost/benefit analysis, etc. 

is presented. This view is geared towards project 

managers as main users where then can specify 

feature costing, open and closed features, feature 

introduction time (product versioning), etc. 

- Hierarchical & Behavioural View: where the way 

the different features are organized (usually 

presented in a tree structure) along with the 

behaviour attached to each feature is presented. 

This view is geared towards architects and 

captures the end user concerns. This is the view 

that is currently adopted by most feature 

modelling techniques. 

- Dependency & Interaction View: where the 

dependency and interaction among features is 

presented. This view is geared more towards 

architects and provides a formal basis for 

capturing feature dependency using logic design. 

Also, feature interactions are modelled in the 

same way and resolved by the introduction of 

abstract features. 

- Intermediate View: where some design decisions 

are injected into the feature model to take it one 

step further towards the architecture domain in 

attempt to bridge the gap between the feature 

model and the system architecture. This view is 

geared towards architects and provides a 

transition stage towards the architecture. 

The next stage in this research is to take the 

prototype tool (shown in the figures) and try to develop 

a full featured CASE tool. The shape and structure of 

the graphical notation to be used in each of the views is 

also an open research question and industrial feedback 

will be an important factor in making such decisions. 

Finally, the table below shows how the 4VM 

measures against the identified requirements discussed 

in this chapter compared to existing feature modeling 

techniques.  

The 4VM supports all the identified needs. The only 

two restrictions in the current version are: first, 4VM 

provides a fixed number of views (four views) for the 

feature model rather than unrestricted configurable 

multiple-views; and second, 4VM does not allow for 

complicated cost/benefit analyses on the feature model. 

These two issues are to be addressed in the future 

versions of the 4VM model and its toolset. 
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Feature Dependency      

Feature Interaction      

Binding Time      

Implementation Time      

Effort/Cost      

Open/Closed      

Negative Features      

Alternative Feature Name      

Feature Cardinality      

Multiple views      

 

Supported  
Partially 

Supported 
 Unsupported 

 

Table 1. Comparison between the 4VM and existing feature 

modeling techniques based on the needs discussed in this 

paper. 
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