

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

To see the final version of this paper please visit the publisher’s website.
Access to the published version may require a subscription.

Author(s): Capiluppi, Andrea; Gonzalez Barahona, Jesus M.; Herraiz, Israel;
Robles, Gregorio
Title: Adapting the “Staged Model for Software Evolution” to FLOSS
Year of publication: 2007
Citation: Capiluppi, A., Gonzalez Barahona, J.M., Herraiz, I. and Robles, G. (2007)
‘Adapting the “Staged Model for Software Evolution” to FLOSS’, ESEC/FSE '07 Joint
11th European Software Engineering Conference (ESEC) and 15th ACM SIGSOFT
Symposium on the Foundations of Software Engineering (FSE-13) 2007, Cavat near
Dubrovnik, Croatia, 03 - 07 September. New York: ACM pp. 79-82
Link to published version: http://dx.doi.org/10.1145/1294948.1294968
DOI: 10.1145/1294948.1294968

 Gregorio Robles

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219371857?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://roar.uel.ac.uk/�
http://dx.doi.org/10.1145/1294948.1294968�

Adapting the “Staged Model for Software Evolution” to
FLOSS

Andrea Capiluppi‡ Jesus M. Gonzalez
Barahona†

Israel Herraiz† Gregorio Robles†

‡ Department of Computing and Informatics, University of Lincoln, UK
† GsyC/LibreSoft, Universidad Rey Juan Carlos, Madrid, Spain

acapiluppi@lincoln.ac.uk, {jgb, herraiz, grex}@gsyc.escet.urjc.es

Abstract
Research into traditional software evolution has been

tackled from two broad perspectives: that focused on the
how, which looks at the processes, methods and
techniques to implement and evolve software; and that
focused on the what/why perspective, aiming at
achieving an understanding of the drivers and general
characteristics of the software evolution phenomenon.

The two perspectives are related in various ways: the
study of the what/why is for instance essential to achieve
an appropriate management of software engineering
activities, and to guide innovation in processes, methods
and tools, that is, the how. The output of the what/why
studies is exemplified by empirical hypotheses, such as
the staged model of software evolution,.

This paper focuses on the commonalities and
differences between the evolution and patterns in the
lifecycles of traditional commercial systems and
free/libre/open source software (FLOSS) systems. The
existing staged model for software evolution is therefore
revised for its applicability on FLOSS systems.

1. Introduction
The phenomenon of software evolution has been

described in the literature (e.g., [1], [2]), with several
models of different nature ([3], [4], [5], [6], [7]) being
proposed to understand and explain the empirical
observations. Some of these models purport to be
universally applicable to all software development
processes. However, the models in the literature were
built mainly observing software developed using a
traditional centrally-managed waterfall development
process, or one of its variants [21].

Research in this area has been approached from two
different perspectives. One is based on considering the
how, looking at processes, methods and techniques to
implement and evolve software. The other is based on
the what/why, applying systematic observation of
empirical data to achieve an understanding of the
causes and general characteristics of the phenomenon.
Both perspectives are related: the study of the
what/why is important in order to achieve and
appropriate plan, manage and control the various
software engineering activities; and to guide the
development of new processes, methods and tools, that
is, to guide the how.

The link between the how and the what/why
perspectives is illustrated in [8], where a rich set of
management guidelines are derived from Lehman’s
laws of software evolution. The output of the what/why
study is exemplified by empirical generalizations such
as Rajlich and Bennett’s model of the lifecycle [6] and
Lehman’s laws of software evolution ([9], [10]).

In this context, the present paper expands and
refines the empirical hypothesis presented in the staged
model of software evolution [6] so that it can be
applied to FLOSS projects. For this, we compare and
contrast the existing empirical knowledge (e.g. as
derived from studies of proprietary systems evolved
under traditional processes, such as those shown in [7])
with the emergent FLOSS paradigm.

2. The staged model
The staged model for software evolution provided in

[6] represents the software lifecycle as a sequence of
steps. Figure 1 displays the visualization extracted from
their model, as such specifically targeting the

traditional commercial projects. The basic idea is that
software systems evolve through distinct stages:

• Initial development, or alpha stage, includes all
the phases (design, first coding, testing) achieved
before the first running version of the system. In
this stage, no releases are made public to the users.

• Evolutionary pressures tend to enhance the
system with new features and capabilities in the
phase of the evolution changes: both releases and
individual patches are made available to the users,
and feedback is gathered to further enhance the
system.

• As long as the profitability of either new
enhancements or changes to the existing code base
is overcome by the costs of such modifications, the
servicing phase is recognizable. The system is
considered mature, changes are added to the code
base, but no further enhancements are provided to
the end users. Individual code patches are
distributed to the end users.

• When the service is discontinued and no more
code patches are released, the stage of phase-out is
meant to declare the system's end. This is typically
associated with the presence of a new enhanced
system that will substitute the original one.

• The old system serves as a basis for the new one
and then it is closed down.

The purpose of this paper is to use the knowledge
accumulated in previous literature on FLOSS in order

to detect similarities and differences between the
traditional commercial and the FLOSS approaches
regarding the stages of software evolution.

3. FLOSS staged evolution model
The previous section introduced the details of the

staged model for software evolution which successfully
models many traditional commercial systems. This
takes us to the main research question of this paper: is
this model also suitable for FLOSS systems? . Building
upon the results obtained for FLOSS systems by ours
and others case studies, it is possible to analyze each of
the phases of the cited model, and observe when and
how differences and commonalities arise.

In this section, three aspects of the model are
revised:

• the first observed difference is based on both the
description of the “initial development phase”, and
the definition of “available releases”. As explained
below, depending on the definition used for “initial
phase”, many FLOSS projects could be argued to
never have left this stage. With respect to releases,
in traditional commercial systems they have to be
complete, running and authorized by the software
company, while in the FLOSS world it is
commonplace to allow public access to the code
base in versioning system repositories, following a
“permanent release” model, at least for those ready
to build the product from sources, well before the
official first release is published.;

• the second observed difference is related to the
possibility of loops between the evolution changes
and the “servicing” stage. The system goes through
other recognizable phases of enhancements after a
period of servicing, where no features are added.
One clear case of this are the projects in which a
freezing period is established before major releases.
During this freezing period no new functionality is
added (that is, the project is in pure servicing
mode), and only after release time it goes back to
evolution mode;

• the third main difference is related to FLOSS
communities: new development teams may leave
the ground to other developers, and therefore a
FLOSS system already in the phase-out stage may
experience a re-birth if a new team includes new
enhancement, leading to a new evolution period.

In the following, each of the phases described in [6]
are analyzed, and commonalities and/or differences are
identified. Building on our previous works, empirical

Figure 1: the staged model as first proposed in [6]

evidence is given to provide a sound basis to the claims
and assumptions.

3.1 Initial development
Traditional commercial systems are typically built

by a fixed amount of designers, developers and testers.
FLOSS systems typically start with a small amount of
early developers, and eventually new developers join
after a certain initiation period..

In traditional commercial systems software is
usually published only after the first release is deemed
as “correctly running”. FLOSS systems, however, may
be released well before they are complete or working,
and typically read-only access to the versioning system
is given to anybody, which leads to the already
mentioned continuous release even before the first
official release.

This can be true also for traditional commercial
systems, but it is a rare event in that realm: we are
aware of just one specific case in which a commercial
software house, using an agile development process,
gives the possibility for users to download the
application from the public versioning system
repository [23].

The initial development phase in FLOSS projects
has been characterized in [11, 12] as a cathedral-driven
software process, as contributions from external
developers are not yet encouraged. The process is
hence controlled, the infrastructure for the project is
not always in place, and the feedback from end-users is
limited.

3.1.1 Case studies
Successful FLOSS projects have been studied and

characterized in the past, but empirical evidence on
their behavior in the initial development, and the
transition to a larger “evolution” phase has not been
proven yet.

In [12] two case studies were selected to
characterize the initial development of a FLOSS
project. A closed process, performed by a small group
of developers, has some commonalities with traditional
software development. Major differences appear when
a FLOSS project either never leaves this initial stage, as
documented for a large majority of the projects hosted
on SourceForge [22]; or when it leverages a “bazaar”,
i.e. a large and increasing amount of developers. Figure
2 displays the number of developers contributing to a
system (the Arla Network File System), showing hot it
has remained, through its lifecycle, as an effort of a
small team[19]. It has been argued that this should not
be interpreted as a sign of the overall failure of a

FLOSS project, but as a potentially missed opportunity
to establish a thriving community around a project.

In the same study, specific actions from the core
developers (or lone project author) were identified
when a FLOSS project was to leave this initial stage.
Since new developers prefer to work on newly added
modules, rather than older ones, core developers should
create new avenues of development to let new
developers join in. Further analyzing the system
displayed in Figure 2, a decreasing trend of new
module creation was detected, which prevented new
developers to join in.

Figure 3 shows the evolution of active developers in
another case study (Wine, a free implementation of
Windows on Unix), where a growing trend is observed.
Also, as further studied, the amount of new modules
inserted by the core developers follows a similar
growing trend. This helped with the recruitment of new
developers and to leave the initial stage for a “bazaar”
stage [19].

This first difference between traditional commercial
systems and FLOSS systems is annotated in the revised
model displayed in Figure 6: the box containing the

Figure 3: number of developers in a FLOSS system
(Wine) that was able to leave the initial phase

Figure 2: number of developers in a FLOSS system
(Arla) not leaving its “initial development phase”

“initial development phase” is highlighted, as it could
be the only phase available in the evolution of a FLOSS
system. Also, in the same phase, a different handling of
the versioning system is achieved.

3.2 Evolution changes
Several releases are observed both in traditional

commercial and FLOSS systems. In traditional
commercial systems, most of the changes are
distributed and applied as patches on the existing code
base. New versions of the software systems are
distributed regularly, albeit a higher frequency is
perceived as an instability factor. Feedback is provided
by users in the form of requests for change or bug
signaling, and collected as a set of new requirements
for new releases, or in intermediate code patches.

In FLOSS systems, new releases of systems and
patches are available more often, and this is usually
perceived as a vitality factor [18, 19]. Although
traditionally many FLOSS projects published a new
release “once it is ready”, in recent times several
FLOSS projects have moved to a time-based release
planning, offering a new stable version of the project
on a periodic basis (for Ubuntu and GNOME, for
instance, every six months, [20]). Feedback is provided
by users in the same forms as in commercial systems,
but also under the form of code patches that users write
themselves, and which possibly will be incorporated
into new releases of the system.

The loop of evolution changes presented in Figure 1
may be accomplished through many years. Both
traditional commercial and FLOSS systems have
shown the characteristics of long-lived software. For
instance, operating systems like OS360, the various
flavors of UNIX, or the Microsoft Windows, as well as
the FLOSS Linux kernel, FreeBSD or OpenBSD, have
been successfully evolving for decades.

It is noticeable that while the evolution loop can be
found both in commercial and FLOSS environments,
several research papers have shown that growth
dynamics in both cases differ significantly, at least in
the case of large projects [13, 14, 15]. Some of the
FLOSS projects have a superlinear growth rate (for
example, Linux), while a majority of the large projects
studied grow linearly. Both behaviors (superlinearity
and linearity) seem to be in contradiction with
Lehman's laws of Software Evolution that imply that
size over time shows a decelerated pattern [16].

3.3 Servicing
This phase was first described for traditional

commercial systems, when new functionalities are not
added to the code base, whilst fixes to existing features

are still performed [6]. The transition from evolution to
servicing is typically based on the economic
profitability of the software system. When revenues
from a software product are not balanced by the costs
of its maintenance, the system is no longer evolved, and
it may become a legacy system [17].

For FLOSS systems, on the other hand, the
evolutionary behavior shows often stabilization points,
where the size of the overall system does not change,
albeit several releases are made available, and a long
time interval is achieved. Although a servicing stage
could be detected, a new evolution period is later
found.

This behaviour can be matched with the release
schedule of a typical FLOSS project. Some time before
a new version is released, it is usual to “freeze” the
current code. This stage can be qualified as a servicing
stage. Right after the new release is made, changes are
made to increase the functionality of the project. This
could be qualified as a new evolution stage. Therefore,
these stabilization points that use to happen in the
surroundings of a new release can be identified as
sequences of pairs of evolution and servicing stages,
that are repeated several times during the whole
lifetime of the project.

3.3.1 Case Studies
In the study reported in [4], the presence of

servicing stages was detected through an overall small
increase of the code base (say, less than 10% over
several releases and temporal time).

We observed, in some of the systems, a very fast
increase in size, and a corresponding fast evolution,
followed by a stabilization phase which lead to the
abandonment of the project. For the Grace system
(Figure 4) all the dots represent public releases, and it
is possible to observe that their overall pace is not
diminished by the system entering this phase. The
circled point shows when the system was abandoned by

Figure 4: Stabilization point (“servicing stage”) in the
Grace system

the initial lone developer, and was handed over a new
team of developers.

For some other analyzed systems, instead, (e.g. the
Gaim system, depicted in Figure 5), albeit the same
initial fast growth rate, and a transition from evolution
to servicing, were observed, a new period of evolution
was also found. Some other cases are summarized in
Table 1. The dashed arc between the evolution and
servicing stages of Figure 6 is displaying this
possibility.

3.4 Phase out
In traditional commercial systems, the phase out of

a software system happens when the software house
declares that neither new functionalities, nor the fixing
of existing ones will be performed. The system
becomes then a legacy application.

The same behaviour is detectable in FLOSS systems
[19], when development teams declare their intention
not to maintain the system any more. The main
difference between the traditional commercial
approach and the FLOSS cases is the availability of
source code. In some, specific cases new developers
may take over the existing system, and with the
availability of source code, bring it to a new stage of
evolution. A case study was presented here to describe
the possibility (the Grace system), but literature reports
others [19,25]. The dashed line in Figure 6 displays this
possibility and revises the transitions among stages.

Many FLOSS projects have been reported to renew
their core groups. For instance, in [24] three different
categories of FLOSS projects were identified: code
gods, generations and mixed behavior. Code gods
projects are maintained by the same group of
developers during the whole lifetime of the project.
Generations projects exhibit a renewal in the core
group of developers; the group of people that were the
main developers at a early moment in the lifetime are
not the main developers in posterior moments.
Therefore, a generational relay has taken place in the
project. Mixed projects exhibit neither a pure code god
or generations profile, but a intermediate state among
those two extremes. For instance, Figure 7 shows the
generations for the Mozilla project [23].

4. Conclusions
This paper has argued that the FLOSS development

cycle may be considered different from traditional
commercial system. The staged model for the software
evolution, as in its original form expressed in [6]
model, was discussed. A general resemblance between

Figure 5: fast initial evolution, servicing and new
evolution in the Gaim project

Figure 6: the staged model adapted to FLOSS systems

Figure 7: evolution of top most committers in the
Mozilla project (from [23])

commercial and FLOSS evolutionary behavior was
recognized: initial development tend to be superlinear
or at least with sustained growth (MPlayer, Arla,
Ganymede, see Table 1). A stabilization point where
fewer functionalities were added has been recognized
in some FLOSS evolutionary behavior (Ganymede,
Grace, see Table 1). Apart from the commonalities,
three points of difference were detected for enhancing
the staged model.

The first is relative to availability of releases:
commercial companies make software systems
available to third parties only when they are running
and are tested enough. On the contrary, FLOSS
systems are available in versioning system repositories
well before first official release, and may be
downloaded at any time. The second difference is
relative to the transition between the evolution stage
and the servicing stage: we encountered at least three
cases (ARLA, Gaim, Gwydion Dylan, see Table 1) in
which after a phase without major enhancements, a
new development stage was achieved. The third
revision made to the model is a possible transition
between the phases of phase out and evolution: we
illustrated a case in which a new development team
took over the responsibility of a project that was
declared closed (Grace) . More in general, generations
of developers have been identified in several FLOSS
systems, where the most active developers (in terms of
commits) get replaced frequently along the lifecycle of
a FLOSS application.

Therefore, it may be concluded that after some
modifications, the original staged model for software
evolution could be extended to consider the evolution
of a FLOSS project.

5. References
[1] Lehman M.M., “Programs, Cities, Students, Limits to
Growth?”, Inaugural Lecture, in Imperial College of Science
and Technology Inaugural Lecture Series, v. 9, 1970, 1974:
211 - 229. Also in Programming Methodology, Gries D (ed.),
Springer Verlag, 1978: 42 - 62.

[2] Lehman M.M., Belady L.A. (eds.), “Program Evolution -
Processes of Software Change”, Academic Press, London,
538 pp.

[3] Aoyama M., “Metrics and Analysis of Software
Architecture Evolution with Discontinuity”, Proc. 5th Intl.
Workshop on Principles of Software Evolution, IWPSE 2002,
Orlando, FL, pp. 103 – 107.

[4] Capiluppi A., “Models for the evolution of OSS projects”,
Proc. of the 7th International Conference on Software
Maintenance, ICSM, Amsterdam, September 22 – 26 2003,
pp. 65 – 74.

[5] Lehman M.M., Kahen G. & Ramil J.F., “Behavioural
Modelling of Long lived Evolution Processes– Some Issues
and an Example”, Journal of Software Maintenance and
Evolution, spec. issue on Separation of Concerns, vol. 14,
2002, pp. 335 – 351.

[6] K. Bennett, V. Rajlich, "Software Evolution: A Road
Map," Proc. 17th International Conference on Software
Maintenance (ICSM'01), 2001.

[7] FEAST, Feedback, Evolution And Software Technology,
Dept. of Computing, Imperial College,
http://www.doc.ic.ac.uk/~mml/feast/ (as of May. 2007).

[8] Lehman M.M. and Ramil J.F., “Rules and Tools for
Software Evolution Planning and Management”, Annals of
Software Engineering, vol. 11, special issue on Software
Management, 2001, pp. 15 – 44.

[9] Lehman M.M. & Belady L.A, “Program Evolution -
Processes of Software Change”, 1985, Academic Press,
London, 538 pp.

[10] Pfleeger S.L. Software Engineering – Theory and
Practice, 2nd Ed., 2001, Prentice Hall, NJ, 659 pp.

[11] Senyard A. and Michlmayr M., How to have a
successful free software project, proc 11th Asia-Pacific
Software Engineering Conference, pages 84-91, Busan,
Korea, 2004. IEEE Computer Society.

[12] Capiluppi A. and Michlmayr M., From the Cathedral to
the Bazaar: An Empirical Study of the Lifecycle of Volunteer
Community Projects, proc. 3rd International Conference on
Open Source Software, 2007, Limerick, Ireland.

[13] Godfrey, M., and Tu Q., “Evolution in Open Source
Software: A Case Study”. Proc. of 2000 ICSM, October 11-
14 2000, pp. 131 – 142.

[14] Koch S., “Evolution of Open Source Software Systems -
A Large-Scale Investigation”, proc 1st International
Conference on Open Source Systems, 2005, Genova, Italy,
pp. 148-153.

[15] Robles G., Amor J.J., Herraiz I., Gonzalez-Barahona,
J.M., “Evolution and Growth in Large Libre Software
Projects”. In Proceedings of the International Workshop on
Principles of Software Evolution, Sept. 2005, pp. 165 – 174.

[16] Turski W.M., “Reference Model for Smooth Growth of
Software Systems”, IEEE Transactions on Software
Engineering, Vol. 22, No. 8, pp. 599-600.

[17] Chapin N., Hale J.E., Khan K.M., Ramil J.F. and Tan
W.G., “Types of Software Evolution and Software
Maintenance”, Journal of Software Maintenance and
Evolution, 13(1), January-February, pp 1–30.

[18] German D. M. and Mockus A., “Automating the
measurement of open source projects”, Proc 3rd Workshop
on Open Source Software Engineering, Portland, OR, USA,
2003.

[19] Raymond, E. S. 2001, “The Cathedral and the Bazaar:
Musings on Linux and Open Source by an Accidental
Revolutionary”, O'Reilly & Associates, Inc.

http://www.doc.ic.ac.uk/~mml/feast/
http://www.doc.ic.ac.uk/~mml/feast/
http://www.doc.ic.ac.uk/~mml/feast/

[20] Michlmayr M., 2007, Quality Improvement in Volunteer
Free and Open Source Software Projects – Exploring the
Impact of Release Management, Ph.D. dissertation.
University of Cambridge, UK.

[21] Royce W., “Managing the Development of Large
Software Systems: Concepts and Techniques”, Proc.
WESCON, IEEE Comp. Soc. Press, Los Alamitos, CA, also
in Proc. ICSE'87, 30 March - 2 April, Monterey, CA.

[22] English R. and Schweik C., “Identifying Success and
Tragedy of FLOSS Commons: A Preliminary Classification
of Sourceforge.net Projects”, proc. 1st intl workshop on
Emerging Trends in FLOSS Research and Development, 21
May 2007, Minneapolis, US.

[23] Capiluppi A, Fernandez-Ramil J., Higman J., Sharp H.
C., Smith N., “An empirical study of the evolution of an
agile-developed software system”, proc. 29th International
Conference on Software Engineering, ICSE 2007,
Minneapolis, MN.

[24] Robles G. and Gonzalez-Barahona J.M., "Contributor
Turnover in Libre Software Projects", Proceedings of the IFIP
2nd International Conference on Open Source Software, June
2006, Lake Como, Italy.

[25] Behlendorf, B. “Open Source as Business Strategy” in
Chris DiBona, Sam Ockman, Mark Stone (editors), Open
Sources: Voices from the Open Source Revolution. O'Reilly.
1999.

System analysed Main findings Stage detected

Arla Sustained period of growth up to day 1000 (Figure 19), delta
150%.Stabilization period up to day 1800 (800 days, relative delta 4%).
Sudden growth period up to latest available release (600 days, relative delta
260%)

- sustained growth
- stabilization
- superlinear growth

Grace Unconstrained growth up to day 700 (Figure 22), delta 54%: large delta
sizes achieved between subsequent releases. New evolution period
sustained by a new development team, up to day 1250: sublinear evolution
pattern detected (550 days, delta 55%). Latest stabilization period, 2000
days, delta 5%

- chaotic growth
- sustained growth
- stabilization

Ganymede Superlinear growth, up to day 250 (Figure 24), with a large delta achieved
(205%); followed by a sublinear growth up day 400 (150 days, delta 16%).
Missing data doesn't show evolution between day 400 and 1000. Between
day 1000 and 2200, size stabilizes (1200 days, delta 8%).

- superlinear growth
- sustained growth
- stabilization

Gwydion Dylan Initial stable period (previous history not available), before that, 220,000
LOCs achieved. From day 600 to present, sustained growth: 2200 days,
delta 70% (Figure 28).

- initial growth period
- sustained growth

Gist Irregular growth curve up to day 900, several reduction in the global
amount of lines of code. A period of growth is achieved up to day 1100,
before a new shrinkage and stabilization.

Irregularities don't allow to
detect clearly stages

Gaim Large, unconstrained initial growth period (800 days, delta 1300%); further,
sublinear growth period in lines of code, up to day 1400 (delta 20%). New
superlinear growth between day 1400 and day 1900, with delta size 51%.
Final sublinear growth up to present (Figure 34).

- superlinear growth
- sublinear growth
- sustained growth
- sublinear growth

MPlayer Large, unconstrained growth, between day 0 and 1500. Delta achieved
1600%

- superlinear growth

Netwib Superlinear growth (from day 0 to 650, delta 1400%), followed by a first
large reduction of size (delta -20%), and a second superlinear growth (day
700 to 1000, delta 40%); a second large reduction of LOCs (delta -25%)
and a new stabilization are then observed

- superlinear growth
- large negative delta
- superlinear growth
- stabilization

Table 1: evolutionary findings on FLOSS projects, along with the detected stages

	ESEC FSEcs
	Capiluppi_Barahona_Herraiz_Robles-IWPSE2007-final
	1. Introduction
	2. The staged model
	3. FLOSS staged evolution model
	3.1 Initial development
	3.1.1 Case studies
	3.2 Evolution changes
	3.3 Servicing
	3.3.1 Case Studies
	3.4 Phase out
	4. Conclusions
	5. References

