
A Multiple Views Model for Variability Management

in Software Product Lines

R. Bashroush, I. Spence, P. Kilpatrick, TJ. Brown, C. Gillan

School of Electronics, Electrical Engineering and Computer Science

Queen’s University Belfast

{r.bashroush, i.spence, p.kilpatrick, tj.brown, c.gillan}@qub.ac.uk

Abstract

With current trends towards moving variability

from hardware to software, and given the increasing

desire to postpone design decisions as much as is

economically feasible, managing the variability from

requirements elicitation to implementation is

becoming a primary business requirement in the

product line process. Nowadays, a medium size

software system may encompass hundreds if not

thousands of variability points introducing a new level

of complexity that current techniques struggle to

manage. In this paper, we present a new approach to

variability management by introducing a multiple

views model (4VM) where each view caters for specific

set of concerns that relate to a particular group of

stakeholders.

1. Introduction

Within Software Product Lines, features play an

important role in specifying the fixed and variable parts

of the architectures of product families and

configurable systems. In its simplest form, a feature is

an aspect of a system, such as a behavior or an

attribute, from the end user’s point of view. Feature

Modeling emerged from the work by KC Kang et al [1]

on domain analysis techniques.

Managing variability within the feature model is a

key step for the success of a product family. Variability

management is about managing the commonalities and

variabilities within a product line. Commonalities are

structured lists of assumptions that are true for all

product members. Variabilities are structured lists of

assumptions about how product members differ.

A classic example of variability is found in mobile

phone product lines where variabilities include: the

screen size, number of keys, language, etc.

A Variation Point identifies a variability within the

product line and its possible bindings by describing

several variants. A variant is a possible way to realize

or bind a variation point at a specified stage of the

development process (design time, compilation time,

run-time, etc.) [2].

Bachmann and Bass [3] proposed a classification

for architectural variabilities (Functional, Data,

Control, Technology, etc.) while Svahnberg and Bosch

in [4] talked about different levels of variability

(Product Line, Product, Component, etc.).

As variability is geared more towards software, and

as more products are being included within a single

product line, current complex systems tend to comprise

a large number of variability points which makes

traditional manual feature modeling techniques

cumbersome and difficult to use. As a result, a number

of variability management techniques have emerged.

Among those are FODA [1] and FORM [5] by KC

Kang et al; FeatuRSEB [6] which combined aspects of

the FODA method and the Reuse-Driven Software

Engineering Business (RSEB) [7] method; and Bosch’s

modeling techniques [8]. Other commercial

methodologies and tools include BigLever Software

Gears [9] and Pure::Variants [10].

Although current techniques provided many useful

facilities for managing variability, a number of

limitations are still exhibited. The ability to encompass

and present a large number of variability points along

with their relationships in one view remains a

challange. While some chose to use different

presentation techniques (e.g. three dimensional space,

special purpose output devices and panels, etc.) to try

to alleviate this limitation, we approached the problem

by dividing the feature model into a number of views,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219371950?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

where each view caters for a specific set of concerns

and relates to a particular group of stakeholders.

In the following, we begin in section 2 by discussing

the scope and concerns covered by our model. Section

3 then introduces the Four Views Model (4VM) and

gives details of each of the views. Finally, we draw

conclusions in section 4.

2. The 4VM Scope

In this section, we discuss some variability

management requirements and concerns which we have

identified through experience and collaboration with

other research and industrial partners. These

requirements are in the form of information and

relationships that should be captured about features in a

feature model. The Four Views Model (4VM) is built

around these concerns. More concerns can be added to

the list in the future to accommodate special

application domain or enterprise requirements (e.g.

feature evolution, etc.).

2.1. Feature dependency

Within real-life systems, features in a model affect

each other in a number of ways. Some features cannot

be supported unless other feature(s) are supported in a

product (mutually dependent); other features cannot be

supported in the same product at the same time

(mutually exclusive).

For example, consider an automobile product family

where: engine size (e.g. 1.1L, 2L, etc.), gearbox (e.g.

Auto, Manual – gears:4,5,6 etc.), and chassis type

(sport, saloon, estate, etc.) are among the features of

the product family. The number of gears in a gearbox is

dependent on the engine size; so an engine size 1.1L

and a 5-gear gearbox may be mutually exclusive

(cannot coexist in the same product). Similarly, chassis

type is dependent on the engine size; an estate chassis

may require at least an engine size of 1.8L (mutually

dependent).

Dependencies can be quite difficult to model,

especially those that relate to quality attributes. Hence,

dependencies should not only be represented as first

class citizens in any feature model, but also the

technique used for capturing dependencies should

allow for complex dependency representation.

2.2. Feature interaction

While the presence or absence of features within a

feature model may affect the existence of other features

(feature dependency), feature interaction is concerned

with how different feature combinations affect the

system architecture. Features are realized in an

architecture using different components and

configurations. Different feature combinations might

lead to the inclusion of different architectural

components and configurations.

For example, consider two optional features:

FeatureA and FeatureB. Assume that, if FeatureA is

supported by a product, it is realized in the architecture

using Component1; similarly, if FeatureB is supported,

it is realized in the architecture using Compnent2.

Within a product that supports FeatureA, if supporting

FeatureB means only the inclusion of Component2 in

the product architecture, then these features are

considered independent (do not interact). However, if

supporting FeatureB (at the same time as FeatureA)

means the inclusion of other components than

Component1 and Component2 (and perhaps the

exclusion of Component1 and/or Component2), then

FeatureA and FeatureB are considered to be interacting

features.

Predicting feature interaction in a system is a

challenging task. Minimizing feature interaction is

considered good practice as it reduces the architecture

complexity when relating features to architectural

structures. One way to minimize feature interaction is

by restructuring the feature model and introducing new

features to abstract those interactions (which we refer

to as feature abstraction and is discussed in section 3).

2.3. Variability binding time

As discussed earlier, variation points are places in

the design or implementation where variation occurs.

Variability is due to unmade decisions that are left

open as long as economically feasible. However,

specifying the point in time when a variation point is to

be bound to a specific variant is important.

A number of possible binding times have been

identified and used in industry. Examples are:

- Design time: where the decision about a

variability point is made at the design stage.

Beyond that point (e.g. implementation stage, run

time, etc.), this variation point is not visible. An

example of a design time binding is to allow for

linking features to the inclusion/exclusion of

architectural components as well as the

reconfiguration of the architecture. This is design

time variability and binding.

- Implementation time: the variation point is not

decided upon until implementation. For this

binding time, variation points appear at the code

level. A good example of implementation time

variability with C/C++ is the use of pre-processor

directives. In the compiled version of the system

(the executable), variability points introduced

using pre-processor directives are invisible.

- Link time: this is when the variation point is not

decided upon until linking time. An example of

link time variability is MS Windows Dynamic

Link Libraries (DLLs).

- Load time: the variation point is not decided upon

until the load of the system. Load time variability

can be introduced using a number of mechanisms

such as configuration files.

- Run time: Depending on the application, this

tends to be the most desirable binding time. This

is when variation points are left open until the run

time when the end user can make the decision on

how to bind the variability. However, due to price

(cost, effort, time to implement, etc.) and

complexity (complexity of the system, size of

code, etc.) this is not always a feasible option.

There are numerous examples of run time

variability where variation points are bound

including, for example, using the application’s

“options” or “settings” menu.

2.4. Feature implementation time

In industry, software systems are usually built

incrementally; there is rarely a software product that is

built as a final release from the first edition. Products

are usually enhanced and features added to them

continuously over time. Planning for future releases of

products, the features to be implemented in these

products, and the timing, is a key step for the success

and sustainability of a product line.

So, feature implementation time should also be

captured within the feature model as it contributes to

product versioning.

2.5. Cost/Benefit analysis

The effort needed and cost involved in realizing

features as well as their foreseen benefit should be

documented in the feature model. This provides

valuable input to the overall project costing and the

product versioning process.

Although in general it is not an easy task to specify

the cost/effort and benefit involved in realizing a given

feature, adequate estimates can be obtained using

information gathered and experiences gained from

previous similar projects.

2.6. Open/Closed sets of features

Within industrial projects, it is rarely the case that

the architect is furnished with the system’s

comprehensive and complete set of features. Rather,

features are continuously added (and modified) to the

initial feature model over time - even after the system

design process has commenced.

Designing a system around an open and changing

set of features that can be modified anytime is a very

challenging task. To overcome this problem, some

industries differentiate between two types of features:

closed and open features.

Closed sets of features are sets of features that

cannot be changed or modified by the architect or the

development team and serve as the core of the product

or product line. Modifying such features requires the

approval of a management appointed committee or a

designated authority which would analyze the impact

and feasibility of any requested modification to such

features.

On the other hand, open sets of features are those

that tend to change over time (for example due to

technology advance or the addition of new features)

and are less likely to affect the overall system when

altered. Such features can be modified and changed by

the project manager, architect, or the development team

depending on the nature of the feature.

Such information should be clearly specified in the

system feature model.

2.7. Negative features

Naturally, the development of feature models has

typically focused on the features that are to be

supported by a product or product line. Little attention

has been paid to features that are not to be supported

by a given product (or a range of products). Limiting

the features supported by different products within a

product line supports the development of product

ranges, for example, varying from low-end products

(that support a minimum number of features) to high-

end ones (with most/all of the features enabled).

Negative features are features that are specified not

to be supported by a given product(s). If such negative

features are specified, the product (or product line)

architecture should be designed in a way to prohibit the

enabling of such features by end users of the product.

If such features are not identified and counted for at

a very early stage in the design process, they could lead

to different kinds of problems based on the nature of

the product line.

In more critical application domains, overlooking

negative features could have more adverse effects. For

example, overlooked negative features had more

serious consequences within a US Department of

Defense (DoD) funded project that was aimed at

developing a GPS (Global Positioning System) based

product family. The products within the family varied

from low precision civilian based products to high

precision high-end military versions. However, end

users buying the low end civilian products, with simple

tweaking of the system, were able to get access to the

services and precision available for the high-end

military systems.

2.8. Alternative feature names

Variability management exists at the different stages

of the development life-cycle, from requirements, to

architecture design and implementation. Different

teams (e.g. stakeholders, architects, developers, etc.)

use their own mechanisms to manage variability and to

express features. So, it is possible that the same feature

could be referred to by different names within different

teams. Hence, it is important to keep track of the

features and their alternative names within the feature

model.

2.9. Feature cardinality

It is always desirable to delay design decisions as

much as is economically feasible (creating variation

points). However, variation points come with a price

(increased complexity of the system, performance

degradation, increase in cost and marketing time, etc.).

One potential solution to alleviate the effect of open

variation points is by attaching a limited number of

possible variants that could be bound to a given

variation point. This is usually referred to as feature

cardinality.

2.10. Multiple views

It is generally agreed that different stakeholders

have interest in viewing different aspects (views) of the

product line variability model. So, it is important for a

variability management mechanism to be able to

extract and present relevant information about the

family model in dedicated views for different groups of

stakeholders (users, system analysts, developers, etc.).

This could considerably contribute to alleviating the

graphical overload when showing all the information in

one view (compared to multiple views). This forms the

basis of the 4VM model and is discussed in more detail

in the following section.

3. 4VM

In the previous section a number of issues which

need to be captured within a feature model were

identified and discussed. In this section, the Four

Views Model for Variability Management (4VM) is

introduced. The 4VM proposes a four view

presentation of the feature model. The 4VM addresses

all the issues and concepts identified in the previous

section. The views adopted in the 4VM model are:

- Business View: where the information related to

the project management, cost/benefit analysis, etc.

is presented.

- Hierarchical & Behavioral View: where the way

the different features are organized (usually

presented in a tree structure) along with the

behavior attached to each feature is presented.

- Dependency & Interaction View: where the

dependency and interaction among features is

presented.

- Intermediate View: where some design decisions

are injected into the feature model to take it one

step further towards the architecture domain in an

attempt to bridge the gap between the feature

model and the system architecture.

 In the following section, each of these views is

discussed in detail and example views are taken from

the network emulator case study [11].

3.1. Business view

The Business View is aimed at the project business

and management stakeholders. It acts as a portal for

inputting and presenting information related to:

- Feature implementation time

- Feature Cost/Benefit analysis

- Open/Closed sets of features

- Negative features

These properties are usually specified and used by

the project managers to carry out system-wide business

analyses which support decision making such as when

to introduce features within a product line; what

features are feasible from a business perspective, etc.

An example business view is shown in Figure 1 below.

In this example, a sample business view is displayed

using a prototype tool for the network emulator case

study [11]. A red circle indicates a mandatory feature

while a green circle indicates an optional/alternative

feature. A line across the circle (e.g. Effects, Packet

Classifier, etc.) indicates a closed feature or feature set,

that is one that cannot be deleted or modified by the

architects/developers.

Figure 1. 4VM - Business view example

We could also see in the example above that the

Effects feature (and sub-features) is marked as closed.

This means that only a designated authority can modify

this feature set (add new effects, modify existing

properties, etc.). By right clicking over the feature, it is

possible to change feature properties such as its cost,

implementation time, etc. Also, the tool could allow for

generation of project costing (based on the information

contained within the feature model), feature

introduction timeline (product versioning), etc.

3.2. Hierarchical & Behavioral view

The Hierarchical and Behavioral View is the view

provided by most existing feature modeling techniques.

In this view, information related to the structure of the

feature model and the behavior of the features is

captured. Among other potential users, this view is

mainly targeted at architects and developers.

Within our group, work is in progress for

developing CASE tool support for this view [12] where

the Use Case Maps (UCM) notation [13] is being used

to model feature behavior. Figure 2 below shows an

example (taken from the network emulator case study)

of what is typically presented within the Hierarchical

and Behavioral view.

Figure 2. 4VM - Hierarchical & Behavioural view example

3.3. Dependency and Interaction view

Due to the size and complexity of feature

dependency and interaction within real-life systems, a

separate view is created within the 4VM to model these

relationships. The Dependency and Interaction View is

complementary to the Hierarchical and Behavioral

View.

In this work, feature dependency and feature

interaction are defined as follows:

- Feature Dependency: a feature-to-feature

dependency where the inclusion of one or more

features affects one or more features within the

system.

- Feature Interaction: a feature-to-architecture

dependency where the inclusion of one or more

features affects the architecture structure

(different component sets and/or configurations,

etc.).

In this view, logic design is proposed to capture the

dependency and interaction relationships. Once the

relationships are modeled, standard logic algorithms

can be used to simplify the models.

The feature dependency model takes as input the

user selected feature set and verifies it against the

model pointing out any conflicts within the feature

selection.

Once feature dependency is verified, the selected

feature set is fed to the feature interaction model that

outputs a new mutually exclusive set of features with

new features introduced to abstract feature interaction

which is a novel approach proposed to handle feature

interaction.

Returning to the network emulator case study [11],

consider the “requires” relationship that exists between

Modifying/encoding IP packets and Sending/Receiving

IP packets. For a system to support Modifying and

encoding of IP packets, it should be able to receive

(and send) such packets in the first place. Assume that

a new feature is to be added to the system to introduce

the support for secure communication. Although secure

communication (using IPSec) will not affect the

sending and receiving of packets at the network level, it

would require a change to the coding (encryption is

added to the process) and decoding (decryption is

added to the process) of IP packets. Figure 3 below

shows the dependency and interaction view for IP

support in the network emulator case study.

In this example, the feature dependency model

captures the dependency of Modify/Ecnode IP feature

on Send/Receive IP feature. This is done using an AND

gate. If Send/Receive IP feature is not selected,

Modify/Ecnode IP feature cannot be selected. The

mapping of textual relationship description into logic

circuits can be relatively straightforward where “not”

maps to inverters, “and” to AND gate, and “or” to OR

gate. With more complex expressions and

relationships, existing logic methods and algorithms

can be used at a later stage to simplify the overall

model.

In Figure 3, the first column to the left shows what

options the architect has to choose from. An empty

circle means an optional feature.

Once the architect makes his selection, the selection

is validated against the dependency model and any

conflict is reflected in the second column (the middle

one). The architect could then go back and choose a

different feature set to resolve the conflict.

Once a non-conflicting feature set is selected, it is

then passed to the interaction model where interactions

are resolved by introducing new abstract features. In

the example above, the Modify/Ecnode IPSec feature

was introduce to abstract the interaction between

Modify/Ecnode IP feature and Secure Comm feature.

The advantage of resolving feature interaction at

this stage is that it minimizes architecture complexity

by making the relationship between the feature set and

the architecture structure a one-to-many relationship

rather than a many-to-many relationship. This is

achieved by making the feature set a mutually

independent set with the introduction of abstract

features.

Figure 3. 4VM - Dependency and Interaction view example

The graphical notation used in this example is for

demonstration purposes. Logic gates can be replaced

with other shapes that are friendlier to non-hardware

architects. Also, textual logic expressions can be used

instead of a graphical notation.

3.4. Intermediate view

Finally, the intermediate view has been introduced

in an attempt to bridge the gap between feature

modeling and the architecture design. This gap exists

between the two domains due to the fact that the feature

model is based on end-user and stakeholder concerns

while the architecture structure is designed to

accommodate technical concerns.

To bridge this gap, the intermediate view proposed

attempts at injecting design decisions into the feature

model to take it one step further towards the

architecture domain. As such, it may be regarded as an

intermediate stage between feature model and system

architecture.

The structure of the intermediate view and the

selection of the design decisions to be injected in the

feature model to create the intermediate view depend

heavily on the architecture design approach used. For

example, in the network emulator case study [11],

ADLARS [14] was used as the ADL for the

architecture design and description. ADLARS

partitions the space into three dimensions: Concurrency

(captured within Tasks), Structure and Functionality

(captured within Components) and Behavior (Captured

by Interaction Themes). So, the feature model would be

much easier to map to architecture structures if it shows

what features are to be implemented concurrently and

what features are mere functionality. By injecting such

design decisions in the feature model, we end up with

the intermediate view which is easier to follow at the

architecture design process.

A small part (due to lack of space) of the

intermediate view of the network emulator case study is

shown in Figure 4 below.

Figure 4 shows three types of features:

- Concurrency features: which are features that

require a separate thread of execution each, and

map to different ADLARS tasks within the system

architecture description.

- Functionality features: which are features that

describe system functionality (usually as a part of

a specific thread of execution) and map to

ADLARS components and sub-components

within the system architecture description.

- External features: these are features that are

external to the system or product family (over

which we have no control) and with which the

system would need to interact. These are

classified in three types:

 Platform: related to the platform the system is

running on (RTOS, Unix, Win32, etc.)

 Third party software: e.g. TUNDrive, a piece

of third party software that provides user

applications with a virtual Ethernet

network interface card over Unix based

systems (the one used in the network

emulator case study).

 Networking technologies: e.g. TCP/IP, IPX,

etc. in case our system needs to

communicate over the network (which is

the case for the network emulator).

Also, to better identify with ADLARS (where Tasks

are composed of Components, etc.), the features within

the intermediate view are related in three ways:

- Composition: which is represented by a bottom up

arrow and means that a given feature is composed

of the features below it. For example, the

“Forward Packets” feature (Figure 4) is composed

of two features, “Packet Receiver” and “Packet

Sender”.

- Realization: which is represented by a top down

arrow and means that a given feature is realized or

deployed by the features below it, that is, the

parent feature is a template feature implemented

by one of the children features. For example, the

“Interrupt Communication” feature could either

be: “Read Packets”, “Write Packets” or “Forward

Packets”.

- Environment: which relates the variability of a

feature to an external feature (environment). For

example, the “Packet Sender” feature is related to

what network protocol is used (e.g. TCP/IP, IPX,

etc.) which is an environment feature.

It is worth mentioning here that the intermediate

view model developed and described in this section is

designed to work best within an architecture process

that starts with feature modeling and uses ADLARS for

architecture design and description. For other design

approaches and ADLs (e.g. ALI [15]), appropriate

intermediate views can be developed accordingly.

In
te

rr
u

p
t
C

o
m

m
u

n
ic

a
ti
o

n

R
e

a
d

 p
a

c
k
e

ts
W

ri
te

 p
a

c
k
e

ts
F

o
rw

a
rd

 p
a

c
k
e

ts

P
a

c
k
e

t
R

e
c
e

iv
e

r
P

a
c
k
e

t
S

e
n

d
e

r
P

a
c
k
e

t
R

e
c
e

iv
e

r
P

a
c
k
e

t
S

e
n

d
e

r

T
U

N
D

ri
v
e

r
E

th
e

re
a

l

E
x
te

rn
a

l
F

e
a

tu
re

s

T
h

ir
d

P
a

rt
y

IP
X

T
C

P
/I
P

N
e

tw
o

rk
in

g

D
e

s
ig

n
D

e
s

ig
n

D
e

s
ig

n
D

e
s

ig
n

N
e

tw
o

rk
 E

m
u

la
to

r

P
a

c
k
e

t
R

o
u

te
r

B
u

ff
e

r
P

a
c
k
e

t
M

o
d

if
ie

r
P

a
c
k
e

t
C

la
s
s
if
ie

r

D
e

c
o

d
e

 P
a

c
k
e

t
D

e
c
o

d
e

 P
a

c
k
e

t
E

n
c
o

d
e

 P
a

c
k
e

t
S

iz
e

R
u

n
ti

m
e

D
e

s
ig

n
D

e
s

ig
n

D
e

s
ig

n

Figure 4. 4VM - Intermediate view example

4. Conclusion

In this paper, a number of feature modeling needs

are identified and discussed. These needs are

summarized below:

- Capturing complex feature dependency

- Capturing and resolving feature interaction

- Specifying variability binding time

- Specifying feature implementation time (product

versioning)

- Capturing information related to the feature

Cost/Benefit analysis

- Specifying Open and Closed sets of features

- Specifying Negative features

- Capturing alternative feature names

- Specifying feature cardinality

- Allowing for multiple views

Then, a multiple-view model feature modeling

technique is introduced. The Four View Model for

Variability Management (4VM) technique proposes the

distribution of the feature modeling information into

four views where each view is be dedicated to a

particular theme and stakeholders. These views are:

- Business View: where the information related to

the project management, cost/benefit analysis, etc.

is presented. This view is geared towards project

managers as main users where then can specify

feature costing, open and closed features, feature

introduction time (product versioning), etc.

- Hierarchical & Behavioural View: where the way

the different features are organized (usually

presented in a tree structure) along with the

behaviour attached to each feature is presented.

This view is geared towards architects and

captures the end user concerns. This is the view

that is currently adopted by most feature

modelling techniques.

- Dependency & Interaction View: where the

dependency and interaction among features is

presented. This view is geared more towards

architects and provides a formal basis for

capturing feature dependency using logic design.

Also, feature interactions are modelled in the

same way and resolved by the introduction of

abstract features.

- Intermediate View: where some design decisions

are injected into the feature model to take it one

step further towards the architecture domain in

attempt to bridge the gap between the feature

model and the system architecture. This view is

geared towards architects and provides a

transition stage towards the architecture.

The next stage in this research is to take the

prototype tool (shown in the figures) and try to develop

a full featured CASE tool. The shape and structure of

the graphical notation to be used in each of the views is

also an open research question and industrial feedback

will be an important factor in making such decisions.

Finally, the table below shows how the 4VM

measures against the identified requirements discussed

in this chapter compared to existing feature modeling

techniques.

The 4VM supports all the identified needs. The only

two restrictions in the current version are: first, 4VM

provides a fixed number of views (four views) for the

feature model rather than unrestricted configurable

multiple-views; and second, 4VM does not allow for

complicated cost/benefit analyses on the feature model.

These two issues are to be addressed in the future

versions of the 4VM model and its toolset.

F
O

D
A

F
O

R
M

F
ea

tu
R

S
E

B

B
o

sc
h

4
V

M

Feature Dependency

Feature Interaction

Binding Time

Implementation Time

Effort/Cost

Open/Closed

Negative Features

Alternative Feature Name

Feature Cardinality

Multiple views

Supported
Partially

Supported
 Unsupported

Table 1. Comparison between the 4VM and existing feature

modeling techniques based on the needs discussed in this

paper.

5. Acknowledgement

We would like to thank Felix Bachmann and the

SPL group at the SEI/CMU for their valuable input to

this work during its initial stages in 2004. Also, we

would like to thank Jaap van der Heijden, Chritiene

Aarts and Bas Engel at the Software Architecture

department, Philips Research Labs, Eindhoven, for

their input and feedback on this work.

6. References

[1] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and

A. S. Patterson, "Feature Oriented Domain Analysis

(FODA) feasibility study," Software Engineering

Institute, Carnegie Mellon University CMU/SEI-90-

TR-21, 1990.

[2] J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, H.

Obbink, and K. Pohl, "Variability Issues in Software

Product Lines." In proceedings of the 4th International

Workshop on Product Family Engineering, Berlin,

Germany, 2002. pp. 13-21.

[3] F. Bachmann and L. Bass, "Managing Variability in

Software Architecture." In proceedings of the ACM

SIGSOFT Symposium on Software Reusability, May

2001. pp. 126-132.

[4] M. Svahnberg and J. Bosch, "Issues Concerning

Variability in Software Product Lines." In proceedings

of the Third International Workshop on Software

Architectures for Product Families, 2000. pp. 146-157.

[5] K. C. Kang, J. Lee, and P. Donohoe, "Feature-Oriented

Product Line Engineering," IEEE Software, vol. 19,

pp. 58-65, July/August 2002.

[6] M. Griss, J. Favaro, and M. d'Alessandro, "Integrating

Feature Modeling with the RSEB." In proceedings of

the Fifth International Conference on Software Reuse,

Vancouver, BC, Canada, June 1998. pp. 76-85.

[7] I. Jacobson, M. Griss, and P. Jonsson, Software Reuse -

Architecture, Process and Organization for Business

Success. New York: ACM Press, 1997.

[8] J. v. Gurp, J. Bosch, and M. Svahnberg, "On the

Notion of Variability in Software Product Lines." In

proceedings of the Working IEEE/IFIP Conference on

Software Architecture (WICSA 2001), August 2001.

pp. 45-54.

[9] "BigLever Software Gears,"

http://www.biglever.com/solution/product.html.

[10] "Pure-Systems Pure::Variants," http://www.pure-

systems.com/Variant_Management.49.0.html.

[11] R. Bashroush, I. Spence, P. Kilpatrick, and T. J.

Brown, "A Real-time Network Emulator: ADLARS

Case Study." In proceedings of the 3rd Asia Pacific

International Symposium on Information Technology,

Istanbul, Turkey, January 2004. pp. 610-618.

[12] T. Brown, R. Gawley, R. Bashroush, I. Spence, P.

Kilpatrick, and C. Gillan, "Weaving Behavior into

Feature Models for Embedded System Families." In

proceedings of the 10th International Software Product

Line Conference SPLC 2006, Baltimore, Maryland,

USA, August 2006. pp. 52-64.

[13] R. J. A. Buhr and R. S. Casselman, Use Case Maps for

object-oriented systems: Prentice Hall, 1996.

[14] R. Bashroush, T. J. Brown, I. Spence, and P.

Kilpatrick, "ADLARS: An Architecture Description

Language for Software Product Lines." In proceedings

of the 29th Annual IEEE/NASA Software Engineering

Workshop, Greenbelt, Maryland, USA, April 2005. pp.

163 - 173.

[15] R. Bashroush, I. Spence, P. Kilpatrick, and T. Brown,

"Towards More Flexible Architecture Description

Languages for Industrial Applications," Gruhn and F.

Oquendo (Eds.): EWSA 2006, Lecture Notes in

Computer Science, Volume (4344),, pp. 212-219,

September 2006.

http://www.biglever.com/solution/product.html
http://www.pure-systems.com/Variant_Management.49.0.html
http://www.pure-systems.com/Variant_Management.49.0.html

