

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

To see the final version of this paper please visit the publisher’s website.
Access to the published version may require a subscription.

Author(s): Capiluppi, Andrea., Boldyreff, Cornelia
Article Title: Identifying and improving reusability based on coupling patterns

Year of publication: 2008
Citation: Capiluppi, A., Boldyreff, C. (2008) ‘Identifying and improving reusability
based on coupling patterns.’ In: High confidence software reuse in large systems.
Lecture notes in computer science, 5030/2008. Springer, Berlin / Heidelberg, pp.
282-293
Published version available from: http://www.springer.com
ISBN: 9783540680628

Publisher statement:
http://www.springer.com/authors/journal+authors?SGWID=0-154202-12-467999-0

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219371941?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

Identifying and Improving Reusability Based on
Coupling Patterns

Andrea Capiluppi and Cornelia Boldyreff

Centre of Research on Open Source Software – CROSS
Department of Computing and Informatics

University of Lincoln
{acapiluppi,cboldyreff}@lincoln.ac.uk

Abstract. Open Source Software (OSS) communities have not yet taken full ad-
vantage of reuse mechanisms. Typically many OSS projects which sharethe same
application domain and topic, duplicate effort and code, without fully leveraging
the vast amounts of available code.
This study proposes the empirical evaluation of source code folders ofOSS projects
in order to determine their actualinternal reuse and their potential as shareable,
fine-grained andexternallyreusable software components by future projects.
This paper empirically analyses four OSS systems, identifies which components
(in the form of folders) are currently being reused internally and studiestheir cou-
pling characteristics. Stable components (i.e., those which act as service providers
rather than service consumers) are shown to be more likely to be reusable. As
a means of supporting replication of these successful instances of OSSreuse,
source folders with similar patterns are extracted from the studied systems, and
identified as externally reusable components. The intended users are members of
the OSS development community.
Based on the empirical study of the OSS systems and observations made dur-
ing the study, four practical courses of action are recommended in order to en-
hance the reusability of current folders that have not been identified aspotentially
reusable, both from an internal and external standpoint.

1 Introduction

Reuse of software components is one of the biggest promises of software engineer-
ing [3]. Enhanced productivity, increased quality and improved business performance
are often pinpointed as the main benefits of developing software from a stock of reusable
building blocks [33].

Recently, practical approaches to commercial software reuse have included both
in-house and COTS-based approaches. Many companies have already successfully pro-
duced and reused in-house components, in the forms of documentation, system and
components design, source code, and so on, which are kept as valuable assets and not
made available elsewhere [25, 29]. One of the most critical aspects of successful in-
house reuse is the long-term commitment of the management [30].

Reuse of small scale compoments, e.g. functions of programming language libraries,
either in-house or externally produced has been common practice since high level lan-
guages have been in use. A new possibility for reusability ofexternal components has

2

arisen through the exploitation of both COTS and OSS in what can termed "whole
system reuse". New products can be developed based on existing systems, either on a
closed-source basis (e.g., commercially available COTS [31]), or by reusing entire OSS
systems, such as web-server Apache, the MySQL database management system, or the
PHP language [37]. In the latter case, OSS systems also provide the source code under-
lying the system, and the code can be modified before reuse. One of the drawbacks of
this approach is that entire systems are reused, even thoughonly a subset of their func-
tionalities may be required in the new system. Commercial companies must address
these issues in order to take advantage of the proprietary-COTS shift:whether to use
COTS,how to useCOTS, andwhat to modifyin their in-house systems to cope with
COTS [10] and the same questions apply in the selection of OSScomponent reuse.

Although much attention has already been focused on the study of reusable COTS,
including OSS components in corporate software production, the reusability of software
“from” OSS projects “in” other OSS projects has only startedto draw the attention
of researchers and practitioners in OSS communities [20]. While a huge amount of
code is daily created, modified and stored in OSS repositories, software reuse is rarely
perceived by OSS developers as a critical factor in their projects, nor is the source code
of other projects considered as a potential way to build new OSS systems upon existing
ones. For different and composite reasons [34], briefly recounted here in the following
Sections, several OSS projects typically address the same software need independently.
For example, a search for the “email client” topic on the SourceForge site will result
in more than 500 different projects being listed, each implementing some features of
the same topic. Duplication of coding effort therefore is currently producing similar
products with little sharing of the basic building blocks orthe larger subsystems. In
order to address this missing “reuse” link in OSS projects, the objective of this paper
is to provide OSS communities with a technique for identifying and benefiting from
reusable components (under a “design with reuse” perspective [26]).

2 Definitions and Approach

The terminology and definitions used in this paper are extracted from similar stud-
ies in the literature, for example, the definition ofcoupling(intended for both object-
oriented [1, 21] and procedural [13] languages) and the notion of instability of source
packages [17]. In this section an overview of these terms is given, as they will be used
throughout this work.

– Source function: basic unit of source code; this term is used to refer to procedures,
subroutines, but also OO methods.

– Source file: any file with at least one source function.
– Source folder: any folder containing at least one source file [9]. The termmoduleis

used to refer to source code functions, files and folders.
– Folder structure: from the perspective of file naming, code organisation and storage,

this is the tree structure composed of elementary components (source files, source
folders). The root of the tree is represented by the parent folder [9, 8].

– Extensibility of a source folder: following Martin[24] who definesextensibilityas
the number of concrete and abstract classes in a package, we define the number of

3

source files contained in a folder as theextensibilityof that folder. This attribute
serves to characterise the potential usefulness of a sourcefolder. Ideally, one would
want to reuse folders with large extensibility, i.e., with alarge number of similarly
scoped functionalities (in the forms of files or functions),rather than a number of
related smaller folders.

– Coupling: this is a measure of interconnection among modules in a software struc-
ture [33]. In this study, three types of coupling are extracted, based on the defini-
tions of common coupling [36]:
i. The dependency relationshipis based on source files, and describes, for each
file, how many and which other files are currently including it.
ii. The include relationship is also based on source files, and describes the number
of external files that a specific source file includes in its declarations.
iii. The function call relationship is based on source functions, and describes the
relationship among functions or procedures. It produces asa result the represen-
tation of calls within functions. These couplings were extracted via the Doxygen
engine, and, albeit related, they represent different metrics for the links among mod-
ules.

– The number ofAfferent Couplings (Ca, or in-bound coupling) of a source folder
represents the sum of other source folders that depend on it,and it is an indicator of
the itsresponsibility. [17] used this metrics for OO languages and specifically for
packages. In the following, the focus is on source folders aspackages of a system,
even if the system is written in procedural languages.

– The number ofEfferent Couplings (Ce, or out-bound coupling) of a module repre-
sents how many other modules it depends on, and it is an indicator of the folder’s
independence[17].

– The Instability (I) of a module is the ratio of efferent coupling (Ce) to total cou-
pling (Ce + Ca) such thatI = Ce

(Ca + Ce)
. This metric is an indicator of the

folder’s resilience to change [17]. The range for this metric is 0 to 1, withI = 0
indicating the lowest instability for a folder andI = 1 indicating a completely un-
stable folder [17]. Since Ca and Ce are measured at the folderlevel, and couplings
among folders may greatly vary due to larger or smaller amount of calls,weighted
instability factors will be introduced below, termed wCa and wCe.

3 Case Studies – Evolutionary Analysis

The first part of this study has been performed over all the public releases of four large
OSS projects, and is specifically targeted at understandingthe structural relationships
among source folders. It can be observed that both MPlayer and XMMS share the same
functionalities, yet they are developed by independent teams of developers. This is not
an isolated case in the OSS environment; there are several small projects (such as kftp,
gftp, sftp, among others, which are all dealing with theFile Transfer Protocolman-
agement) and large projects (such as the desktop GUIs, KDE and GNOME) which are
being developed in parallel, without sharing or reusing code of other similar-scoped
projects. The reasons discovered by past works [34] are enough for developers to start
their own project and duplicate efforts. This could mean also that the reuse of code

4

written by others has to overcome similar obstacles, apart from the technical ones, as
already evaluated by [20].

In terms of activity and code released, it was observed that the Arla project spans
some 8 years of development, Gaim approximately 6.5 years, MPlayer 4.5, while XMMS
5 years. In terms of productivity, a high frequency of releases was visible for the Gaim
and MPlayer projects (on average, more than one release per month), while it is lower
in the case of Arla (less than one per month). The XMMS case finally shows that a new
release has been available on average every two months. Thisgeneral productivity trend
has had a repercussion on size achieved (in LOCs) and overallnumber of source folders
found in the latest observed release.

In terms of developers, it was observed that the MPlayer project was the most suc-
cessful in forming an OSS community providing code patches,new functionalities and
bug fixes (210 developers). A direct link between the community formed and the size
achieved was also detected in the overall size at the latest observed release: in the cases
of the 4 projects studied here, larger communities usually achieve larger systems, apart
from the Gaim case (25 developers, 235 kLOCs), where a smaller community has
achieved a larger system than those developed by other, larger communities (Arla –
with 83 developers, 215 kLOCs – and XMMS – 43 developers, 110 kLOCs).

The last row of table 1 shows which folders are already successfully reused across
the selected OSS systems. The most notably folders are the following:

1. libraries of the C language (libc): they provide generic functionalities, like the I/O
output (the module “stdio.h”), or the stub functions for socket communication (con-
tained in “socket.h”). In this work, all the connections involving calls to elements
of the generic libc libraries are, for simplicity, redirected to a generic “libc” folder;

2. localisation/international folder: the code contained in this specific subsystem trans-
lates the messages, or the interfaces, of the application inthe local language of the
user. OSS projects using code of this subsystem typically include it in a folder
named “intl”.

3.1 Source Folders as Reusable Units

Empirical findings reported in [23] demonstrate that object-oriented packages show four
basic patterns (“pure client”, “ pure server”, “ hybrid” and “silent”), based on whether
they mostly require, or are called by, other packages. Albeit the cited work deals with
Java packages and creates a taxonomy of components, the present work expands these
findings in two ways:

1. it considers the folders of procedural languages as modules: when asked, the de-
velopers of the XMMS case study confirmed that source foldersserve to them as
place-holders for “similar-scoped” source files1. The “wav” folder, for instance,
keeps all the source files for the wav audio file format.

2. it evaluates coupling among folders to build an instability index: folders with lowest
instability index are identified as candidates for reuse.

1 Reported from conversations, email correspondence and private communication

5

In all the case studies apart Arla (see below), an initial value of at least 80% of all
the couplings are contained inside the same source folder. Considering only the “func-
tion calls” coupling, this value is at least 90%. On a parallel level, all the analysed
systems show an initial pattern of growth in number of sourcefolders, and a decreas-
ing coupling pattern: the overall amount of intra-folder couplings decreases while the
system increases in size. This recalls the results of architectural erosion mentioned in
[27]; as systems depart from the “initial architecture’s intent and conceptual integrity”,
couplings connect many other folders, and the whole architecture becomes much harder
to understand and maintain.

The Arla case is an outlier, and shows a complex and intertwined system already
from its initial releases, where half of the couplings affect two or more source folders.
All the other factors being equal, this system is going to experience less externally
reusable folders, since most of the existing folders are already linked into a complex
network of couplings.

This initial result shows that, on average, OSS developers actively use source fold-
ers as containers of similar-scoped elements, and prefer linking elements in the same
folder rather than coupling different folders. However, this result should not be used
to statically judge a software system; the Arla system is notinherently worse than the
others analysed, but on average its source folders are more instable, as per the definition
given. Based on that, it is likely that selecting reusable folders from this system will be
more difficult.

3.2 Evaluation of Reuse and Architectural Properties – Gaim

The trend of Gaim’s folders growth has a stabilisation phaseonly in the middle part of
its lifecycle. It is possible to conclude that MPlayer has achieved a mature status similar
to XMMS, while Gaim is still on a fully development stage. Thekey findings in the case
of Gaim are as follows:

1. External libraries: this folder in the latest release of Gaim has an afferent coupling
of 26 (out of 32 overall) folders, but no efferent coupling. This confirms that, from
a coupling perspective, the “libc” folders is highly reusable, and its instability is
minimum.

2. International folder: Gaim incorporates the “intl” folder, albeit not from the first
release, and this folder behaves in a similar way to that observed below in the
XMMS system. Again, this confirms it as a reusable asset, based on a coupling
perspective.

3.3 Identifying Reusable Folders – Dynamic Analysis

In this section, the data gathered in the evolutionary exploration of the four case studies
will be used to extract reusable folders. In particular, thecoupling patterns of the “libc”
and the “International” folders will be looked for in other folders. Low values in the
instabilities will trigger the definition of reusability ofthe folder, and a preference will
be given to folders with larger extensibility. Tentatively, two thresholds were set: the

6

joint combination of an instability lower than 0.2, and an extensibility larger than 10,
highlight a folder as reusable.

In table 1, a list of reusable folders per project is given, based on the instability and
extensibility factors, defined above. The following pointsare relevant to interpreting the
columns of the table:

1. Each project has a set of rows, pointing at reusable folders (second column) found
in that project. In each set, folders with a small instability (3rd column) and con-
taining a larger amount of source files (i.e. higher extensibility, 4th column) are
preferred as potential reusable folders.

2. Efferent coupling (5th column) has been evaluated via theproduct of the number
of efferent folders and the number of total efferent calls. Afferent coupling (6th
column) is given by a similar product, but involving afferent folders and calls. Intra-
folder calls are summarised by the “Calls to self” column, while links to the “Libc”
folder are shown in the “Calls to libc” column. In many cases,the amount of intra-
folder calls are much more than the amount of efferent calls,which confirms the
lowest instability of these folders.

3. A description of each folder (last column of table 1) has been determined either
from the description files contained in the folder, or by browsing the documentation.
This task is of key importance in order to describe a folder topotential reuses, and
it has not been possible to automate this task.

Validation of the predictors – Instability and Extensibili ty As stated above, and con-
sidering the relatively few empirical studies focused on the reuse of OSS components,
the practice of reuse of OSS components is not widespread, and it needs further in-
vestigation. The implemented algorithm selects folders which are being actively reused
by these systems (the “rx” folder, third row, provided by IBM, reused in the Arla sys-
tem; the folder “tremor” in the MPlayer system). In terms of validation of the proposed
metrics as predictors of external reusability, the following lists the approach used:

– Detecting reused folders: the list of reusable folders, as listed in table 1, has been
processed in a semi-automatical way, through various engines: the main Source-
Forge site2, the Krugle code search engine3, and the FLOSSmole repository4

have been searched against each of these folders. The SourceForge site has been
searched manually, browsing for the names of each folder, and analysing whether
new projects exist as a spin-off from that folder, or if existing projects include
the requested fodler; the Krugle engine has also been manually searched, and the
existing OSS projects that include the requested fodler have been detected; the
FLOSSMole repository has been automatically searched for matching names of
new projects with the name of the requested folder.

– Detection of actual reuse: the folders found in any of the information sources have
been detected as such. No further analysis has been performed to check whether

2 http://sourceforge.net/
3 http://www.krugle.com/
4 http://ossmole.sourceforge.net/

7

their current coupling interaction, or their extensibility, has changed overtime as
the original case studies.

Based on the approach above, it was found that some of the highlighted folders are
currently distributed asindependentOSS projects:
– the “liba52” folder of MPlayer (7th row of table 1, and
– the “libxmms” folder of XMMS (12th row of table 1).

In terms of “external” reusability [32], it was also found that some of the folders in
the MPlayer project are reused in various OSS projects:
– the “liba52” folder is currently reused by the “gst-ffmpeg” project;
– the “libavcodec” folder is currently reused by several other OSS projects (“gst-ffmpeg”,
“xmovie”, “quicktime4linux”, “mythtv” among others);
– the “libfaad2” folder is reused by the “audacious-plugins” project;
– the “libmpdemux” folder is reused by the “nmm” project.

False PositivesThe algorithm as illustrated above is subject to detect false positive,
i.e. targetting folders as reusable but never reused. Basedon the given thresholds (Insta-
bility <= 0.2; Extensibility >= 10), the latest analysed releases of the analysed projects
presented the false positives listed in the last column of table 1. One could gather these
false positives into two main categories, the first containsthose folders which currently
represent most of the functionalities of the system (e.g.the “root/src” folder in Gaim,
and the “root/xmms” in the XMMS system). These cases are typically large-grained
components, and in terms of reusability, they should be split into other components be-
fore being reusable. The second category contains those other folders which present a
reusability potential, but currently are not reused. It is the opinion of the authors that
these false positives represent missed reuse opportunities.

4 Related Work

This work is related to various research areas: reuse of components, empirical studies
on software systems, graphic visualizations, software couplings, and software architec-
tures. Since this work is in a larger research context, related to the study of the evolution
of OSS systems, from which the case studies presented in thispaper have been taken,
empirical studies of OSS are also relevant to this research.In the following Section, an
overview of the related works is presented, and consideration is given to determining
how this work expands upon the related work.

The research with the closest scope to the present work is presented in [20], where
a framework is proposed for the reuse of components in the OSSenvironment. It points
out some key aspects to consider carefully, and which could impede its implementation,
such as the license types, the ego-boosting problems or the programming languages;
these social aspects were previously stressed also in [34].The technical aspects of in-
corporating external code are also mentioned, but no in-depth analysis is provided. The

8

present work studies some of the technical details of selecting reusable folders, but the
mentioned aspects are all key points which should be given consideration as well.

As mentioned above, manyreuseresearch studies (and a set of specific conferences
on the topic of “Software Reuse”) have been devoted to developing techniques [22, 37]
and frameworks for globally enhancing reuse [3], establishing state-of-the-art and crit-
ical aspects of reuse [25, 30]. This present work has been conceived as having the OSS
development communities as its main recipients and beneficiaries in order that results
and techniques of this academic research can be fed back to the OSS communities and
advance the development of their systems.

This work is also related to the study ofsoftware architectures: previous works
([18, 19, 38]) have defined and used different views of architecture of a software sys-
tem. For example, [19] refers to a “4+1” view model to describe a system involving
logical, process, physical, development views, and user scenarios. This model defines
different perspectives for different stakeholders; the present work uses the concepts of
logical (“hierarchical”) and process (“coupling”) views to establish a comparison be-
tween them. Similarly, [18] defines four architectural views of software systems, which
in turn focus on coarser degrees of granularity (conceptual, or the abstract design level;
module, or the concrete design level; code, or components level; and execution level).
As stated above, the present research focuses on the views which are closer to the work
of software developers, as, for instance, the folder or the file level. In the selection of
attributes, the limit is on those that it is possible to derive from projects found in exist-
ing OSS repositories with a reasonable effort. Hierarchical (“abstract design level”) and
coupling (“component level”) views can both provide insight into how developers deal
with macro and micro-components of software systems, respectively.

Recently, it has been realized that empirical data for OSS systems is more widely
available than that for proprietary systems. A general distinction can be drawn among
these studies. In part, research studies are based “on” OSS systems “for” advancing
the Open Source Software Engineering body of knowledge; other studies access OSS
projects for generating boundary crossing conclusions on software systems in general.
Recent studies of the first kind include those examining single OSS projects [2, 15, 16]
[14, 35], or those examining several OSS projects [6, 7, 28].This work is intended as
a means to directly inform OSS developers of the availability of existing potentially
reusable folders upon which they can build new applications.

As previously reported, recent work [11, 23] has been focused on OOpackage anal-
ysis, in order to characterise the roles of specific folders. Thiswork is greatly inspired
by these research studies, and focuses the “source folder” as the fundamental unit in
a network of couplings. The advances presented in this paperare based on consider-
ing interaction coupling within procedural languages as the most representative in an
OSS context [7], on providing an evolutionary perspective of these interactions, and on
focusing the analysis on the reusability of folders based ontheir couplings.

Recent work oncode couplingsin OSS has been reported in [1, 39], where the
analysis used the definition of common coupling; two or more modules are commonly
coupled when they share a reference to the same variable. Ourapproach is slightly dif-
ferent, since the source code (mostly C with some C++) is analysed by considering three
different couplings (dependency, and include coupling, and calls among functions). We

9

consider their relevance from the point of view of two different visualizations, in order
to define a relationship between code coupling and what we define as the folder struc-
ture of a software system at a given stage of its evolution. The definitions of coupling, as
used throughout this paper are mirrored in those presented in [36]; specifically, the com-
mon coupling (in this paper calculated as file dependencies), and the control coupling
(in this paper calculated as function calls).

5 Conclusions, Further Work and Threats to Validity

This paper has presented an approach to evaluate the source folders of a software system
as potentially reusable and shareable fine-grained components. The current state of the
art in terms of reusability are two-fold: the commercial internal reuse, which is typically
not shared, and the COTS approach, which reuses “black-box”components.

This paper focused its reuse approach on smaller components, the folders (or di-
rectories) of a software system. Building on the vast amountof OSS knowledge and
the OSS code base, specific source folders were observed as successfully reused across
OSS systems. An analysis of the coupling (i.e., the interactions among various other
folders) was carried out in order to characterise these specific folders based on patterns
of interaction. The approach described above had two objectives. The first objective
was to look for similar coupling patterns in other folders inorder to identify potential
candidates for reuse in other OSS projects. The second was toidentify actions that de-
velopers should consider in order to improve the reusability of folders of their project
for other OSS projects.

Regarding the first objective, the empirical results are based on literature defini-
tions. It was found that successfully reused folders have a low instability index, i.e.,
they provide more services to other folders than they ask forfrom other folders. In a
service-based terminology, these folders act mostly as servers for other folders. This
coupling pattern was searched for in other source folders, and a list of folders with a
similar behaviour was provided in table 1; these folders represent potentially reusable
components. In terms of external reusability, the algorithm identified some source fold-
ers which are already being reused in the OSS community as side projects of existing
OSS systems.

Various areas are being evaluated as further work: a key aspect of this research
that should be enhanced is the extraction of information to characterise the potentially
reusable source folders; this should be made automatic and non-invasive. Then, as ex-
posed above, other types of coupling (dynamic and data couplings, inheritance etc.)
have been identified in previous works, and should be considered to provide a more
complete picture. Finally, it is planned to use a tooling technique to bind and/or resolve
external dependencies: we wish to explore whether even modules with many dependen-
cies could be highly reusable.

Threats to validity have been identified in the following aspects:

1. The usage of instability and extensibility alone could not be enough to categorize a
source folder as reusable. Due to transitive dependencies,developing a new module
using others, it will automatically becomes less reusable than the ones that were

10

reused (because Ce increases), unless it was manage to create many dependencies
to the new module (such that Ca increase as well).

2. Only the dependency, inclusion and function calls couplings are studied. Other
types such as data coupling [5], or dynamic coupling, [1]), are not considered.
Further works will enhance our analysis to consider these types, and could bring
more insights into these types of coupling.

3. Other characteristics determine whether a module shouldbe reused in another sys-
tem. Apart from those already cited by [20], there could be inherent reasons for not
reusing a specific module, even if its instability is low at the coupling level. It could
be that it is too small, or that it is very complex (in terms of cyclomatic complexity,
for instance).

References

1. Arisholm, E., Briand L.C. and Foyen, A.: Dynamic Coupling Measurement for Object-
Oriented Software. IEEE Transactions on Software Engineering, 30(8):491–506, 2004.

2. Aoki, A., Hayashi, K., Kishida, K., Nakakoji K., Nishinaka Y., Reeves B., Takashima A.,
and Yamamoto, Y.: A case study of the evolution of jun: an object-orientedopen-source
3d multimedia library. In Proceedings of the 23rd International Conference on Software
Engineering, pages 524–533, Toronto, Canada, 2001. ICSE.

3. Basili, V.R. and Rombach, H.D.: Support for Comprehensive Reuse. IEEE Software Engi-
neering Journal, 6(5):303–316, 1991.

4. Beecher, K., Boldyreff, C., Capiluppi, A., and Rank, S.: Evolutionary Success of Open
Source Software: an Investigation into Exogenous Drivers. ElectronicCommunications of
the EASST: ERCIM Symposium on Software Evolution, 17(8), 2007.

5. Briand, L.C., Morasca, S. and Basili, V.R.: Property-based Software Engineering Measure-
ment. IEEE Transactions on Software Engineering, 22(1):68–86, 1996.

6. Capiluppi, A: Models for the Evolution of OS Projects. In Proceedings of the International
Conference on Software Maintenance, 65–74, Amsterdam, Netherlands, 2003.

7. Capiluppi, A., Lago, P. and Morisio, M.: Evidences in the Evolution of OS Projects Through
Changelog Analyses. In Proceedings of the 3rd Workshop on Open Source Software Engi-
neering, Portland, OR, USA, 2003. ICSE.

8. Capiluppi, A., Morisio, M., and Ramil, J.F.: Structural Analysis of Open Source Systems.
In N. H. Madhavji, J. F. Ramil, and D. Perry, editors, Software Evolutionand Feedback:
Theory and Practice, pages 207–222. Wiley, 2006.

9. Capiluppi, A., Morisio, M. and Ramil, J.F.: The Evolution of Source Folder Structure in
Actively Evolved Open Source Systems. In Proceedings of the 10th International Software
Metrics Symposium, pages 2–13, 2004.

10. Carney, D.: Assembling Large Systems from COTS Components: Opportunities, Cautions,
and Complexities. Technical report, SEI Monographs on the Use of Commercial Software
in Government Systems, 1997.

11. Ducasse, S., Lanza, M. and Ponisio, L.: Butterflies: A visual Approach to Characterize Pack-
ages. In Proceedings of the 11th International Software Metrics Symposium, 2005.

12. Ellson, J., Gansner, E., Koutsofios, L., North, S.C. and Woodhull G.: Graphviz, Open Source
Graph Drawing Tools, 2002.

13. Fenton N.E. and Pfleeger, S.L.: Software Metrics: a Practical and Rigorous Approach.
Thomson, 1996.

14. Koch, S. and Schneider, G.: Effort, Cooperation and Coordination in an Open Source Soft-
ware Project: GNOME. Information Systems Journal, 12(1):27–42, 2002.

11

15. German., D. M.: Using Software Trails to Reconstruct the Evolution of Software. Journal of
Software Maintenance and Evolution: Research and Practice, 16(6):367–384, 2004.

16. Godfrey, M.W. and Tu, Q.: Evolution in Open Source Software: A Case Study. In Proceed-
ings of the International Conference on Software Maintenance, pages131–142, San Jose,
CA, USA, 2000.

17. Gorton I., and Zhu, L.: Tool Support for Just-In-Time Architecture Reconstruction and Eval-
uation: an Experience Report. In Proceedings of the 27th international conference on Soft-
ware engineering, pages 514–523, 2005.

18. Hofmeister, C., Nord, R. and Soni, D.: Applied Software Architecture. AddisonWesley,
2000.

19. Kruchten, P.: The 4+1 View Model of Architecture. IEEE Software, 12(5):88–93, 1995.
20. Lang, B., Abramatic, J.F., Gonzalez-Barahona, J.M., Gomez, P., Pedersen, M.K.: Free

and Proprietary Software in COTS-Based Software. Lecture Notes in Computer Science,
34(12):2, 2005.

21. Li, W. and Henry, S.: Object-oriented Metrics that Predict Maintainability. Journal of Sys-
tems and Software, 23(2):111–122, 1993.

22. Llorens, J., Fuentes, J., and Astudillo, H.: Incremental Software Reuse. In Proceedings of
the International Conference on Software Reuse, Torino, Italy, 2006. ICSR.

23. Lungu, M., Lanza, M. and Girba, T.: Package Patterns for Visual Architecture Recovery. In
Proceedings of the Conference on Software Maintenance and Reengineering, 32–41, 2006.

24. Martin, R.C.: Agile Software Development, Principles, Patterns, andPractices. Prentice
Hall, October 2002.

25. Matsumoto, Y.: Some Experience in Promoting Reusable Software Presentation in Higher
Abstraction Levels. IEEE Transactions on Software Engineering, 12(1):43–60, 2004.

26. McClure, C.: Software Reuse Techniques. Prentice-Hall, 1997.
27. Medvidovic, N. and Jakobac, V.: Using Software Evolution to FocusArchitectural Recovery.

Automated Software Engineering, 13(2):225–256, 2006.
28. Mockus, A., Fielding, R. T. and Herbsleb, J. D.: Two Case Studiesof Open Source Soft-

ware Development: Apache and Mozilla. ACM Transactions on Software Engineering and
Methodology, 11(3):309–346, 2002.

29. Mohagheghi, P. and Conradi, R.: Different Aspects of ProductFamily Adoption. In Proceed-
ings of 5th International Workshop on Product Family Evolution, pages 429–434, 2003.

30. Morisio, M., Ezran, M. and Tully, C.: Success and Failure Factorsin Software Reuse. IEEE
Transactions on Software Engineering, 28(4):340–357, 2002.

31. Morisio, M., Seaman, C.B., Parra, A.T., Basili, V.R., Kraft, S.E. and Condon, S.E.: Investi-
gating and Improving a COTS-based Software Development. In Proceedings of International
Conference on Software Engineering, pages 32–41, 2000.

32. Poulin, J.S.: Measuring Software Reuse: Principles, Practices, and Economic Models.
Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA, 1996.

33. Pressman R.S.: Software Engineering: a Practitioner’s Approach (2nd ed.). McGraw-Hill,
Inc., New York, NY, USA, 1986.

34. Senyard, A. and Michlmayr, M.: How to Have a Successful Free Software Project. In Pro-
ceedings of the 11th Asia-Pacific Software Engineering Conference, pages 84–91, Busan,
Korea, 2004. IEEE Computer Society.

35. Stamelos, I., Angelis, L., Oikonomou, A., and Bleris, G. L.: CodeQuality Analysis in Open-
Source Software Development. Information Systems Journal, 12(1):43–60, 2002.

36. Stevens, W.P., Myers, G.J. and Constantine, L.L.: Structured Design. IBM Systems Journal,
13:115–139, 1974.

37. Torchiano, M. and Morisio, M.: Overlooked Aspects of COTS-based Development. IEEE
Software, 21(2):88–93, 2004.

12

38. Tu, Q. and Godfrey, W. M.: The Build-Time Software Architecture View. In Proceedings
of 2001 International Conference on Software Maintenance, pages 65–74, Florence, Italy,
2001. IEEE.

39. Yu, L., Schach, S.R., Chen, K. and Offutt J.: Categorization ofCommon Coupling and Its
Application to the Maintainability of the Linux Kernel. IEEE Transactions on Software En-
gineering, 30(10):43–60, 2004.

Folder I E wCe wCa Calls
to self

Calls
to libc

Description False
positive

Arla project – reusable folders
root/lib/ro-
ken

0.01 145 11*73 71*1326 395 367 Library handling missing or broken
parts

yes

root/rx 0.03 33 13*111 53*1042 495 141 Library implementing the rx proto-
col

no

Gaim project – reusable folders
root/src 0.030139 12*111730*144629437 868 Common source files of the Gaim

system
yes

MPlayer project – reusable folders
root/liba52 0.02 23 2*21 9*230 196 15 ATSC A/52 stream decoder no
root/libav-
codec

0.03 154 22*155 27*4493 3780 168 Library for coding and decoding
video and audio streams

no

root/libaf 0.03 38 7*52 25*464 294 112 Audio filter layer library no
root/lib-
faad2

0.06 86 6*23 2*1063 1096 37 Decoding library for AAC formatsno

root/libmp-
demux

0.06 136 21*257 28*2852 2740 353 Demultiplexer Library for MPEG,
ASF, AVI formats

no

root/tremor 0.045 29 4*17 4*363 372 34 Tremor integer-only Ogg Vorbis au-
dio codec

no

root/loader 0.054 27 8*203 24*1192 688 75 N/A yes
root/osdep 0.066 25 6*47 23*174 17 54 N/A yes
root/loader/
wine

0.138 27 5*142 14*318 83 11 Header files for the Microsoft Win-
dows compatibility

yes

XMMS project – reusable folders
root/lib-
xmms

0.003 19 4*20 25*1081 416 86 Generic library for the XMMS
project

no

root/xmms 0.091 87 20*277 26*2121 2157 121 Common source files of the XMMS
system

yes

Table 1.Reusable folders detected via the coupling analysis: wCe refers to the product “Efferent
folders * Efferent calls”, while wCa refers to a similar product of afferent folders and calls

