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Abstract: Analyses of point event patterns in geography, ecology and epidemiology have a 
long tradition. Of particular interest are patterns of clustering or ‘hot spots’. Some point event 
patterns exhibit a tendency towards spatial repetitiveness although with temporal separation. 
Examples are burglary and traffic accidents. Spatial superimposition of point events 
challenges many existing approaches to spatial cluster detection. In this paper a variable 
resolution approach, Geo-ProZones, is applied to residential burglary data exhibiting a high 
level of repeat victimisation. This is coupled with robust normalisation as a means of 
consistently defining and visualising the ‘hot spots’. 
 
1. Introduction 
 
The analysis of point event patterns in 
geography, ecology and epidemiology has a 
long tradition (e.g. Snow, 1855; Clark & 
Evans, 1954; Cliff & Ord, 1981). The 
patterns detected are usually broadly 
classified as random, uniform or clustered. 
Where a point pattern exhibits spatial 
uniformity, a space-filling mutual exclusion 
process can be hypothesised. Clustered 
patterns, however, have generally raised the 
strongest interest and hypotheses for 
underlying processes. Thus cluster detection 
lies at the heart of spatial data mining 
(Miller & Han, 2001). 
Clustered point patterns can be visualised 
spatially as local concentrations of events in 
close proximity to one another with each 
cluster separated by intervening spaces 
characterised by empty, less dense or 
apparently random patterns of point events. 
However, certain classes of point event 
patterns have a significant proportion of 
their data having a tendency towards exact 
spatial repetitiveness (within the resolution 
of geo-positioning) although with a temporal 
separation between events. Typically this 
would include: crimes recorded against a 
property address (e.g. residential burglary, 

shoplifting, intimate partner violence), 
traffic accidents recorded against a section 
of road or intersection, utility failures 
recorded against a node or discrete section 
of network and so on. The focus of analysis 
of such data sets is in defining ‘hot spots’ 
(e.g. for crime) or ‘black spots’ (e.g. for 
traffic accidents) where spatial clustering 
exists, but the occurrence of this spatial 
superimposition of point events challenges 
many existing approaches to cluster 
detection. 
In this paper a variable resolution approach, 
Geo-ProZone analysis, is applied to 
residential burglary data exhibiting a high 
level of repeat victimisation. This is coupled 
with robust normalisation as a means of 
consistently defining and visualising the 
highest densities or ‘hot spots’. 
 
2. Cluster detection of ‘hot spots’ 
 
The literature on clustering of point event 
data can be broadly classified into two 
approaches. One set of approaches, is allied 
to mainstream statistics, stems Sokal and 
Sneath (1963).Clustering here is a means of 
classification where clusters can be defined 
as “groups of highly similar entities” 
(Aldenderfer & Blashfield, 1984, p7). 
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Spatially, this approach to cluster analysis 
will seek to form a segmentation into 
regions which minimises within-cluster 
variation but maximises between-cluster 
variation. There is a general expectation that 
the clustering will be mutually exclusive in 
including all points and is therefore space-
filling within the geographical extent of the 
data (see for example Murray & Estivill-
Castro, 1998; Murray, 2000). Halls et al. 
(2001) and Estivill-Castro & Lee (2002) 
provide examples of the use of Dirichlet and 
Delaunay diagrams, respectively, to define 
spatial clusters. These algorithms, however, 
will fail where points occupy the exact same 
location. To delete duplicate points to 
overcome this problem is likely to lead to 
important data loss, whilst to shift points 
slightly into non-duplicate positions will 
introduce significant bias away from being 
able to detect such repeat events. The 
second broad set of approaches uses 
spatially exhaustive search to identify 
localised excesses of event occurrences. 
Typical of this approach is the Geographical 
Analysis Machine (Openshaw et al., 1987) 
and its descendants. Another set of 
approaches is based around kernel density 
estimation (Silverman, 1986; Atkinson & 
Unwin, 1998; Brunsdon, 1995) in which the 
highest densities form ‘hot spots’ (e.g. 
Gatrell et al., 1996). This approach is 
particularly popular in crime analysis 
(Harries, 1999; Ratcliffe & McCullagh, 
1999; McLafferty et al., 2000) with GIS 
functionality available, for example, in the 
Spatial Analyst extension to ArcView® and 
in Hotspot Detective for MapInfo®. An 
example of kernel density estimation (KDE) 
is given in Figure 1. 

  
                 (a)        (b) 

Figure 1. KDE for ‘hot spot’ detection: (a) 
burglary point event data set; (b) default KDE 
(superimposed on point pattern) - ‘hot spots’ are 
taken to be the highest intensity locations. 
 
 

The popularity of the KDE approach 
comes from its ease of use and the striking 
visualisations produced. It is nevertheless an 
interpolation that transforms the point events 
into a more-or-less smoothed continuous 
surface and, with any such technique, 
parameters need to be set that are critical to 
the outcome. For KDE these are the 
underlying grid size and the kernel 
bandwidth. Values for parameters can be 
difficult to estimate, often subjectively 
(Sabel et al., 2000). Fotheringham et al. 
(2000) suggest an optimum bandwidth 
calculated from the standard distance. For 
situations where there are contrasting 
densities across a study area (e.g. urban to 
rural), an adaptive bandwidth can be 
employed (Brunsdon, 1995). Best practice 
would suggest a form of sensitivity analysis 
to identify optimum parameter values 
(Brimicombe, 2003). Figure 2 shows such 
an approach for a fixed grid size (one 
hectare) and varying bandwidth. The 
maximum nearest neighbour distance 
(NND) between point events in Figure 1(a) 
is 574m or approximately 12 times the 
median NND of 47.5m; so as a simple 
sensitivity test the bandwidth has been 
bracketed at three, six and nine times the 
median NND. The effect is to produce 
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increased size and severity of ‘hot spots’. 
Software default settings used in Figure 1 
(b) produce the greatest visual impact. But 
what then is an acceptable ‘truth’? Although 
from a research perspective the sensitivity to 
grid size should also be tested, the 
pragmatics of the workplace usually means 
that analysts accept the default values for 
parameters (as suggested by the software) as 
a matter of convenience. 
 
 

 
            (a)            (b)                     (c) 

Figure 2. Searching for optimum band-width: (a) 
3 times median NND; (b) 6 times median NND; 
(c) 9 times median NND. 
 
 

The burglary data set presented here, 
though synthetic for training purposes, has 
all the characteristics of a real London data 
set including a large number of repeat 
victimisations. Theory would suggest that 
‘hot spots’ would be quite localised. High 
crime areas are often areas of high repeat 
offending and high repeat victimisation 
(Trickett et al., 1992; Townsley et al., 
2003). KDE, as used by many police 
analysts, smoothes over the localised repeat 
victimisations in favour of the regional 
pattern. Boundary effects around the edge of 
data sets are also a problem for density 
estimation and perhaps not surprisingly 
police analysts tend not to find ‘hot spots’ at 

the edge of their jurisdictions. KDE software 
in the public domain by Atkinson & Unwin 
(2002) for MapInfo® does offer a guarded 
buffer to avoid spurious values at 
boundaries but does not entirely overcome 
the problem of how to identify real ‘hot 
spots’ that exist at boundaries. Figures 1 and 
2 focus attention on crime counts, that is, on 
areas with an elevated share of crime in a 
localised area. ‘Hot spots’ based on counts 
inform the deployment of resources in 
response to events. Less common in crime 
analysis (but more common in 
epidemiology) are ‘hot spots’ based on 
elevated rates. Such ‘hot spots’ reflect the 
level of risk and thus inform deployment of 
resources for mitigation. For the same 
distribution of point events, ‘hot spots’ 
based on counts are often different to those 
based on rates as the latter are not just a 
function of the distribution of point events 
but also of the underlying population at risk. 
Ideally both should be used. Sabel et al. 
(2000) report the use of KDE in association 
with an underlying population at risk to map 
relative risk of disease occurrence. Whilst 
readily implemented, it suffers from the 
added difficulty of parameter estimation for 
two KDE surfaces (disease occurrence and 
population at risk) that are then combined to 
produce a ratio surface. 
 
3. The Geo-ProZone algorithm 
 
The theory of adaptive recursive 
tessellations is given in Tsui & Brimicombe 
(1997a) with applications of their use for 
spatial analysis in Tsui & Brimicombe 
(1997b). Specific application to point 
pattern analysis can be found in Brimicombe 
& Tsui (2000) and most recently in 
Brimicombe (2007a). At the heart of 
adaptive recursive tessellations is a variable 
resolution approach to space. No longer are 
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scale and resolution treated as being uniform 
across an area but are allowed to vary 
locally in response to the point pattern. This 
is achieved through a recursive 
decomposition of space, similar to 
quadtrees, but allowing variable 
decomposition ratios (quadtrees only have 
1:4 ratio) and rectangular cells (quadtrees 
are usually restricted to square cells). The 
algorithm makes no prior assumptions about 
the statistical or spatial distribution of 
points. Each point is treated as a binary 
occurrence of some phenomenon without 
further descriptive attributes. The starting 
point is a convex hull of all the point events 
or an administrative boundary. Maximum 
and minimum x and y values of the data set 
form the maximal cell. The decision to 
further decompose any one cell larger than 
the atomic cell size is based on the variance 
at the next level of decomposition and a 
heuristic on the number of empty cells that 
result. The atomic cell size (or smallest 
possible cell size) is mediated between the 
median nearest neighbour distance and 
average cell size per point, whichever is 
smallest. Any cells formed through 
decomposition that fall outside the convex 
hull, or administrative boundary, are 
automatically deleted. Tests have shown the 
algorithm to be consistently effective in 
comparison with other approaches of point 
cluster detection (see Brimicombe & Tsui, 
2000). The resulting clusters are termed 
Geo-ProZones (GPZ) as they represent 
zones of geographical proximity in the point 
pattern. As with kernel density estimation, 
the highest densities can be taken as ‘hot 
spots’. However, GPZ are not an 
interpolation, but segmentation into 
polygons having internal consistency in the 
distribution and density of the point events 
within them. Also, it does not suffer from 

boundary effects. GPZ for the burglary 
events in Figure 1 are given in Figure 3. 

The pattern in Figure 3(a) reflects the 
pattern in Figure 1(b). The underlying 
speckle arises because all events are mapped 
without smoothing. The highest densities, or 
what would be interpreted as ‘hot spots’, 
occur as more localised concentrations of 
repeat victimisation. Since GPZ results in 
polygons, they can be readily overlaid on an 
underlying population at risk (such as from 
census data) and re-classified as rates. 
Figure 3(b) shows GPZ as rates per 
thousand households from the underlying 
census data. The pattern of ‘hot spots’ is 
quite different and identifies where citizens 
are at greatest risk. Some of these areas 
appear reasonably extensive, others are 
highly localised where repeat victimisation 
is occurring. 

 
 

 

 (a) 
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 (b) 

Figure 3. Geo-ProZone analysis: (a) GPZ for 
density of burglaries per hectare; (b) GPZ for 
rate of burglaries per thousand households. 
 
4. Robust normalisation for outlier 
detection and consistent visualisation 
 
Whilst GPZ offers important 
methodological improvements in cluster 
detection where there is a tendency towards 
localised repetitive events, outstanding 
issues for this (and any other approach) 
relates to the well-known limitations of 
thematic mapping: number of class 
intervals, the fixing of class boundaries and 
what colours to use. There is the added issue 
of what constitutes the cut off for a ‘hot 
spot’. In practice, decisions often lack 
consistency. One approach is through data 
normalisation. A new form - robust 
normalisation - (see [1] below) has been 
introduced (Brimicombe, 1999; 2000) as an 
alternative to the popular Z-transformation 
where data are skewed and where a Z-
transformation of such data is likely to be 
biased. 
 

 [1] 
 

The term ‘robust’ refers to the use of the 
median and inter-quartile range from robust 
statistics (Hettmansperger & McKean, 
1998). The outcome of robust normalisation 
(Figure 4) is a distribution of median = 0, 
lower quartile = -1 and upper quartile = +1. 
Values of <-3 and >+3 have been shown by 
simulation to be equivalent to ±2 standard 
deviations or 95% of the distribution and are 
considered to be extreme values 
(Brimicombe 2007b). Thus the trans-
formation can be used consistently for 
outlier detection. It also provides a means of 
defining consistent class intervals and 
cartographic representation where the ability 
to make visual comparisons is important 
(Figure 4). Robust normalisation is easily 
coded as a Microsoft® Excel macro. For 
very ‘flat’ data sets where the lower quartile 
equals the median or upper quartile equals 
the median (or all three equal each other), 
then robust normalisation is likely to fail 
(division by zero). The Excel macro 
therefore contains diagnostics to warn the 
user of such situations. 
 
 

 
Figure 4. Robust normalisation of two dissimilar 
distributions; visualised by consistent map 
legend classes (5 or 7 intervals). 
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Robust normalisation can be applied 

both to area-based data and to density 
estimate interpolations. For ‘hot spot’ 
detection it is the extreme positive values 
(>+3) that are of most interest. The robust 
normalised distribution easily lends itself to 
five or seven class intervals with class 
boundaries at quartiles (in the seven class 
interval scheme the values immediately 
around the median are further separated, as 
in Figures 4 and 5) and can be used in a 
standardised way for all visualisations. This 
allows more objective comparisons between 
maps (either of different variables or of the 
same variable over time). Figure 5 shows 
robust normalisation applied to both GPZ 
densities and rates from Figure 3 
overcoming problems of arbitrary numbers 
of classes and class intervals. Localised ‘hot 
spots’ are where there are extreme positive 
values. By analogy ‘cool spots’ would be 
where there are extreme negative values. 
Clearly picked out in Figure 5(a) are the 
localised excesses of counts that represent 
‘hot spots’ of repeat victimisation. More 
striking though is Figure 5(b) which shows 
many more localised excesses of rates when 
counts are related to the underlying 
population at risk. Importantly, in both cases 
the ‘hot spot’ distributions do not 
necessarily conform to initial subjective 
impressions of the point patterns (Figure 
1(a)) as the ‘hot spots’ are in fact occurring 
where point events are superimposed and 
hence can be picked out neither by eye nor 
effectively by kernel density estimation. 
 
5. Conclusions 
 
A consistent approach to cluster detection 
and visualisation of ‘hot spots’ through the 
combined use of Geo-ProZones and robust 

 (a) 

 (b) 

(c) 

Figure 5. Applying RN: (a) GPZ for density of 
burglaries per hectare; (b) GPZ for rate of 
burglaries per thousand households; (c) legend. 
 
 
normalisation has been presented. The Geo-
ProZones algorithm overcomes problems 
raised when data sets exhibit a tendency 
towards spatially repetitive events and 
where ‘hot spots’ will be highly localised. It 
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also overcomes the boundary issues 
associated with KDE. The algorithm is 
suited to producing both segmentations of 
point densities and rates/risk in relation to 
underlying populations at risk. Problems can 
arise, however, from the presence of spatial 
outliers distorting the initial convex hull 
created around the point events. 
Improvements to the algorithm are being 
investigated to reduce sensitivity to any such 
outliers. Robust normalisation provides 
consistency in defining class intervals with 
‘hot spots’ as localised extremes. Visual 
map comparisons for decision making are 
rendered more objective. Applications of the 
approach have been successfully used in 
analyses of crime, health and pipe bursts in 
water reticulation systems. 
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