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Abstract – The focus of this paper is the implementation of a spiking neural network to achieve 
sound localization; the model is based on the influential short paper by Jeffress in 1948. The SNN 
has a two-layer topology which can accommodate a limited number of angles in the azimuthal 
plane. The model accommodates multiple inter-neuron connections with associated delays, and a 
supervised STDP algorithm is applied to select the optimal pathway for sound localization.  Also an 
analysis of previous relevant work in the area of auditory modelling supports this research.  
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I. INTRODUCTION 
Of all the organs in the body, there are very 

few that can compare to the ear with regards to the 
degree of functionality it contains within such a 
small and compressed space. Sound localization is 
one function that the ears perform, defined as 
determining where a sound signal is generated in 
relation to the position of the human head. It is a very 
powerful aspect of mammalian perception, allowing 
an awareness of the environment and permitting 
mammals to locate prey, potential mates and to 
determine from where a predator is advancing [1].  

Mammalian sound localization can be 
determined with interaural time difference (ITD); a 
sound at one side of the body will arrive at one ear 
before the other and the ITD is the very small 
difference in their arrival times [2]. From this the 
brain can calculate the angle of the sound source in 
relation to the head [3, 4]. ITD is very sensitive and 
can differentiate between angles of 1-2°; however 
when the frequency of the sound is greater than 
900Hz, ITD becomes much less reliable and 
interaural intensity difference (IID) is used as 
confirmation [2]. The auditory pathway (see Figure 
1) for ITD begins at the cochlear nucleus of both 
ears. The sound signal travels to the medial superior 
olive (MSO) of the superior olivary complex (SOC) 
and it is here that the ITD is calculated [5]. This 
information travels further up the pathway to the 
inferior colliculus (IC) where the azimuth (angle 
from a certain direction) is worked out. The cortex,  

 
with the known angle, now has awareness of the 
sound source and the superior colliculus enables 
reflex movement of the head and eye to move toward 
the sound source [5].  

 
Figure 1: Auditory Pathway 

 
This processing is achieved in real time as the 

brain uses parallel processing using many neurons to 
simultaneously transmit the information up through 
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the auditory pathway; the number of neurons varies 
from six to forty for each one-third-octave frequency 
band [6].  

In this paper, a spiking neural network will 
implement the Jeffress sound localization technique 
for a limited number of angles in the azimuthal plane. 
The ITD will be encoded in the two inputs to the 
network and the output neurons will determine the 
angle of location using both axon delay lines and 
coincidence functions. Section 2 provides a review of 
the related research conducted in the field. Section 3 
outlines the model proposed in the paper while 
section 4 outlines the experimental results found. 
Finally, section 5 concludes the paper and outlines 
some possible future work.  
 
II. LITERATURE REVIEW 

Research in the area of post-cochlear 
perception is based on the work carried out on 
modelling of the cochlea itself. This work assists in 
the understanding of how the brain utilizes these 
post-cochlear signals for sound localization. 
Implementation of the cochlea has been an area of 
research and one focus is in embedded systems. 
Prominent researchers in this field have modelled a 
cochlea on silicon [7]. Lyon and Mead introduced the 
analog electronic cochlea; built in CMOS VLSI 
technology it involved a cascade of second-order 
filter stages to mimic the travelling-wave system of 
fluids in the cochlea, test results showed that it 
matched both previous theories and observations of 
real cochleas [8].  In the mid 90s Kuszta outlined two 
main methodologies for designing artificial cochleas 
based on Mead’s description of Very Large Scale 
Integration (VLSI) systems containing electronic 
analog circuits that imitate neuro-biological 
architectures existing in the nervous system [9]. 
Other research in this area involved Van Schaik’s 
models of the cochlea as a three-tier design that 
included the artificial cochlea, the inner hair cell 
(IHC) model and a spiking neuron circuit on one chip 
[10, 11]. On the circuit, thirty-two neurons could be 
combined together to create a small and simple 
network that can reproduce the spiking behaviour of 
neurons in the auditory system [12]. Integrate-and-
fire neurons were modelled on the silicon chip, but it 
is unclear what training was applied [13]. 

Software modelling of the biological cochlea 
has not received as much attention. However, neural 
networks have been used to some degree to model the 
cochlear nuclei in the brain. Just as electronic 
engineering created a spiking neuron circuit, software 
neural networks have been created to model the 
output of the IHCs of the cochlea. Sheikhzadeh and 
Deng created a three layer feed-forward neural 
network model of the dorsal cochlear nucleus (DCN) 

[14]. They first created the basilar membrane (BM), 
IHC and the action potential generator. The BM 
model used the biophysical mechanisms behind the 
BM vibration. This gave a dynamic nonlinear BM 
filter function as opposed to previous models which 
used simple linear digital filters. The spike generator 
produced random sequences of auditory nerve action 
potentials as inputs to the DCN model. The model 
was tested with both synthetic and natural speech 
sounds and processed these sounds in a similar way 
to a true biological auditory model. 

In 1948, Jeffress created a computational 
model to show how ITD works in mammals to 
determine the angle of origin of a sound signal [3, 
15]. His model involved time or phase locked inputs; 
a set of delay lines to vary the axonal path lengths 
arriving at the neuron; and an array of coincidence 
detector neurons which will only fire when presented 
with simultaneous inputs from both ears [1, 3, 4, 5]. 
Coincident inputs only occur when the ITD is exactly 
compensated for by the delay lines. The fundamental 
importance of Jeffress’ model and why is has become 
the prevailing model of binaural sound localization is 
its ability to depict auditory space with a neural 
representation in the form of a topological map, even 
though Jeffress himself acknowledged the simplicity  
of his model [1]. 

 
Figure 2: The Jeffress (1948) Model 

 
Schauer et al. have based their work 

extensively on the Jeffress sound localization model. 
Their initial research involved a biologically inspired 
model of binaural sound localization again by means 
of ITD; using a spike response model for 
implementation in analog VLSI. Slight modifications 

 



 

to the Jeffress model were made including a digital 
delay line with AND gates. Data recorded in an open 
environment was used in testing which was carried 
out offline; results showed that the model was 
proficient at localizing single sound sources for sixty-
five azimuthal angles [16]. Schauer and Gross 
extended this work to discriminate between sound 
sources of different orientations. However, this was 
achieved in a biologically implausible way. The 
authors simply specified one microphone for the front 
and another for the back. Differences in the sound 
colour of the binaural signals, calculated using a 
short-term Fast Fourier Transform (FFT), determined 
from which direction the sound approached. Again 
positive results were achieved during testing in open 
environments, including a lecture hall and a shopping 
centre [17]. Currently, Schauer and Gross are 
working on a computational model for early auditory-
visual integration for the aim of performing a robust 
multimodal attention-mechanism in artificial systems. 
Using their auditory model from [17], they combined 
this with a visual and bimodal map; with the visual 
map based on spatio-temporal intensity differences. 
To test their model they combined recordings of real-
world situations and off-line simulations. The authors 
perceive their model as a bench-mark for future 
research in audio-visual integration [18].  

The development of a learning technique that 
can detect the location of sound is an area of research 
which has produced only a modest amount of work.  
Ultimately research needs to address this issue 
leading to the development of a bio-inspired system 
that can locate a sound source in the presence of 
background noise. The model presented here 
represents the initial state in the development of such 
a system, whereby a learning capability provides the 
basis from which to build a sound localization 
technique.  
 
III. SNN SOUND LOCALIZATION 

This paper proposes an implementation of the 
Jeffress sound localization model using SNNs by 
considering a sound source at five distinct angles (θ) 
on the horizontal azimuthal plane (180°): 0, 45, 90, 
135, and 180. 

 
 

Figure 3: Angles of the Horizontal Plane 

The SNN models the coincident-detection 
neurons of the medial superior olive (MSO). The 
MSO is the largest of the nuclei in the superior 
olivary complex (SOC) containing between 10,000 – 
11,000 cells; it has a tonotopic response pattern 
which favours low frequencies. Its cells work as 
coincidence detectors to identify the ITD of a sound 
signal and thus recognition of the sound source angle. 
The MSO is very important in the localization 
process, in particular as cell types here are 
coincidence detectors [19].  

The topology of the model, shown in figure 4, 
includes a SNN network consisting of five processing 
neurons implemented using the leaky integrate and 
fire (LIF) model [20] The inputs t1 and t2 (chosen 
arbitrarily) correspond to the length of time taken for 
the sound to reach both cochleas, and these inputs are 
passed to the processing neurons via the cochlear 
nodes. The synapse on each pathway encompasses 
the multiple delay structure as shown in figure 5.   

 

 
 

Figure 4: Network Topology 
 

Figure 5 shows how delay lines are used in 
this model, where tpre is the presynaptic spike time; di 
are the axonal delays; wi are the weights; and tpost is 
the postsynaptic spike time [21]. The output from 
neuron A is converted to m number of outputs where 
m=5, each with their own weight wi.  
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Figure 5: Pre and Post Synaptic Neurons with 
Delay Lines [21] 

m 

d1

d2

d3

d

tpre tpost

m

 



 

Sp
d is a 

 for the 
synaps

ike Timing Dependent Plasticity 
urs naturally in nSTDP occ eurons an

form of synaptic plasticity, i.e. the capacity
e connecting two neurons to change strength 

[22]. It is a form of Hebbian learning which 
strengthens the weights of the synapses that are 
activated before the post synaptic spike and weakens 
those synaptic weights that occur after the post 
synaptic spike [23, 24]. The weight updates are 
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value of weight depression, δti  is the output spike 
time minus the input spike time, τ1 is the width of the 
window for long term potentiation and τ2  is the width 
of the window for long term depression.  

Supervised training is used in this work, thus 
the post synaptic spike time for each

. The input sets are passed to the network and 
the weight values for each neuron are calculated. For 
the delay lines which caused coincidence at the 
neuron, STDP increased their weights according to 
the above learning rule in (1) and the weights of the 
other delay lines are decreased according to (2). For 
instance, the neurons corresponding to each of the 
five angles (0°, 45°, 90°, 135° and 180°) will be 
passed inputs t1 and t2, and after training the 
classifying neuron for each angle will only fire when 
presented with their unique inputs. After a period of 
training the ITD (encoded by t1 and t2) is 
compensated for by the delay lines, two inputs will 
coincide at the neuron and only in that case will the 
neuron fire. The other sets of inputs will also have 
reached the neuron but due to the training procedure 
their combined post synaptic potentials (PSP) will not 
have caused the neuron to fire. 
 
IV. EXPERIMENTAL R

To evaluate the SNN model, the network was 
trained by passing the inputs (t1 and t2), en

e spikes, to the processing neurons. Dependent 
on the azimuthal angle, the output neuron was 
supervised to fire at a pre-determined time; thus 
allowing the STDP rule to select the best pathway to 
facilitate coincidence. The graph in figure 6 shows 
the weight distribution on the vertical axis of the post 
trained SNN where each window 1 to 5 represents the 

classifying neurons and their associated weights: the 
horizontal axis is the spatial distribution of synapses 
across the network. The dotted line at a weight value 
of 0.5 represents the pre-trained weight distribution. 
Note a bimodal weight distribution which is 
characteristic of the STDP process. Potentiated 
weights at approximately 2.5 are associated with 
pathways that have been selected by the STDP 
training rule because their delays cause coincidence 
at the appropriate classifying neuron.  
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Figure 6: Weight values after training 
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To test the model, each of the five ne  
c

r of input test sets containing random input 
values including their own unique input data. Overall 
results showed that the network classified, and each 
neuron classified to their own respective outputs 
every time.  
 

V. CON
This paper presente

NN that implements the J
. When presented with the output nerve signals 

of the cochlea, the SNN was able to learn the angle 
of location of the sound source. This SNN contains 
multiple pathways each with a delay line that 
allowed STDP to optimise the pathway to facilitate 
coincidence at the appropriate output neuron. Five 
angles were chosen and the network was trained to 
relate these angles to specific inputs. Results show 
that after testing, all neurons classified to their 
respective outputs correctly.  

The above network was extended to localize 
angles of every 5° whereby th

ncreased to thirty-seven with thirty-seven 
output neurons. Results for this experiment showed 
the same classification accuracy. Future work will 
involve extending the network to accommodate 
different factors such as a sound signal with multiple 
frequencies and the localization of a sound source in 
the midst of background noise.  
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