

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

To see the final version of this paper please visit the publisher’s website.
Access to the published version may require a subscription.

Author(s): Mouratidis, Haralambos., Giorgin, Paolo.
Article Title: Security Attack Testing (SAT)—testing the security of information
systems at design time
Year of publication: 2007
Citation: Mouratidis, H., Giorgin, P. (2007) ‘Security Attack Testing (SAT)—testing
the security of information systems at design time’ Information Systems 32 (8) 1166-
1183
Link to published version: http://dx.doi.org/10.1016/j.is.2007.03.002
DOI: 10.1016/j.is.2007.03.002

Information on how to cite items within roar@uel:
http://www.uel.ac.uk/roar/openaccess.htm#Citing

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219371881?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://roar.uel.ac.uk/
http://dx.doi.org/10.1016/j.is.2007.03.002
http://www.uel.ac.uk/roar/openaccess.htm#Citing

Security Attack Testing (SAT)—testing the security of
information systems at design time

Haralambos Mouratidis (a), and Paolo Giorgini (b),

a) School of Computing and Technology, University of East London, UK
b) Department of Information and Communication Technology, University of Trento,
Italy

Abstract

For the last few years a considerable number of efforts have been devoted into
integrating security issues into information systems development practices. This has
led to a number of languages, methods, methodologies and techniques for considering
security issues during the developmental stages of an information system. However,
these approaches mainly focus on security requirements elicitation, analysis and
design issues and neglect testing. This paper presents the Security Attack Testing
(SAT) approach, a novel scenario-based approach that tests the security of an
information system at the design time. The approach is illustrated with the aid of a
real-life case study involving the development of a health and social care information
system.

Keywords: Information systems development methodology; Integrating security and
software engineering; Scenarios; Information system security testing

1. Introduction

Developers face many challenges in the development of modern information systems
(ISs). These challenges are mainly associated with characteristics that modern ISs
need to demonstrate, such as openness, adaptability, interoperability and security.
Although many new techniques and technologies are being developed, on a regular
basis, to enable developers to deal with most of these challenges, security has not yet
received the attention it deserves.

Security engineering of ISs is mainly concerned with methods providing cost
effective and operationally effective protection of ISs from undesirable events (Lane,
1985), and as Anderson claims (Anderson, 2001), security engineering is about
building systems to remain dependable in the face of malice, error or mischance.
Current literature (Devanbu, 2000; Michailova, 2002; Van Lamsweerde, 2004; Viega,
2004) extensively argues that in order to effectively design secure ISs, it is necessary
to integrate security engineering principles into development techniques and introduce
an ISs development methodology that will consider security as an integral part of the
whole development process. However, there are various problems associated with the
integration of security considerations during the development of ISs (Michailova,
2004; McDermott, 1999; Schumacher, 2001) A. Michailova, M. Doche, M. Butler,
Constraints for scenario-based testing of object-oriented programs, Technical Report,
Electronics and Computer Science Department, University of Southampton, 2002.:

 1

1. A large number of ISs developers have very limited knowledge of security.
However, in practice they need to develop ISs that require knowledge of security.

2. There are many security-related concepts and definitions that are used differently
by security specialists and ISs developers. As a result, there is an abstraction gap that
makes the integration of security into information system development practices more
difficult.

3. It is difficult to define together security and functional components and at the same
time provide a clear distinction. For instance, which components are part of the
security architecture and which ones are part of the functional specification.

4. It is difficult to move from a set of security requirements to a design that satisfies
these requirements, and also understand what are the consequences of adopting
specific design solutions for such requirements.

5. It is difficult to get empirical evidence of security issues during the design stages.
This makes the process of analysing security during the design stage more difficult.

6. It is difficult to test the proposed security solutions at the design level.

All these problems raise a number of research questions and challenges: How
developers with minimum knowledge of security can develop secure ISs? What are
the requirements for structured methods and methodologies to support security
analysis during the development process? Is it possible to define security
requirements together with functional requirements and at the same time provide a
clear distinction indicating which are the security requirements? Is it possible to test
the developed solution with respect to security at design time?

Although the current state of the art fails to provide solutions and answers to all the
above problems and research challenges, in the last few years a considerable number
of promising works have appeared. A number of ontologies and modelling languages
(Anton, 2004; Jurjens, 2004; Liu, 2002; Mouratidis, 2003a) have developed aiming to
narrow the gap and create a common ground for the integration of security issues into
ISs development processes. Methodologies and methods (Michailova, 2002;
Schumacher, 2001; Crook, 2002) are under development aiming to provide a
structured approach towards the integration of security issues in the development
process and allow simultaneous definition of security and functional requirements.
We have also contributed to this line of research. In previous work we have proposed
secure Tropos, (Michailova, 2002; Mouratidis, 2003a; Mouratidis, 2005), a
methodology that considers security issues as part of the ISs development process by
employing the same concepts and notations throughout the development process. We
then enhanced the secure Tropos methodology by providing a set of security patterns
(Mouratidis, 2006) to assist developers with limited knowledge of security to produce
a security-aware design. However, neither secure Tropos nor any of the existing
approaches have focused on providing a process to test at design time the security
solution that derives from the application of a structured ISs development
methodology. Such a testing process does not aim to substitute the existing security
testing techniques (Viega, 2004; Bishop, 2005; Blackburn, 2001), but rather to
compliment them and in effect act as an initial filter to identify at design time security

 2

problems of the developed system and allow developers to redefine the system and
improve its security at an early stage of the development. It is well known that
problems identified during the design stage are easier and less expensive to fix than
problems identified in subsequent stages of the development process.

In this paper we introduce the Security Attack Testing (SAT) process; a novel
scenario-based approach that assists developers to test, at design time, the developed
system against potential security attacks. Our approach is based on five key ideas:

• employ the same concepts in testing as in the requirements elicitation, analysis and
design;
• test during the design time;
• employ scenarios to test the security of the system;
• create security scenarios and derive the test cases through a systematic process;
• integrate the testing approach to the secure Tropos development process.

To show the applicability of our approach we revisit the electronic single assessment
process system case study (Mouratidis, 2003c); the analysis and design of which has
been presented in the literature (Mouratidis, 2003b; Mouratidis, 2005) and we
illustrate how the proposed approach can be used to test and improve the security of
the system.

Section 2 of the paper provides a brief review of secure Tropos, whereas Section 3
discusses security testing. Section 4 describes the proposed Security Attack Testing
(SAT) process, and Section 5 discusses related work. Section 6 concludes the paper
and points out directions for future work.

2. Secure tropos

This paper is not intended to provide a full description of the analysis and design
stages of the secure Tropos methodology. Such descriptions are widely available in
the literature (Michailova, 2002; Mouratidis, 2003b; Mouratidis, 2005; Bresciani,
2003). However, it is important to provide a brief introduction to the secure Tropos
methodology to enable readers not familiar with it to understand the fundamentals of
it, so they can easily understand the rest of the paper.

Secure Tropos is based on the Tropos methodology (Bresciani, 2004), which uses the
concepts of actor (entity that has strategic goals and intentionality), goal (an actor's
strategic interest), soft-goal (goal without clear criteria whether it is satisfied or not),
task (it represents the way of doing something), resource (it represents a physical or
informational entity, without intentionality) and social dependencies (indicate that one
actor depends on another in order to attain some goals, execute some tasks, or deliver
a resource).

Secure Tropos extends the Tropos methodology by adding security concerns during
the development of ISs. In particular, secure Tropos extends the Tropos language as
well as its development process. The language extension consists of redefining
existing concepts with security in mind as well as introducing new concepts. A
security constraint is defined as a restriction related to security issues, such as privacy,
integrity and availability, which can influence the analysis and design of the

 3

information system under development by restricting some alternative design
solutions, by conflicting with some of the requirements of the system, or by refining
some of the system's objectives (Mouratidis, 2004). Secure Tropos uses the term
secure entity to describe any goals and tasks related to the security of the system. A
secure goal represents the strategic interests of an actor with respect to security.
Secure goals are mainly introduced in order to achieve security constraints that are
imposed on an actor or exist in the system. However, a secure goal does not
particularly define how the security constraints can be achieved, since alternatives can
be considered (Mouratidis, 2004). The precise definition of how the secure goal can
be achieved is given by a secure task. A secure task is defined as a task that represents
a particular way for satisfying a secure goal. A secure dependency introduces security
constraint(s) that must be fulfilled for the dependency to be satisfied. Both the
depender and the dependee must agree for the fulfilment of the security constraint in
order for the secure dependency to be valid. That means the depender expects from
the dependee to satisfy the security constraint(s) and also that the dependee will make
an effort to deliver the dependum by satisfying the security constraint(s).

Fig. 1 provides a graphical representation of the above concepts.

Fig. 1. Tropos and Secure Tropos notation.

Based on the above concepts, the process in secure Tropos is one of analysing the
security needs of the stakeholders and the system in terms of security constraints
imposed on the stakeholders and the system, identifying secure entities that guarantee
the satisfaction of the security constraints, and assigning capabilities to the system to
help towards the satisfaction of the secure entities. In particular, as for Tropos, the
secure Tropos methodology covers four main phases (Mouratidis, 2005):

• During the early requirements analysis phase the security reference diagram
(Mouratidis, 2003b) and (Mouratidis, 2004) is constructed and security constraints are
imposed on the stakeholders of the system (by other stakeholders). During this stage,
imposed security constraints are expressed, initially as high-level statements which
are later further analysed. Then secure goals and entities are introduced to the
corresponding actors to satisfy the security constraints.

 4

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V0G-4NBBYX6-1&_mathId=mml5&_user=132444&_cdi=5646&_rdoc=1&_acct=C000011018&_version=1&_userid=132444&md5=661f92430887a82ed5ccccd6ab860397

• During the late requirements analysis phase, security constraints are imposed on the
system-to-be (by reference to the security reference diagram). These constraints are
further analysed according to the analysis techniques (Mouratidis, 2005) and
(Mouratidis, 2004) of secure Tropos and security goals and entities necessary for the
system to guarantee the security constraints are identified.

• During the architectural design any possible security constraints and secure entities
that new actors might introduce are analysed. Additionally, the architectural style of
the information system is defined with respect to the system's security requirements
and the requirements are transformed into a design with the aid of security patterns.
Furthermore, the agents of the system are identified along with their secure
capabilities.

• During the detailed design phase, the components identified in the previous
development stages are designed with the aid of Agent Unified Modeling Language
(AUML). In particular, agent capabilities and interactions taking into account the
security aspects are specified with the aid of AUML. The important consideration,
from the security point of view, at this stage is to specify the components by taking
into account their secure capabilities. This is possible by adopting AUML notation.

3. Security testing

Security testing is widely considered an important activity that helps to identify
security vulnerabilities. Existing testing techniques, such as network mapping and
vulnerability scanning Viega, and Bishop (Viega 2004; Bishop, 2005), have been used
for many years and automated security analysis tools, such as Nessus and Retina, are
considered valuable solutions. However, such techniques and tools only work for
systems that are already built, i.e. they are useful after the system has been developed.
As development methodologies start to consider security issues throughout the
development process, it is important to test the design models, rather than just the
implementation, to ensure that the design of the system enforces the necessary
security requirements. However, as discussed in the introduction, current state of the
art fails to provide structured and well-defined processes to test at the design time the
security of an information system. Therefore, a security testing process is needed.
Such process should demonstrate at least the following characteristics:

• It should be clear and well guided. The concepts used in the process must be well
defined and the activities and steps of the process well explained.

• It should be flexible enough to allow integration into a methodological framework.
The guidelines and the structural processes of the methodology will allow the explicit
definition of the applicability of the security testing process within the stages of the
methodology.

To meet the above requirements, we have chosen a scenario-based testing method.
Our decision is based on the fact that scenarios can be represented in various ways
(Ryser, 2000). This allows better adoption to a methodology's concepts and notations
and therefore better integration within a methodology's development lifecycle.
Moreover, the effectiveness of scenario-based methods has been widely tested in

 5

http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V0G-4NBBYX6-1&_mathId=mml6&_user=132444&_cdi=5646&_rdoc=1&_acct=C000011018&_version=1&_userid=132444&md5=78c7f50499ef723cb5daea23bba03288
http://www.sciencedirect.com/science?_ob=MathURL&_method=retrieve&_udi=B6V0G-4NBBYX6-1&_mathId=mml9&_user=132444&_cdi=5646&_rdoc=1&_acct=C000011018&_version=1&_userid=132444&md5=b0658f8fc9c693c6bbc282ff0bcb0a11

many different areas of computer science research, such as software engineering
(Potts, 1994), business-process reengineering (Anton, et al 1994), and user interface
design (Carroll, 1991) and for different activities such as eliciting information about a
system's requirements, communicating with stakeholders, providing context for
requirements (Ryser, 2000) and validation of requirements (Ryser, 2000; Lalioti,
1995).

4. A security attack testing (SAT) process

Our scenario-based security testing process aims to test, at the design time, the
system's security against potential attacks. In doing so, two sets of scenarios—
dependency and security attack—are identified and constructed and Security Test
Cases are defined, from the scenarios, to test the developed design of the system
against various types of attacks.

In particular, SAT aims to identify the goals and the intentions of possible attackers;
identify through these a set of possible scenario attacks to the system; and apply these
attacks to the system to see how it copes. By analysing the goals and the intentions of
the attackers, the developer obtains valuable information that helps to understand not
only the how the attacker might attack the system, but also the why an attacker wants
to attack the system. This leads to a better understanding on how possible attacks can
be prevented. In addition, the application of a set of attacks to the system contributes
towards the identification of attacks that the system might not be able to cope and this
leads to the re-definition of the agents of the system and the addition of new secure
capabilities to the system to assist in the protection of these attacks.

As discussed earlier, one of our objectives was to integrate the scenario-based security
testing approach into the development process of the secure Tropos methodology.
However, this was not an easy task and various research questions and challenges
surfaced: In which stage of the development process should the approach be
integrated? What are the implications of such integration for the rest of the
development process? What kind of inputs the proposed approach receives from
earlier stages and how it affects consequent stages?

Our initial analysis concluded that Early and Late requirement phases did not provide
enough information with respect to the architecture of the system which is necessary
for the construction of the security scenarios. To identify the scenarios required by our
approach, information is needed related to the agents and resources of the system as
well as the communication paths and the secure capabilities of each of the agents of
the system.

Both Architectural and Detailed design phases were candidates for integrating our
proposed approach. The main advantage of the detailed design is that the components
of the system have been defined in more detail, as opposed to the more abstract
definition of components during the architectural design stage. On the other hand, the
main advantage of the architectural design is that if redefinition of the system is
needed, this could take place faster and with fewer expenses. Therefore, this leads to a
situation where a trade-off is required between testing the system earlier and
producing some extra test cases. However, the factors influencing such decision differ
for different projects.

 6

Therefore, we decided to develop our scenario-based testing approach in such a way
that a pragmatic solution can be adopted for its integration to the development stages
of the secure Tropos methodology. That is, the approach can be employed if
necessary throughout both architectural and detailed design. For instance, the
dependency scenarios and a number of security attack scenarios can be constructed
during the architectural design stage, whereas an extra number of security attack
scenarios together with the test cases can be defined during the detailed design. This
provides flexibility to the developers. However, experience on applying the approach
(Mouratidis, 2004) indicates that most of the times, it will be employed during the
latter part of the architectural design.

Fig. 2 illustrates where our Security Attack Testing process stands in the secure
Tropos process. The SAT process receives inputs mainly from the architectural design
stage for creating the initial scenarios. In cases where limitations are identified in the
security of the system, after running the test cases, and new components need to be
added, this information is fed back to the architectural design where the new
components are added into the system's architecture and then the SAT process runs
again. Moreover, if information is required from the detailed design stage, such as
detailed description of a particular component for the construction of a scenario or a
test case, this information is input into the SAT process. When the test cases have
successfully run and no security limitations are identified, the results of the SAT
process are fed into the detailed design phase of the secure Tropos methodology.

Fig. 2. The secure Tropos stages and SAT.

The SAT process includes four main activities: Derive Dependency Scenarios, Define
Security Attack Scenarios, Define Security Test Cases and Redefine the System. Each
of these activities includes a number of sub-activities as shown in Fig. 3.

 7

Fig. 3. SAT Activities.

In theory a developer should follow a sequential process when employing the above
activities. The dependency scenarios should be defined before the security attack
scenarios since information from the former activity is used as input for the latter
activity. Similarly, the security attack scenarios should be defined before the Security
Test Cases are defined. However, in reality the process is highly iterative and usually
more than one iterations are required where the findings of one (sub) activity might
feed back a previous (chronologically) activity as indicated with the arrows pointing
from a later to an earlier activity in Fig. 3. Especially, this is the case with the last
activity Redefine the system. If during the Define Security Test Cases activity is
concluded that the system cannot defend against some of the attacks, the results of the
failing test cases are fed back to the previous activities and the process starts again.
Depending on the extent of the problem, the results can be fed to any of the previous
activities. For instance if new components of the system need to be defined, the new
components must be added to the system and the testing process will go back to the
first activity where new dependency scenarios will be defined taking into account the
new components.

The following section describes each one of the above activities in detail. To support
the description of these activities and to demonstrate their usefulness and applicability
we revisit the electronic single assessment process system case study which was used
to initially motivate the development of the secure Tropos approach (Mouratidis,
2005; Mouratidis, 2004). The electronic Single assessment Process system is a health
and social care information system to support the effective care of older people.

 8

Therefore, as part of the description of each activity of our approach, we employ the
eSAP case study and we demonstrate how our approach can be used to test the
security of the eSAP system and how it actually identifies limitations and improves
the security of the system.

4.1. Derive dependency scenarios

The aim of this activity is to identify scenarios that involve actors and resources of the
system-to-be. By identifying such scenarios, developers identify areas of the system
where potential attacks might take place. The output of this activity is used as an input
for the definition of the security attack scenarios.

4.1.1. Identify resource dependencies

This sub-activity involves the identification of resource dependencies and related
actors of the system under development. Such dependencies can be identified by
examining extended actor diagrams,1 which were constructed during the latest phases
of the architectural design stage of secure Tropos. In particular, every resource
dependency modelled in an extended actor diagram is identified and it is used as the
starting point for the definition of a dependency scenario.

Consider for instance the eSAP case study. Fig. 4 illustrates an extended actor
diagram with respect to the Assessment Evaluator actor as derived from the early and
late requirements analysis of the eSAP case study (Mouratidis, 2004).

Fig. 4. Extended actors diagram for Assessment Evaluator.

Various resource dependencies can be identified from that extended actor diagram.
For instance, the Social Worker depends on the Evaluation Synthesiser for the
Assessment Evaluation secure dependency. In turn, the Assessment Analyser depends
on the Social Worker for the assessment information secure dependency.

 9

4.1.2. Identify dependency scenarios

A dependency scenario is identified by taking into account all the resource
dependencies between the same actors. For each identified scenario, a textual
description is generated to complement the graphical notation of secure Tropos and
convey the scenario easier.

Consider again for instance the eSAP case study. By considering all the resource
dependencies between the same two actors, a dependency scenario is derived. For
example, from the extended actors diagram presented in Fig. 4, we identify the
following scenario for the Social Worker and the Assessment Evaluator actors:

A Social Worker depends on the Assessment Evaluator to obtain an assessment
evaluation. For this reason, the Social Worker sends an evaluation request to the
assessment evaluator along with the assessment information. Then, the Assessment
Evaluator returns the Assessment Evaluation.

4.2. Define security attack scenarios

Before explaining the second activity of the SAT process, it is important to discuss
some definitions and concepts related to it.

The definition of attack that we use is one proposed by Matt Bishop (Bishop, 2005),
according to which an attack is an action that might cause a potential violation of
security in the system. The person, or software, who executes such action is called an
attacker.

A Security Attack Scenario (SAS) is defined as an attack situation describing the
actors of an information system and their secure capabilities as well as possible
attackers and their goals. It identifies how the secure capabilities of the system
prevent (if they prevent) the satisfaction of the attackers’ goals.

A security attack scenario involves possible attacks to an information system, a
possible attacker, the resources that are attacked, and the actors of the system related
to the attack together with their secure capabilities. Security Attack Scenarios are
modelled as enhanced secure Tropos actor diagrams. In particular, an attacker is
depicted as an actor who aims to break the security of the system. The attacker
intentions are modelled as goals and tasks and their analysis follows the same
reasoning techniques that the Tropos methodology employs for goal and task analysis.
For the purpose of a security attack scenario, a differentiation takes place between
internal and external actors of the system. Internal actors represent the core actors of
the system whereas external actors represent actors that interact with the system. Such
a differentiation is essential since it allows developers to identify different attacks to
resources of the system that are exchanged between external and internal actors of the
system.

For each dependency scenario identified during the previous activity, one or more
security attack scenarios are defined. There are six sub-activities in defining a security
attack scenario: Identify Types of Attacks; Model Attacker Intentions; Model Attacks;

 10

Identify System Components Related to the Attack; Create SAS template; and
Validate SAS. These are described below.

4.2.1. Identify types of attacks

The security requirements and goals identified during the early requirements analysis
provide the input for this activity. In particular, the first step involves the
identification of the different types of attacks. The first step in identifying security
attacks is to consider the security requirements of the system and to identify potential
categories of attacks that might endanger these requirements. In doing so, libraries of
attacks, attack trees and attack patterns can be employed to provide a comprehensive
list of possible attacks. The activity concludes with the creation of a list of the
different types of attacks together with a brief description.

As an example, consider the eSAP case study. As derived from the analysis of the
eSAP system (Mouratidis, 2004), the two main security features are privacy and
integrity. According to Stallings (Stallings, 1999), the following categories of attacks
can be identified that can endanger the above security features.

1. Interception Attack, in which an unauthorised party, such as a person, a program or
a computer, gains access to an asset. This is an attack on privacy.

2. Modification Attack, in which an unauthorised party not only gains party to but
also tampers with an asset. This is an attack on integrity.

4.2.2. Model attacker intentions

When the types of attacks have been identified, the intentions of an attacker according
to these types of attack are modelled. Tropos goal diagram notation is used for
analysing the intentions of an attacker in terms of goals and tasks. The root goal of the
attacker derives from the type of attack considered. Then this goal is decomposed to
sub-goals and tasks that capture more precise the intentions of the attacker. Some of
these goals/tasks can be identified by considering the threats (related to the type of
attack) considered on the security reference modelling (Mouratidis, 2004) activity
during the early requirements development stage. However, other goals could be
derived from the analysis of a possible attacker's intentions following goal-reasoning
techniques (Bresciani, 2004). This is due to the fact that an attack is an exploitation of
a system's vulnerability, whereas a threat is a circumstance that has the potential to
cause loss or harm (Schneier, 2000). Therefore, an attack can lead to a threat only if
the exploitation of the vulnerability leads to a threat. This means that some attacks can
be successful but do not lead to threats as other system features protect the system. As
with the previous step, attack trees and libraries might also be employed to identify
possible goals of the attacker. This activity ends with the construction of a goal
diagram of an attacker together with their intentions in terms of goals and tasks.

As an example, consider again the eSAP case study and let us assume an interception
attack scenario, where a possible attacker aims to attack the privacy of the system in
order to obtain information such as private assessment data or private care plan
information. This is the root goal of the attacker. Possible goals (amongst others)
towards the satisfaction of the root goal are read the data and get access to the system.

 11

According to the security reference diagram analysis (Mouratidis, 2004), tasks to
accomplish these goals are social engineering, password sniffing and eavesdropping.
Such analysis is modelled as illustrated in Fig. 5.

Fig. 5. Example of attacker modelling.

4.2.3. Model attacks

When the intentions of the attacker have been considered, the next activity aims to
model the attacks to the system that result from the identified intentions. For each
dependency scenario identified during the previous activity, potential attacks are
modelled. Attacks are depicted as dash-lined links, called attack links, which contain
an “attacks” tag. The attack links initiate from one of the attacker's tasks and end at
the attacked resource. The activity concludes with a goal diagram of the attacker
together with the possible attacks to the identified dependency scenarios. An example
of such a diagram for the eSAP case study is shown in Fig. 6. In this diagram various
attacks are modelled. For instance, password sniffing attacks endanger the system
access clearance resource dependency whereas eavesdropping attacks endanger the
system access request dependency.

 12

Fig. 6. An example of modelling attacks.

4.2.4. Identify system components related to the attack

The next activity aims to identify and model the agents (internal and external) of the
system related to the identified attack(s). The secure capabilities, of each agent, that
help to prevent the attacks are identified and dashed-links (with the tag “help”) are
provided indicating the capability and the attack they help to prevent. The result of
this activity is an actor diagram modelling internal/external agents of the system
together with their secure capabilities. A link that carries the “help” tag is used to
indicate the attacks these actors help to prevent. For instance, for the eSAP case study
various system components are related to the interception attack modelled in the
previous activities, such as the eSAP Guard; the Authenticator; and the Cryptography
Manager. Moreover, as shown in Fig. 7 the Social Worker actor has also secure
capabilities that help towards the prevention of some of the attacks.

Fig. 7. Example of “help” capabilities.

 13

4.2.5. Create SAS template

The last sub-activity is the creation of the security attack scenario template.
Information from the previous activities is gathered and the security attack scenario
template is used for each of the scenarios that have been identified. The template
includes eight fields: SAS ID—this is a unique number that identifies the Security
Attack Scenario modelled; SAS Name—this is a unique name that identifies the
Security Attack Scenario modelled; Author(s)—the name(s) of the author(s) of the
SAS; Attack Type—the type of attack that this scenario corresponds. The attack type
should match one of the types identified during the first activity of the scenario
creation process; System Actors Involved—the actors (internal and external) of the
system involved on the scenario. These actors have been identified during sub-activity
in Section 4.2.4; Scenario Trigger—the situation that triggers the scenario. This is
effectively the dependency scenario for which the attack scenario corresponds to;
Textual Description—a textual description of the scenario focusing on the analysis of
the attacker and the resources under attack; Graphical Representation—a goal
diagram of the security attack scenario. This goal diagram includes the diagrams
modelled during sub-activities in Sections 4.2.2, 4.2.3 and 4.2.4. A simplified2
template for the interception scenario of the eSAP system as results from the analysis
presented in the previous activities is shown in Fig. 8.

 14

Fig. 8. Interception attack template.

4.2.6. Validate SAS

When the security attack scenarios have been created the next step involves their
validation. Software Inspections are used for the validation process. Software
inspections have been proved as effective means for document-based validation
(Kosters, 1997) and in fact experiments (Selby, 1997) have demonstrated that in some
cases software inspections are more effective than extensive testing. Moreover, as
Sommerville (Sommerville, 2005) indicates “software inspections do not require the

 15

program to be executed”. This fits perfectly to our purpose, which is to validate our
scenario on the design level without necessarily having a code corresponding to these
scenarios.

For our project, the inspection of the scenarios involves the use of validation
checklists. Although the information, questions and length of such checklists might
vary, there are some attributes that all of them should demonstrate to be considered
satisfactory: syntax, completeness and consistency. Syntax-related items of the list
aim to identify any possible violations of the secure Tropos and the scenarios’ syntax.

The completeness related items of the list aim to check the completeness of the
developed security attack scenarios. The consistency-related items of the list aim to
identify any possible inconsistencies within the security attack scenarios but also
between the security attacks scenarios and the secure Tropos models developed
during the previous stages of the development process. An example of the validation
checklists used to validate the Security Attack Scenarios for the eSAP case study is
shown in Fig. 9.

Fig. 9. Example of validation checklist.

Although inspections have been proposed by this research for the validation of the
security attack scenarios; other techniques could also be applied depending on the
developers’ experience and the nature of the system. For instance, two well-known
validation techniques for requirements specification are walkthroughs and prototyping
(Kosters, 1997).

 16

4.3. Define security test cases

When the scenarios have been validated, the next activity aims to identify test cases
and test, using these test cases, the security of the system against any potential attacks.
According to the IEEE Standard 610 (IEEE, 1990) a test case is defined as “a set of
test inputs, execution conditions, and expected results developed for a particular
objective, such as to exercise a particular program path or to verify compliance with a
specific requirement”. A more recent definition by Ron Patton (Patton, 2000 p65)
indicates that “test cases are specific inputs that you will try and the procedures that
you will follow when you test the software”. Our understanding of test cases is
consistent with these definitions and in our work each test case is derived from a
possible attack depicted in the security attack scenarios.

4.3.1. Identify testing elements

Each Security Attack Scenario might contain more than one attack. It is important for
testing purposes to produce different test cases for each of the attacks. In doing so, the
first activity involves the isolation of a particular attack and the identification of the
testing elements related to this attack. The testing elements are components of the
security attack scenarios which are used as inputs for the test case generation and
execution. In particular, the resource under attack, and the system defences against the
attack (as derived from the related to the attack actors and their secure capabilities)
constitute the testing elements.

For instance, for the eSAP case study, various testing elements can be identified from
the interception security attack scenario. These include (amongst others) related
resources, such as the assessment information and the assessment evaluation; secure
capabilities, such as ask for consent and change cryptographic algorithms; and related
actors such as the Authenticator, the eSAP Guard, and the Cryptography Manager.

4.3.2. Create security test case

Although our approach does not restrict the developers for the generation of the test
cases, it is important to highlight some guidelines to be followed to ensure that test
cases are easy to read and that all the security-related aspects of the system are
adequately tested:

• For each attack-related task of an attacker, identified during the scenario creation
stage, a test case should be generated.

• The discussion of a test case should take into account the testing elements identified
during the previous sub-activity. In particular, all the secure capabilities of the agents
of the system which contribute towards the defence of the attack must be considered.

• Each test case is documented with the aid of a Security Test Case template. This
template includes eight fields: Test Case ID which indicates the unique ID of the Test
case; Test Case Name which indicates the name of the test case; Related SAS which
indicates the security attack scenarios related to the test case; Attack Trigger which
indicates the condition that triggers the attack; Attack Description which provides a
textual description of the attack; System Expected Security Reaction which indicates

 17

in a textual format the expected reaction of the system to the attack; Discussion which
provides an in-depth discussion of the attack and the system defences, and it forms the
basis for the result of the test case; Test Case Result which indicates the output of the
test case and it suggests possible improvements. It is worth mentioning that the last
field of the template is filled in during the next activity.

Example of test cases related to the eSAP interception scenario are shown in Fig. 10,
Fig. 11 and Fig. 12. For instance, Fig. 10 models an eavesdropping attack which is
triggered when the social worker communicates with the assessment evaluator in
order to obtain assessment related information.

Fig. 10. Eavesdropping test case.

 18

Fig. 11. Password Sniffing Test Case.

 19

Fig. 12. Software Engineering Test Case.

4.3.3. Apply the security test case

The test cases are applied and a decision is formed as to whether the system can
prevent the identified attacks or not. The decision whether an attack can be prevented
(and in what degree) or not lies on the developer. However as an indication of the
decision it must be taken into consideration that at least one secure capability must
help an attack, in order for the developer to decide the attack can be prevented.
Attacks that cannot be prevented are notated on the security attack scenarios as solid
attack links, as opposed to attacks that the system can prevent and which are notated
as dashed attack links. Consider for instance the eavesdropping attack introduced
above. The Attacker will try to eavesdrop data from the communication between the
external and the internal agents of the eSAP. However, the agents (both internal and
external) have capabilities to encrypt and decrypt data. Therefore, a simple
eavesdropping will not result in the attacker reading any of the transmitted data.

 20

4.4. Redefinition of system

For each attack that it has been decided it cannot be prevented, as a result of failing
test cases, extra capabilities must be assigned to the system to help towards the
prevention of that attack. In general, the assignment of extra secure capabilities is not
a unique process and it depends on the perception of the developer regarding the
attack dangers. However, a good approach is to analyse the capabilities, related to the
specific attack, of the attacker and assign capabilities to the actors’ of the system that
can revoke the attacker's capabilities.

For instance, the application of the above example test cases produced many useful
results about the security of the eSAP system. First of all, it was identified that the
system provides enough protection against some of the identified attacks. Secondly,
for the attacks that the system did not provide adequate protection, extra agents and
extra secure capabilities were identified and the following modifications took place in
the eSAP system.

1. Capabilities were given to the external agents and to the Cryptography Manager to
enable them to change the cryptographic algorithm often. The lack of such
capabilities was identified during the read data test case of the interception attack
scenario.

2. The external agents of the system were given the capability to provide passwords
from a password list, and the Authenticator was given capabilities to successfully
process such passwords. The lack of such capabilities was identified by the
application of the password-sniffing test case of the interception attack scenario.
As explained earlier (see Fig. 3), when extra components need to be added to the
system architecture the SAT process needs to be re-applied.3

5. Related work

The literature provides many references to scenario-based approaches for analysing
and designing IS. However, just few proposals introduce the use of scenarios for
testing and the derivation of test cases (Ryser, 2000). Hsia et al. (Hsia, 1997) describe
a method to create and validate scenarios which are used for acceptance testing.
Michailova et al. (Michailova, 2002) developed a scenario-based testing method for
object-oriented programs that uses constraints. Similarly, Tsai et al. (Tsai, 2002)
proposed the SOOFT method, a scenario-based object-oriented test framework for
adaptive and rapid testing. The SCENTOR approach (Wittevrongel, 2001) provides e-
business-specific support for the generation of scenario-based tests using JUnit as a
basis. All these approaches have been found valuable. However, they demonstrate
some limitations. For instance, the Hsia approach does not provide activities for the
derivation of concrete test cases and it requires extensive knowledge of formal
methods since it is based on regular grammars and conceptual state machines.
Similarly, the Michailova, the SOOFT and the SCENTOR also lack a well defined
and structure approach for the derivation of scenarios and associated test cases.
Moreover, these approaches only support implementation based testing, since their
concepts and methods do not support testing during the earlier stages of the
development process.

 21

On the other hand, the SCEnario-Based Validation and Test of Software (SCENT)
method (Ryser, 2000) provides a step-by-step approach to formalise scenarios through
state charts and then uses these state charts to create test cases. However, SCENT's
ontology and methods do not support the development of security-related scenarios
and test cases. In fact, as the developers of the method point out: “…integration of
non-functional requirements [such as security requirements] in scenarios and
statecharts is problematic…”.

The work most related to ours is the attack scenario analysis method presented by Liu
et al. (Liu, 2002). However our work differs in important issues:

• Liu's et al. approach does not provide a structure process for creating and validating
the attack scenarios. Therefore, developers find little help when employing that
method. In contrast, our approach provides a well-defined process containing
activities which assist the developer in identifying, creating and validating the security
attack scenarios.

• Our approach provides a process to derive concrete test cases from the security
attack scenarios to test the security of the system. In their approach, Liu et al. only use
attack scenarios to identify security requirements and do not provide any support for
deriving concrete test cases to test the security of the system. This limits the
applicability of their attack scenario analysis method.

• Our security attack scenarios incorporate analysis of security countermeasures
against the potential attacks. Guidance is provided, through defined activities, to assist
developers in identifying countermeasures of the system and identify how these might
influence the goals of the attacker. In their work, Liu et al., argue that when the
intentions of the attackers are identified the system can be equipped with
countermeasures. However they do not explain how such countermeasures can be
identified neither they describe any process for applying these countermeasures to the
system.

6. Conclusions

In this paper we have presented a novel scenario-based process that enables
information system developers to test the security of the system under development
during design time. We have also demonstrated the applicability of our approach by
applying it to a real-life case study.

It is important to note that our process does not aim to replace existing security testing
techniques which focus on testing the security of an information system after the
implementation of the system. At design time we are not able to detect or consider
attacks that are related to specific implementations. On the contrary, our process aims
to complement such implementation-related testing techniques and provide a well-
guided approach that enables developers to (1) identify important security
vulnerabilities related to the design models of the system at an early stage in the
developmental process; and (2) provide mechanisms to refine the system in order to
overcome identified security vulnerabilities and to ensure that the design of the
system enforces the necessary security requirements.

 22

Nevertheless, further work is needed. The proposed approach has been applied to a
case study from the health and social care sector. Therefore, an obvious direction for
future work is the application of the approach to case studies from different sectors in
order to obtain a better understanding of how the approach can be applied to different
types of problems with different types of security attacks and security challenges.
Moreover, the development of a tool to automate some of the processes of the
approach would be an interesting and very useful direction for future work. Such a
tool, not only will speed up the testing process but it will also allow developers not
familiar with some aspects of the approach to successfully apply it by automating
some of the process's activities.

References

R. Anderson, Security Engineering: A Guide to Building Dependable Distributed
Systems, Wiley Computer Publishing (2001).

A.I. Anton and J.B. Earp, A requirements taxonomy for reducing web site privacy
vulnerabilities, Requirements Eng. 9 (3) (2004), pp. 169–185.

A.I. Anton, W.M. McCracken, C. Potts, Goal Decomposition and Scenario Analysis
in Business Process Reengineering, in: Proceedings of the 6th Conference on
Advanced Information Systems (CAiSE-1994), Utrecht-The Netherlands, 1994.

M. Bishop, Introduction to Computer Security, Addison-Wesley, Reading, MA
(2005).

M.R. Blackburn, R.D. Busser, A.M. Nauman, R. Chandramouli, Model-Based
Approach to Security Test Automation, in: Proceedings of Quality Week, 2001

P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos and A. Perini, TROPOS: an
agent-oriented software development methodology, J. Autonom. Agents Multi-Agent
Systems 8 (3) (2004), pp. 203–236.

P. Brescianni, P. Giorgini, H. Mouratidis and G. Manson, Multiagent Systems and
Security Requirements Analysis, in Advances in Software Engineering for Multiagent
Systems. In: C. Lucena, A. Garcia, A. Romanovsky, J. Castro and P. Alencar, Editors,
Lecture Notes in Artificial Intelligence vol. 2940, Springer, Berlin (2003).

J.M. Carroll, M.B. Rosson, Getting around the task-artifact cycle: how to make claims
and design by scenario, IBM Research Report, Human Computer Interaction, RC
17908 (75365), 1991.

R. Crook, D. Ince, L. Lin and B. Nuseibeh, Security requirements engineering: when
anti-requirements hit the fan, Paoceedings of the 10th International Requirements
Engineering Conference, IEEE Press (2002), pp. 203–205.

P. Devanbu, S. Stubblebine, Software engineering for security: a roadmap, in:
Proceedings of the Conference of the Future of Software Engineering, 2000.

 23

P. Hsia, D. Kung and C. Sell, Software requirements and acceptance testing, Ann.
Software Eng. 3 (1997), pp. 291–317.

IEEE Standard Glossary of Software Engineering Terminology, IEEE Std 729, 1990.

J. Jurjens, Secure Systems Development with UML, Springer (2004).

G. Kosters, B.U. Pagel and M. Winter, Coupling use cases and class models,
Proceedings of the BCS-FACS/EROS workshop on “Making Object Oriented
Methods More Rigorous”, Imperial College, London-England (1997).

V. Lalioti and C. Theodoulidis, Visual scenarios for validation of requirements
specification, Paoceedings of the 7th International Conference on Software
Engineering and Knowledge Engineering (SEKE’95), Rochville, Maryland-USA
(1995).

V.P. Lane, Security of Computer Based Information Systems, Macmillan Education
ltd (1985).

L. Liu, E. Yu, J. Mylopoulos, Analysing security requirements as relationships among
strategic actors, in: Proceedings of the 2nd Symposium on Requirements Engineering
for Information Security (SREIS’02), Raleigh–North Carolina, 2002.

J. McDermott, C. Fox, Using abuse care models for security requirements analysis, in:
Proceedings of the 15th Annual Computer Security Applications Conference,
December 1999.

A. Michailova, M. Doche, M. Butler, Constraints for scenario-based testing of object-
oriented programs, Technical Report, Electronics and Computer Science Department,
University of Southampton, 2002.

H. Mouratidis, P. Giorgini, G. Manson, An ontology for modelling security: The
tropos approach, knowledge-based intelligent information and engineering systems,
Lecture Notes in Artificial Intelligence, vol. 2773, 2003(a)

H. Mouratidis, P. Giorgini, G. Manson, Integrating security and systems engineering:
towards the modelling of secure information systems, in: Proceedings of the 15th
International Conference on Advanced Information Systems (CaiSE), 2003(b).

H. Mouratidis, P. Giorgini and G. Manson, When Security Meets Software
Engineering: A Case of Modelling Secure Information Systems, Inf. Syst. 30 (8)
(2005), pp. 609–629.

H. Mouratidis, G. Weiss and P. Giorgini, Modelling secure systems using an agent
oriented approach and security patterns, Int. J. Software Eng. Knowledge Eng. 16 (3)
(2006), p. 471.

H. Mouratidis, I. Philp and G. Manson, A novel agent-based system to support the
single assessment process of older people, J. Health Inf. 9 (3) (2003) (c), pp. 149–162.

 24

H. Mouratidis, A security oriented approach in the development of multiagent
Systems: applied to the management of the health and social care needs of older
people in England, Ph.D. thesis, University of Sheffield, 2004.

R. Patton, Software Testing, Sams (2000).

C. Potts, K. Takahashi and A.I. Anton, Inquiry based requirements analysis, IEEE
Software 11 (2) (1994), pp. 21–32

J. Ryser, M. Glinz, SCENT—a method employing scenarios to systematically derive
test cases for system test, Technical Report 2000.03, Institut für Informatik,
University of Zurich, 2000.

B. Schneier, Secrets & Lies: Digital Security in a Networked World, Wiley, New
York (2000).

M. Schumacher, U. Roedig, Security engineering with patterns, in: the Proceedings of
the 8th Conference on Pattern Languages for Programs (PLoP 2001), Illinois, USA,
September 2001.

R.W. Selby, V.R. Basili and F.T. Baker, Cleanroom software development: an
empirical Evaluation, IEEE Trans. Software Eng. 13 (9) (1997), pp. 1027–1037.

I. Sommerville, Software Engineering (seventh ed.), Addison-Wesley, Reading, MA
(2005).

W. Stallings, Cryptography and Network Security: Principles and Practice (second
ed.), Prentice-Hall, Englewood Cliffs, NJ (1999).

W.T. Tsai, A. Saimi, L. Yu, R. Paul, Scenario-based object oriented testing
framework, in: Proceedings of the 3rd International Conference on Quality Software,
2002, p. 410.

A. Van Lamsweerde, Elaborating security requirements by construction of intentional
anti-models, in: Proceedings of the International Conference on Software
Engineering, 2004, pp. 148–157.

J. Viega and G. McGraw, Building Secure Software—How to Avoid Security
Problems the Right Way, Addison-Wesley, Reading, MA (2004).

J. Wittevrongel, F. Maurer, SCENTOR: scenario-based testing of e-business
applications, in: Proceedings of the 10th IEEE International Workshop on Enabling
Technology: Infrastructure for Collaborative Enterprises, 2001, USA, p. 41.

This is an extended and substantially revised version of the “Using Security Attack
Scenarios to Analyse Security During the Information Systems Design” paper
presented in the 6th International Conference on Enterprise Information Systems
(ICEIS), Porto – Portugal, ICEIS (3), 2004, pp. 10–17.

 25

 26

1 An extended actor diagram captures the actors of the system identified during the
architectural design together with any dependencies they might have with existing
actors of the system. For more information please see Bresciani, 2004.
2 Not all the goals of the attacker are illustrated in this SAS. We have kept the goals of
the attacker to minimum number to allow an easier understanding of the approach.
For more attack goals please see Mouratidis, 2003b.
3 To keep the size of the paper to a minimum, we do not explain the second
application of the SAT. This is explained in Mouratidis, 2004.

	security attack cover sheet with citation info
	Security Attack Testing

