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CONTROL SYSTEMS WITH LINEAR CLOSED LOOP 

DYNAMICS 
 

S J Dodds 
Control Research Group 

stephen.dodds@spacecon.co.uk; s.j.dodds@uel.ac.uk  
 
Abstract: Two settling time formulae are numerically derived with the 5% and 2% criteria for the 
step responses of control systems having linear closed loop dynamics that may be designed by the 
method of pole assignment to have multiple closed loop poles. The formula is shown to be accurate 
for closed loop systems of up to tenth order.  To clarify the use of the formulae, model based and robust 
control system designs are carried out for a high precision vacuum air bearing application and 
experimental results presented. 
 
1. Introduction 
It is well known that the classical approach to 
control system design is based in the 
frequency domain with the assumption of 
linear plant dynamics and for single input, 
single input plants is a linear controller which 
is either one of several variations on the 
proportional integral derivative (PID) theme 
or a compensator. This approach is well 
documented in text books and has been 
established in industry for many years. Its 
evolution, however, has been influenced 
greatly by the constraints of practicable and 
economical hardware implementation of the 
past, the first versions being specially tailored 
analogue electronic circuits implemented 
with discrete components, the active 
components initially being thermionic valves, 
later replaced by transistors and more 
recently operational amplifiers. Such circuits 
are now being replaced by digital processors 
such as microcontrollers, field programmable 
gate arrays (FPGA) and digital signal 
processors (DSP), which are specially 
designed for fast execution of relatively 
heavy computational loads. The cost of 
control hardware is now drastically reduced 
by the software implementation of specific 

controllers on readily available and mass 
produced processors. This allows 
sophisticated control techniques yielding 
better performance than traditional 
controllers to be applied economically. Even 
today, however, the structure of many 
digitally implemented controllers follows the 
aforementioned classical tradition and 
sometimes leads to compromised 
performance in specific applications. This 
paper contains examples of control 
techniques that take full advantage of the 
digital implementation media in catering for 
plants that may be nonlinear and of arbitrarily 
high order, the control design being rendered 
especially straightforward and palatable by 
students of control engineering and control 
engineers in industry by the settling time 
formulae presented.  In fact, the author 
derived a step response settling time formula 
for the 5% criterion which is already in use, 
exemplified by Vittek and Dodds (2003) and 
this paper formally presents this together with 
a formula for the 2% criterion, which is new. 

The standard settling time formulae for the step 
responses of first and second order linear control 
systems using the 5% criterion are well 
documented in text books but in many cases, the 
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system order is greater than 2, often 3 and not 
infrequently extending to 6.  Occasionally, much 
higher orders are encountered in applications 
such as active vibration control and for this 
reason, systems up to 20th order are considered. 

Linear control theory is well understood and 
therefore the design of a control system is 
made relatively simple if a control technique 
is used that renders the closed loop system 
linear. This paper is restricted to single input, 
single output plants but a similar approach 
may be taken for the control of multivariable 
plants. The design approach presented here is 
a simple ‘top-down’ one in which the starting 
point is the desired performance in terms of 
the settling time with zero overshoot in the 
step response. It is important to note that if 
control energy is an important factor, then the 
settling time can be adjusted to minimise this 
within the constraint of maximum allowable 
settling time, attention also being paid to 
robustness (external disturbance rejection and 
insensitivity to plant modelling errors). 

It will be assumed here that the sampling time 
of the digital processor is sufficiently small 
compared with the time constants and modal 
periods of the open and closed loop system for 
continuous control theory to be applicable. 
The methods presented here are, however, 
extendable to discrete control theory. 

A non-overshooting step response is a good 
starting point in the time domain for most 
control system designs and this can be achieved 
if the closed loop system has coincident negative 
real poles, according to the transfer function: 

 ( )
( )

n

cr

1y s
1 sTy s

 
=  + 

 (1.1) 

where y is the measured and controlled 
output, ry  is the reference input, and cT  is 
the closed-loop time constant, i.e., the time 

constant of each of the n first order systems 
which when connected in a chain will yield 
the desired nth order closed loop dynamics.  
Note that the usual unity d.c. gain is assumed 
but this can be made different if required. 

It is important to note that a controller must be 
used containing at least n adjustable parameters 
that can be set to realise the desired closed loop 
dynamics defined by (1.1). The flexibility of 
modern digital implementation renders this 
possible for all controllable plants. 

2. Derivation of Formulae  
2.1. Formulation of the problem 

Let ssy  be the steady state response to a step 
reference input. Then the settling time 
according to the x% criterion is defined as 
the time taken for ssy y(t)− , to  reduce to 
and thereafter remain less than x% of its 
maximum value.  Traditionally x is chosen 
as 2 or 5 and therefore only these criteria are 
considered in this paper. 

Fig. 2.1 shows a family of step responses of 
the closed loop system defined by (1.1) for 
orders ranging between 1 and 20.  The step 
reference input is r ry (t) Y h(t)= , where 
h(t)  is the Heaviside unit step function.  
The outputs are normalised with respect to 

rY , i.e., ( ) ( ) ry y Yt t′ =  and the time is 
normalised with respect to cT , i.e., ct t T′ = . 

The settling times for the 5% and 2% criteria 
are, respectively, the times taken for the 
normalised step responses to cross the 
horizontal straight lines, y 0.95′ =  and 
y 0.98′ = . A formula relating the settling time 
to the order for the closed loop system defined 
by (1.1) would be a valuable tool for the 
design of controllers using the aforementioned 
top-down approach. 
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Fig. 2.1: Family of normalised step responses of linear closed loop system with multiple poles.  

The mathematical formulation of the problem 
of deriving such a formula is as follows.  It 
may be shown that the general expression of 
the step response of the closed loop system 
defined by (1.1) is: 

 
in 1

c
r

ci 0

t
1 t Ty(t) Y 1 e
i! T

−

=

 −  
= −  

   
∑  (2.1) 

which may be written as follows in terms of 
the normalised quantities already defined: 

 ( )
n 1

i

i 0

1 ty (t) 1 t e
i!

−

=

 ′−′ ′= − 
  

∑  (2.2) 

The normalised settling time for the x% 
criterion would therefore satisfy 

( )
n 1 i sx%

sx% sx%
i 0

1 Ty (T ) 1 T e
i!

−

=

 ′−′ ′ ′= − 
  

∑  and 

since [ ]sx%1 y (T )x 100 ′ ′−= , then 

 ( )
n 1 i sx%

sx%
i 0

1 T0.01x T e
i!

−

=

′−′= ∑  (2.3) 

The exact settling time formula would be 
given by the closed form solution to (2.3):  

( ) ( )sx% sx% cT f T f Tn, x n, x′ = ⇒ =     (2.4)  

The exact function, ( )f n, x , however, has not 
yet been discovered, but section 2.2 provides a 
practicable approximation. 

2.2. A numerical solution 
Observation of Fig. 2.1 reveals that the 
differences between the settling times of the 
responses of systems differing in order by 1 
are nearly equal, so a linear approximation 
to the function, ( )f n, x  is possible for 
x 2 and 5= . For this purpose, the 
normalised settling times have been 
precisely computed for n 1,2, , 20= K  using 
a Matlab Simulink variable step simulation 
and Table 2.1 shows the results. These are 
plotted in Fig. 2.2 (a) and (b) for x 5=  and 
x 2= , respectively. The question now arises 
of the choice of the linear approximation 
method and how many points to take.  The 
classical approach would be to use all 20 
points and apply a least squares fit.  

Due to the progressive reduction in slope of 
the graphs evident in Fig. 22, however, the 
maximum and minimum approximation 
errors increase in magnitude with the number 
of points.  Judgement has therefore been 
exercised to restrict the number of points to 
include the most encountered system orders 
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Table 2.1: Normalised settling times of linear 
closed loop system with multiple poles. 

Order, n s5% s5% cT T T′ =  s2% s2% cT T T′ =  

1 2.9957 3.9118 
2 4.7438 5.8338 
3 6.2958 7.5165 
4 7.7537 9.0841 
5 9.1536 10.5804 
6 10.5131 12.0270 
7 11.8424 13.4364 
8 13.1482 14.8166 
9 14.4347 16.1731 
10 15.7053 17.5098 
11 16.9623 18.8298 
12 18.2075 20.1352 
13 19.4426 21.4279 
14 20.6686 22.7094 
15 21.8865 23.9809 
16 23.0972 25.2434 
17 24.3012 26.4976 
18 25.4992 27.7444 
19 26.6918 28.9844 
20 27.8793 30.2181 

to obtain better approximations for these than 
would be obtained by using all the points. With 
reference to Table 2.1, the formula should fit the 
well known result of s5% c cT 2.9957T 3T= ≅  
for n 1= , so the point [ ]s5%n,T [1,3]=  should 
be one point on the straight line fit for x 5= . It 
may also be observed that for n 1= , 

s2% c cT 3.9118T 4T= ≅ . This approximation is 
not quite as accurate as that for x 5= , but is 
chosen to yield a simple formula so the point 
[ ]s2%n,T [1, 4]=  will be chosen for x 2= . As 
reasoned in section 1, a practical approach 
would be to consider points up to n 6=  and 
observation of Table 2.1 reveals two more 
points through which the straight line 
approximations can pass that should yield 
simple formulae. Thus, for n 6= ,  

s5% cT 10.5131T=  c10.5T≅  yielding the point  

[ ]s5%n,T [6,10.5]=  and s2% cT 12.0270T=  

c12T≅  yielding the point  [ ]s2%n,T [6,12]= . 

The straight line fit 
 sx% x xT C M n′ = +  (2.5) 

where xC  and xM  are constants to be 
determined will be applied to the 
aforementioned fixing points in section 2.3. 

2.3. The 5% settling time formula 
Using the fixing points of Figure 2.2 (a) yields: 

{ {C M 3 5M 7.5 M 3 2
C 6M 10.5 C 3 M 3 2

+ = = ⇒ =⇒ ⇒+ = = − =
( )s5%T 3 21 n′ = + . The settling time formula 

for the 5% criterion is therefore as follows: 

( )s c
3T T1 n2= +  or s cT 1.5(1 n)T= + (2.6) 

2.4. The 2% settling time formula 
Using the fixing points of Figure 2.2 (b) yields: 

{ {M C 4 5M 8 M 8 5
6M C 12 C 4 M 12 5

+ = = ⇒ =⇒ ⇒+ = = − =

( )s2%
4T 3 2n
5

′ = + . The settling time formula 

for the 2% criterion is therefore as follows: 

( )s c4T T3 2n5= +  or s cT 1.6(1.5 n)T= +  

  (2.7) 

3. Accuracy Assessment  
The settling times, sT , obtained using nominal 
settling times, snomT , in (2.6) and (2.7) were 
accurately determined by means of variable 
step Matlab-Simulink simulations. 
The normalised settling times, presented in 
Table 3.1 are s s snomT T T=%  and would 
therefore be unity without errors.  The 
percentage errors shown are therefore 
calculated as ( )s100 %T 1−% .  
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Fig. 2.2: Normalised settling times and straight line fits 
 
For n 1,2, ,10= K , the errors are within 5%± . 
This is considered acceptable for most control 
system designs, as illustrated by the families of 
step responses in Fig. 2.3, which all pass nearly 
through the point for which st T= . If higher 
accuracy is required, however, then if the 
measured settling time is smT , then a ‘single 
iteration’ correction could be made by simply 
setting cT  to a new value: 

 ( )snom smcnew cT TT T=  (2.8) 

where snomT  is the required settling time. 
Alternatively, Table 2.1 could be used to yield 
the value of cT  needed to realise the specified 
value of sx%T , x 2 or 5= , and this applies to 

all system orders.  According to Table 3.1, 
even for n 20= , the actual settling time, sT , 
would be approximately 12% less than the 
specified one, nomT , using (2.6) or (2.7) and 
the correct settling time could still be realised 
by adjusting cT  as described above. 

 

4. Control System Design Examples  
4.1 The plant 
The plant is a single axis vacuum air bearing 
rig, used by Stadler et. al. (2005), consisting of 
a slider of mass, M, with position, x, along a 
horizontal friction free guide and controlled by 
a voice coil actuator with control voltage, u, 
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the position measurement, y, coming from a high resolution encoder.   
 Table 3.1: Normalised settling times and % errors 

5% Criterion 2% Criterion 5% Criterion 2% Criterion 
n 

sT%  % err. sT%  % err. 
n 
 sT%  % err. sT%  % err. 

1 0.9986 −0.14 0.9780 −2.20 11 0.9423 −5.77 0.9415 −5.85 
2 1.0542 +5.42 1.0418 +4.18 12 0.9337 −6.63 0.9322 −6.78 
3 1.0493 +4.93 1.0440 +4.40 13 0.9258 −7.42 0.9236 −7.64 
4 1.0338 +3.38 1.0323 +3.23 14 0.9186 −8.14 0.9157 −8.43 
5 1.0171 +1.71 1.0173 +1.71 15 0.9119 −8.81 0.9083 −9.17 
6 1.0012 +0.12 1.0022 +0.22 16 0.9058 −9.42 0.9015 −9.85 
7 0.9869 −1.31 0.9880 −1.20 17 0.9000 −10.00 0.8951 −10.9 
8 0.9739 −2.61 0.9748 −2.52 18 0.8947 −10.53 0.8892 −11.08
9 0.9623 −3.77 0.9627 −3.73 19 0.8897 −11.03 0.8836 −11.64
10 0.9518 −4.82 0.9516 −4.84 20 0.8850 −11.50 0.8784 −12.16
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a) 5% criterion                                                b) 2% criterion 

Fig. 2.3: Normalised step responses for multiple pole placement using the settling time formulae.

The plant equations are:  

a mx f M,f K u, y K x y bu= = = ⇒ =&& &&  (4.1) 

where a mb K K M= . The slider mass, 
actuator constant and measurement constant 
are, respectively, M 3.25kg= , aK 0.8 A / V =  
and mK 11.1 N / A = . 

The application of the settling time formulae in 
the design of a high precision motion control 
system for the rig will now be demonstrated, 
using pole placement first for a cascade IPD 
controller and then for a sliding mode controller 
(SMC), ref., Utkin (1992), with a boundary 
layer and an integral outer loop to remove 
steady-state errors due to disturbance forces. 

4.2 The desired characteristic polynomials 
In every case, application of the settling 
time formulae (2.6) and (2.7) to the desired 
closed loop transfer function (1.1) yields: 

( )
( ) ( ) ( )

nn

ss
r

11
y s 5T2T or 1 s1 sy s 43 3 2n1 n

a) 5% criterion b) 2% criterion

  
  = ++   

++   1442443 144424443

(4.2) 

The corresponding desired characteristic 
polynomials normalised w.r.t. the coefficient 
of ns  are therefore given by: 
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( ) ( )n n

s s

3 4 3 2n1 ns sor
2T 5T

a) 5% criterion b) 2% criterion

   +++ +   
   1442443 1442443

  (4.3) 

4.2 Design of the IPD cascade controller 

 
Fig. 4.1: IPD position control system 

The closed loop characteristic polynomial is 
3s (s)∆ , where (s)∆  is the determinant of 

Mason’s formula applied to Fig. 4.1: 

3 I
d p2

b Ks 1 K s K
ss

   −− =+ +      
 

 3 2
d p Is bK s bK s bK+ + +   (4.4) 

For n 3= , (4.3) yields: 

 
3

3 2
2 3s s s s

6 18 108 216s s s s
T T T T

 + = + + + 
 

 (4.5) 

for the 5% criterion and 
3

3 2
2 3s s s s

36 108 1296 46656s s s s
5T 5T 25T 125T

 + = + + + 
 

 

  (4.6) 
for the 2% criterion. Comparing (4.4) with 
(4.5) and (4.6) in turn yields the required 
controller gains for the chosen criterion: 

5% 5% 5%
d p I2 3

s s s

18 108 216K , K , K
T b T b T b

= = =  (4.7) 

2% 2% 2%
d p I2 3

s s s

108 1296 46656K , K , K
5T b 25T b 125T b

= = =

 

   (4.8) 
4.3 Design of the sliding mode controller 
Referring to Fig. 4.2, the sliding function, 

( )rS y, y, y&  is linear and driven to zero in the 
sliding mode so that the closed loop 

 
Fig. 4.2: Integral + SMC position control system. 

characteristic equation is given by S(s) 0=  

with ( )ry 0s = ⇒ ( )I
c

K y 0T s 1 s
s

 − =+ + 
 

⇒  

 2 I

c c

K1s s 0
T T

+ + =  (4.9) 

For n 2= , (4.3) yields: 

 
2

2
2s s s

9 9 81s s s
2T T 4T

 + = + + 
 

 (4.10) 

for the 5% criterion and 

 
2

2
2s s s

28 56 784s s s
5T 5T 25T

 + = + + 
 

 (4.11)

  

for the 2% criterion. Comparing (4.9) with 
(4.10) and (4.11) in turn yields the required 
controller parameters for the chosen criterion: 

5% 5% 2% 5%s s
c I c I

s s

T 5T9 14T ,K ,T ,K
9 4T 56 5T

= = = =  

   (4.12) 
Note that the plant parameter, b, is not needed, 
indicating the extreme robustness of SMC. 
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4.4 Experimental results 
The plant hardware is briefly described at the 
beginning of section 4.1. For both controllers, 
the settling time is set to sT 0.1s= , a step 
reference position of 10 mµ  is applied and 
the sampling frequency of the DSpace 
implementation is 40 kHz.  For the SMC, the 
slope of the transfer characteristic realising  
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Fig. 4.3: Experimental IPD response (5% criterion). 
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Fig. 4.4: Experimental IPD response (2% criterion). 
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Fig. 4.5: Experimental SMC response (5% criterion). 

the boundary layer is 4K 2x10= . Figs 4.3 to 
4.6 show the results. Comparison of the errors 
in the realised settling time with the theoretical 
ones in Table 3.1 shows some differences that 
are attributed to plant modelling errors but these 
are within acceptable limits for most 
applications. 

0 0.05 0.1 0.15 0.20  

2  

4  

6  

8  

10 

Po
si

tio
n 

[ µ
m

]

Ts=0.10, error = 0%

0.98

t[s]  
Fig. 4.6: Experimental SMC response (2% criterion). 

5. Conclusions and Recommendations 

Two settling time formulae have been derived 
for closed loop systems with coincident poles 
and their use in control systems design 
demonstrated.  The experimental results show 
that the desired settling time is accurately 
realised.  Extension to complex conjugate pole 
placement would be of interest as in a few 
cases a small amount of overshoot is 
desirable.   
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