

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

Author(s): Caetano, Jorge; Santos, Pedro; Justino, Paulo; Goix, Laurent Walter;
Renditore, Paola; Demartini, Matteo; Falcarin, Paolo; Martín, Raúl; Martínez, Alvaro;
Fernández, Rosario; Baladrón, Carlos; Aguiar, Javier; Carro, Belén.
Article title: Introducing the user to the service creation world: concepts for user
centric service creation, personalization and notification
Year: 2007
Citation: Caetano, J. et al. (2007) ‘Introducing the user to the service creation
world: concepts for user centric service creation, personalization and notification.’ In:
16th IST Mobile & Wireless Communications Summit, Budapest, Hungary, July 2007.
Link to conference website: http://www.mobilesummit2007.org/

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219371844?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://roar.uel.ac.uk/
http://www.mobilesummit2007.org/

1

Abstract—The “Web 2.0” feature that most permeates the

nowadays web is “user-centricity”. Now users are not only
consumers of items (software, information, etc.), but also
creators of those items. This paper intends to push this paradigm
further, targeting mashups of telco and web services in a unique
service environment where personalised services will be
dynamically created and provisioned by end-users themselves,
regardless of ambiance and location. The paper explains how
user-centricity can be applied to the service creation world and
in general to the overall service lifecycle process. It also describes
the platform being implemented in the OPUCE project that
captures this philosophy and will be submitted to end-user
validation. Whilst focusing on intuitive editors for end-users to
compose services, additional hints are provided about
personalization and notification approaches to improve user
centricity.

Index Terms—User-centric lifecycle, Service Creation, Context
adaptation, Implicit Personalization

I. INTRODUCTION

NE of the most impacting emerging trends in the
Communication and Information Technologies (CIT)

world is the “Web 2.0”[1]. This new paradigm for the World
Wide Web promotes the usage of a bunch of innovative
technologies and philosophies, such as semantics or peer-to-
peer computing. But probably the “Web 2.0” feature that most
permeates the nowadays web is “user-centricity”: in the CIT
world of the past, everything followed the developer-user
approach. An expert (developer) created an item and a
consumer (user) made use of it. In the Web 1.0 for instance, a
limited group of individuals developed sites to be viewed by

the rest of the users.
But “Web 2.0” paradigm has trashed out this asymmetrical

approach and replaced it by a two sided, peer-to-peer
approach. Now users are not only consumers of items
(software, information, etc.), but also creators of those items.
Sites as wikipedia, flickr, youtube, or the blog phenomenon
show how the end user is now assuming the content creator
role too, providing all kinds of multimedia content from
expert knowledge and information to video and images.

The OPUCE (Open Platform for User-centric service
Creation and Execution) project [2] was born in this
framework to push this user-centricity paradigm further. Its
aim is to bridge advances in networking, communication and
information technologies services towards a unique service
environment, where personalised services will be dynamically
created and provisioned by end-users themselves, regardless
of ambiance and location [3]. In other words, to build a
platform allowing creation and execution of telco services by
end-users themselves.

This further step in user-centricity, to allow the user to
create not only static content, but also applications and
services, seems to be one of the most interesting aspects in
R&D nowadays, as proven by the increasing popularity of
mashups (little applications that combine information from
various web sites) and the birth of various environments for
the intuitive non-expert creation of web-based information
services, driven by the biggest and most successful companies
of the CIT world, such as Yahoo! Pipes [4] or Microsoft
Popfly [5]. These environments present graphical tools based
on drag-and-drop interfaces which allow the user to create this

Introducing the user to the service creation
world: concepts for user centric service creation,

personalization and notification

Jorge Caetano (jorge.caetano@aveiro.nec.pt), Pedro Santos (pedro.santos@aveiro.nec.pt), Paulo Justino
(paulo.justino@aveiro.nec.pt),

NEC Portugal SA, Rua Mário Sacramento nº 177 3800-106, Aveiro, Portugal;
Laurent Walter Goix (laurentwalter.goix@telecomitalia.it),Paola Renditore (paola.renditore@telecomitalia.it),

Telecom Italia Lab, Via G. Reiss Romoli, 274 – 10148, Torino, Italy;
Matteo Demartini (matteo.demartini@m3s.it),

M3S srl, via Molo Cagni 16128 - Genova, Italy;
Paolo Falcarin (paolo.falcarin@polito.it),

Politecnico di Torino, Corso Duca Degli Abruzzi 24, Torino, Italy;
Raúl Martín (rmm375@tid.es), Alvaro Martínez (amr@tid.es), Rosario Fernández (rofg360@tid.es)

Telefonica I+D, C/. Emilio Vargas 6, Madrid, Spain;
Carlos Baladrón (cbalzor@ribera.tel.uva.es), Javier Aguiar (javagu@tel.uva.es), Belén Carro (belcar@tel.uva.es),

Universidad de Valladolid, Campus Miguel Delibes 47011, Valladolid, Spain;

O

2

little information services/applications even without any
computing knowledge.

The OPUCE platform aims to port this philosophy to the
telco world. Where Yahoo! Pipes for instance allow only
creation of simple information-based services, OPUCE will
offer support for building a wide range of telco services. In
addition, platform’s tools for creation, deployment and
execution automation allow operators and content providers to
create their own high-quality premium services and deliver
them in a short time with the aid of the built-in
advertising/discovery system and community support tools.

The challenge for OPUCE is obviously to put a non-expert
in the center of a Service Creation Environment (SCE). For
traditional environments the service creator is an individual
with a deep knowledge of information technologies, but for
OPUCE the first assumption is that creators do not have any
background at all either in programming languages or
computing in general. Therefore the OPUCE platform should
include a complete set of intuitive tools to allow easy
composition and automated deployment, advertising,
management and execution of services.

This paper explains how the OPUCE project applies the
user-centricity philosophy to the user-creation world and
describes how the elements of the OPUCE platform
implement that philosophy. In more detail, it is explained:

• the meaning of Services and Base Services from
OPUCE perspective,

• how user requirements are being treated,
• what user-centric service lifecycle is (which can

be understood more deeply with a use case),
• which tools OPUCE platform will provide for

users to create their own services,
• the concepts regarding implicit personalisation

being used,
• how users can interact with the platform in order

to either discover or share new services and being
notified of existent ones that match with theirs
interests.

Finally, it is important to clarify the meaning of “user-
centricity” inside the scope of the OPUCE project in general
and in this paper in particular, because it could sometimes be
an ambiguous term. For OPUCE “user centricity” generally
means that users are user creators themselves, so they are the
“center” of the platform in the sense that they are both creators
and consumers of services and everything evolves around
them This should not be confused with the more generic
meaning of the expression, like in [6], according to which,
users are in the center, because the product is explicitly
developed towards them, and as such effort is spent at design
time in order to adapt the product to user requirements.
Therefore, users are in the center of the “design/development
phase”. OPUCE also covers this second meaning of user-
centricity, through trial activities in which a sample population
experiments with prototypes of the platform in order to
provide feedback for further requirements, but along this

paper the term “user-centricity” will refer to the first meaning
explained, unless stated otherwise.

II. USER CENTRIC SERVICES

A. Services and Base Services

OPUCE services are intended to cover the whole spectrum
of next-generation, yet convergent IT-telco services. Indeed
the services targeted by the platform could be mashups of IT-
based services, such as web services, information services,
community services, etc. capturing “Web 2.0” APIs and
paradigms, combined with typical telco-based services
oriented towards communication like presence, messaging,
call control, etc

The fundamental concept about OPUCE services is that
they are build out of collection of base services that are
provided by the platform (or by 3rd parties). Base services can
be connected according to suitable composition rules in order
to create more complex services.

Base services are functional units deployed by the platform
owner (typically the service provider) or authorized 3rd
parties, which can be used to create OPUCE services. When
encapsulating telco resources or network capabilities, they can
for example allow for sending SMS or IM, placing a phone
call, setting up an audio conference, monitoring a friend’s
presence, etc.

Base services wrap a single or limited set of either telco or
IT capabilities. This atomicity is needed both for user
friendliness and for security reasons. From the users’ point of
view, a base service can be represented through a single and
common sense paradigm, such as a phone, a book, a letter, etc.
Dealing with network resources, instead, user usually needs
technical skills in order to cope with many concepts, such as
protocols, error conditions etc.: OPUCE goal is to ease the
users’ task and present them only with concepts they are
familiar with (e.g. place a call, line is busy, drop the call etc.).
On the other hand, telco operators need to be ensure that such
capabilities are used in a controlled and safe way, e.g. to
prevent abuses, to enforce billing and accounting etc. In this
sense such atomic approach provides higher control and
separation when operating services, especially when dealing
with 3rd party components.

Finally this base service approach can be made recursive,
i.e. complex services could be wrapped up as base services to
be used as atomic blocks for other compositions. Base
services available to the user community can thus be easily
extended, both allowing 3rd parties (possibly even users) to
contribute new base services (after a suitable conformance test
has been carried out) and by creating new services out of
certified components.

So, base services are the functional units needed to define
services, but these “bricks” are not enough to build a wall: we
also need a way to put base functionalities together. For this
reason OPUCE introduces the concept of Generic Building
Blocks that are the “glue” that helps connecting base services
according to suitable composition rules. Examples of Generic

3

Building Blocks are the usual conditional statements from
programming languages (e.g. Switch, If-Then-Else etc), but
also blocks that are more specific to the user-centric, context-
aware domain, e.g. context checker (that helps defining a flow
according to the specific context where the user is).

This approach is reflected in the service creation process
(detailed in the next section) where base services are boxes
graphically displayed to the user and connected to compose a
service.

B. Considering user requirements

A key principle in designing a user-centric platform for
services is the gathering and understanding of end-user
requirements and wishes. As reference playground, we have
been analyzing deeply the evolution of the Internet towards
the user-centric “Web 2.0” paradigm and tried to extend it to
the telco world, where services are more complex entities, and
to networks to be operated and meshed. The scouting of
different approaches proposed to web users to create, share
and manage their own contents (see YouTube, Flickr, etc) and
more recently services (see Yahoo! Pipes, Ning, etc) provided
us with a first input on upcoming trends in end-user service
creation (which seems in extensive growth), besides giving
some basic hints about composition and sharing paradigms.
We then captured these trends to adapt them to the telco
world, targeting “fast service lifecycle management” and
“user-generated services” as the main concepts of our
platform, trying to go well beyond current approaches of telco
feature exposure such as SDKs or remote APIs.

Focusing on the European market, also led us to some
further considerations in the native support of multiple
cultures and languages when targeting any citizen, essential to
the wide acceptance of the project. This requirement is
particularly important in the context of service creation, but
also has impact on the federation across service providers and
their respective platform when users share services.

Although the platform is not intended for users to design
their services automatically out of requirements, but through a
graphical composition paradigm, we did consider user
requirements – and feedback – for the design of the platform
itself. Indeed, the platform intends to be evaluated, whenever
first available, by user laboratories at service provider
premises to provide feedback and suggest improvements
along the project lifetime. In addition, some public events are
planned to share our results and invite citizens to create and
manage their own services.

C. User centric lifecycle

User-centric service lifecycle is intended as the process of
enabling end-users (not technically skilled) at creating their
own services and managing their lifecycle autonomously
within the service provider’s platform. Such process allows
users to share their own services with a community, thus
creating a powerful and self-increasing ecosystem.

Fig. 1. Overview of the OPUCE approach to User Centric Services

Fig. 1 illustrates the approach we are considering for User

Centric services. Three major roles are identified:
• the service provider, focused on learning information

about end-users (both creators and final users),
including context information, service usage
statistics, preferences, etc. The service provider is
typically also providing some base services to be
composed and network resources to operate the
platform and run services created by end-users,

• the service creator, an end-user creating her/his own
composed services out of base services, also in
charge of managing their lifecycle, such as deploying
them or sharing and notifying them to her/his social
network or interest groups,

• the final service user, an end-user of the platform
interested in services of some kind that receives
updates about newly available services and can enjoy
executing them after some context-aware adaptation
step.

Each step along the overall lifecycle is directly involving
the end-user, as an entity either releasing some personal
information (such as context, preferences, etc) to the service
provider, or being a fundamental actor of the community,
designing, managing and sharing services autonomously. This
approach also intends to satisfy more passive users, who
ultimately benefit of a wide range of services designed by
other users that per se could better fit their needs, besides
taking advantage of their context information for adapting at
best their experience of such services in any situation.

To support this separation of roles still guaranteeing user
centricity, we introduced the concept of “User Sphere”, which
refers to the set of information that describe the user as an
individual having his own reality, such as her/his
relationships, interests, well-known places, phone numbers, e-
mail addresses, etc. Reference to the user sphere at each step
of this lifecycle is essential to address relative information,
whose actual value may vary across users. We use $Me as a
generic notation referring to the final user’s user sphere, e.g.
$Me.phone_number references the final user’s phone number.

To achieve such a lifecycle we are focusing our work on the

service creation and service lifecycle management tools,
relying upon existing service execution platforms that
however need to be compatible with user-created services, for
example for security or reliability reasons.

The service creation sub-system is responsible for
providing the tools, both on the end-user device and at the
service provider premises, for creating, managing and sharing

4

services, whilst the service lifecycle management sub-system
aims at providing the deployment, monitoring and notification
tools to quickly react and adapt services to the community’s
requirements and needs.

Such tools are essential in the field of user-centric
platforms, which target demanding and ubiquitous users on
the move, having their own sphere, together with numerous
heterogeneous services, sometimes for a very short time.

As cross-cutting concerns, personalization and security are
essential in enabling a heterogeneous community to design,
share and operate services autonomously at each step of the
overall lifecycle. In that sense, we are taking extra care of
gathering and protecting user information (such as context,
profile, preferences, etc) and validating user identities and
permissions, especially when sharing services or executing
another user’s service.

III. USING OPUCE: A SIMPLE USE CASE

In this section it is presented a simple scenario where an
OPUCE user has a communication need and decides to solve
it using the OPUCE infrastructure. A short introduction to
implicit personalization is also included in an attempt to
explain the role of personalization in the user-centricity of the
platform and its mapping to the proposed use case.

Personalization is the way to provide users with services
tailored to their needs, preferences, interests and expertise.
Implicit personalization is achieved by a process of adaptation
that relies on the user context. The exact definition of context
is a matter of discussion for authors. In OPUCE, context is
considered as the situation of the user [7] and it is
characterized by widely agreed primary components: location,
identity, time and activity. A context, as complete as the
available data, can be built from these basic variables. Modern
techniques on collaborative filtering take care of complex
mechanisms that model the user preferences in a way that
contribute to the context abstraction (see section V). In the use
case described here, the personalization aspects in OPUCE are
based on the aforementioned primary components, showing
the platform as a user centric one for the creation and
execution of services. The implicit personalization is
supported here from the very first step in the service life cycle:
the creation. The use case describes the capability of the
platform to enable a service creator to configure a service with
her/his own context, to execute the service according to final
user’s context, (what is called in the project the user sphere,
see section II) and finally to publish it so that other users can
benefit from it.

OPUCE implements context aware service composition.
This kind of composition is based on service components that
are assembled by the service creator to build a user centric
workflow, whose execution is modified during runtime
according to context. These components are fed by the user’s
data in the way designed by the creator of the composition.
OPUCE services are context aware applications supporting
features [8] like:

• Presentation of information and services to the
user. Context in OPUCE is presented to the user as
another type of information. This is implemented as the
$Me concept explained in section II.
• Automatic execution of the service based on the
user’s context. The context acquisition at execution
time effectively determines the service performance
towards the user.
• Resource discovery. This is a twofold characteristic
in OPUCE. Generally speaking, this feature is
understood as the ability to inform users about services
that may be of interest to them, according to the
abstracted context. This particular feature is
accomplished by the service advertising system of the
platform. The second aspect commonly understood for
resource discovery is the location and exploitation of
resources relevant to the user’s context. OPUCE
platform also implements such system in its
architecture.

Following it is explained a simple scenario covering the

main OPUCE capabilities as a user centric platform, i.e.
service creation, personalization, execution, and notification
of services, we might call this use case “e-mail advanced
reachability service”:

“Bob is an executive that is waiting for an urgent e-mail. In
fact, it is so urgent that he needs to read it at the moment it
arrives. Bob cannot be the whole day long waiting for this e-
mail in front of the computer, since he is sometimes at home,
sometimes travelling and so on, so he would like to have a
“system” that notifies him about his new e-mails everywhere
he is, and that takes into account what he is doing: when he’s
driving, he can only attend phone calls, at work he can know
about his new e-mails via a mail client and, when he is not
working or driving, he would like to receive an SMS with the
content of the e-mail he is waiting for.

Bob is registered as an OPUCE user, so he is capable to
know whether there are already services that fit his need. He
logs into the OPUCE portal and performs a service search
with the intention of finding such a service. Maybe there is
one, developed and shared by another OPUCE user that fulfils
his requirements. In case there is none it is a minor problem,
since the OPUCE platform offers him the possibility of
creating one of his own. As he cannot find anything suitable,
he decides to create a service from scratch. Another possibility
could have been to retrieve a similar (and public) service and
adapt it to his needs.

The first task he has to do for creating the service is to open
the OPUCE Service Creation Environment (SCE) and create a
new service. He searches the component repository trying to
find some modules available for the service composition.
Fortunately, he finds several base services and building blocks
that seem to be useful:

• E-Mail Base Service: this block allows sending e-mails.
Moreover, it is able to detect that an email, which is compliant

5

with a preset criteria, has just been received.
• SMS Base Service: this block allows sending SMS

messages. Moreover, it is able to detect when a new SMS,
compliant with a preset criteria, has just been received.

• Text-To-Speech Call Base Service: this base service is
able to call a specified phone number and, when the call is
accepted, a text (a parameter for this component) is read out.

• Generic building blocks: as mentioned in II.A, Building
blocks are the modules that, when used in the service
composition, are able to drive the execution flow. In order to
create this service, Bob needs, for example, switch blocks
controlled by a context By using them, Bob can define
different “execution paths” for his service depending on his
actual context.
 Once Bob has detected the “pieces” necessary for creating
his service, there is only one thing left to do, connecting them.
Next figure shows how the service composition, using the
available blocks, would be.

Fig. 2. Context aware service composition

After Bob has linked all the blocks in the composition, he
saves it and checks its integrity.

As Bob thinks that his creation may be of interest to other
users in such situation, he decides, after deploying it into the
platform, to share it with every OPUCE user and especially
with his colleague Anne. Therefore, he sets the service as
public, marking it with some tags (“reachability”, “e-mail”,
“SMS”, “phone call”). These words will characterise the
composition so that other users’ lookups can locate his
composition .Then, he selects explicitly Anne, an OPUCE
user too, to receive a notification about this new available
OPUCE service.

The notification about this new service will be delivered to
Anne according to her service advertising preferences. She
chose through the OPUCE user portal which notifications she
is interested in, and when/how/where to receive them. In her
profile, Anne set the SMS as the preferred means to receive
notifications about new services when she is at home. So,
when she arrives home, she will receive the notification about
the service created by her colleague Bob. Other OPUCE users,
subscribed for receiving notifications about new services that
match their interests, would receive an advertisement too.
Using the received notification, Anne, and the other notified

users, will be able to configure and execute/activate the
service.

Coming back to Bob, at this moment, all he has to do is
configuring and executing the service. Bob explores his
services list in the OPUCE Portal and selects the one he has
just created. He clicks on the link provided in the list and
accesses the “GUI (Graphical User Interface)” of the service.
Here, Bob, for example, configures who is the sender of the
special e-mail he is waiting for. Only the e-mails sent by this
sender will be processed by the service. Once the service is
configured, he clicks on “Activate”, and the “e-mail advanced
reachability service” is running and waiting for such an
important e-mail.

Finally Bob decides getting subscribed to advertisements on
other users’ potential reachability services, and by means of
the OPUCE portal, enters his preferences. This time he had
the opportunity to perform searches and compose flows, but
who knows next time.

IV. USER SERVICE CREATION

A. General Concepts

Usually, service developers are highly qualified
professionals with relevant skills, who could rely on suitable
tools to be used to create services; they are also familiar with
computer languages and technologies surrounding the creation
process. With user-centric service creation, a paradigm shift
occurs, because service creators are neither specialists nor
professionals, but instead end-users that often have little
knowledge or background in computer technologies. This role
change imposes some constraints over the Service Creation
Environment (SCE). Typical development environments
would be very difficult to handle for average users, so a user-
centered service creation process should ease the task of
service creation as much as possible: suitable techniques to
achieve this goal are user friendly graphical interfaces,
wizards, composition helpers, guided editing etc., but others
could also be leveraged, such as natural language descriptions.

The first requirements when designing a user oriented
service creation environment are thus given by users’ skills
and user friendliness in its many aspects (e.g. appealing
interfaces, ergonomics, etc). Another important suggestion
comes from “Web 2.0” concepts of social networking and user
communities: in other words, such hints can be leveraged to
create a comfortable and stimulating environment that pushes
users to create their services so that they feel this task is both
useful and funny. On the provider side, this ecosystem of
users and services can be a good field to collect feedbacks
from users and on users themselves: in fact a lot of data about
users behaviour, preferences and so on can be elicited both
explicitly (e.g. promoting forums, blogs etc.) and implicitly
(e.g. observing services users make or prefer). All these data
can be exploited in order to improve and to refine both the
platform functionalities and its architecture, to make it more
suitable to users’ needs.

6

1) Two editors for different needs
Dealing with user-centric service creation, the OPUCE

platform definitely needs suitable tools for users to describe
their services. From requirements collected during the analysis
phase, we came up with the idea that service editing can be
successfully covered by two different service editors facing
different features characterizing both users and context. A
user centric Service Creation Environment (SCE) for people
on the move needs to take into account, besides user’s skills,
also user’s context (such as device capabilities). Indeed users
should be enabled to enjoy their new role of service creators
using every device and access at hand, namely PCs, mobile
phones, PDAs etc. This extended range of target devices
imposes a requirement both on the SCE and on the resulting
service definitions.

Following the observations above, the approach to user
service creation outlined in this paper suggests two different
service creation environments: a full feature editor and a
simplified editor.

• The full feature editor supports a description
language accepting a large number of composition
rules, rich graphical user interface (possibly with a
large footprint), advanced validation tools etc.

• The simplified editor is different from the above
editor with respect to many features: less demanding
user interface, simpler description language,
restricted set of available operations, more guided
creation/customization process, etc.

This distinction can be exploited in different and possibly
complementary ways; e.g. according to pricing policies (users
with low budget could only use the simplified editor, while
premium users could use both), according to users’ skills,
according to mobility constraints, device capabilities etc.

A key concept of our approach is to allow service creators
to perform “cross editing”, i.e. to switch between the two
editing modes when conditions are applicable. For this switch
to be possible, both tools have to share the same design
principles and take a consistent approach to the underlying
service platform, linking with a centralized service repository
in the background.

The basic idea behind these two editors is that each one
shows OPUCE services according to what we might call its
specific “service resolution”: the more advanced the editor the
higher the resolution. But the important thing is that both
work on the same material, i.e. the service definition.

So, the first design principle underlying this approach is
that the internal service description representation for both
tools has to be the same. Out of this common internal
representation, each tool will present its own picture and will
allow the supported operations. Although the set of operations
allowed by the two tools could be different, the resulting
service definition has to remain consistent across
modifications performed using the two different tools.

2) Dealing with user profiles: constraints and references
Talking about a user oriented service creation environment

two important issues have to be faced: dealing with user
profiles and context and enforcing constraints on service
compositions.

The first issue is covered by the concept of User Sphere
mentioned in II.B; this concept describes the user’s reality and
can affect service behaviour, either implicitly or explicitly. I.e.
values from the User Sphere can be explicitly referred to
inside the service logic to define the desired service
behaviour: e.g. if I receive a call while I’m away and the
number of the caller is my mother’s, then redirect the call to
my mobile phone number otherwise play a message; in this
case “my mother’s phone number” is a value from the (final
user) user’s sphere that is used inside the service logic
definition.

This means that a user-centric service creation environment
needs a way to make explicit references to User Sphere, when
creating a service. It is important to remind that people in the
OPUCE community can be both final service users and
service creators. This means that, when referring to a value
from the User Sphere inside a service definition (e.g. an email
address, a phone number, etc), there has to be suitable support
to tell if that reference has to be resolved in the service creator
space or in the final use space. This last kind of reference is
needed to make service definitions more flexible and to ease
the task of enabling other users to run services inside their
own User Sphere. This approach also helps protecting users’
private data, while keeping the ability to port services to other
users. In fact users cannot reference directly other users’
personal data and each reference is made through an alias for
values inside the user sphere: e.g. if inside a service definition
the service creator needs to send an SMS to another OPUCE
user in his contact list, he can refer to
$Me.contactList.OPUCEUser1.mobile and that will do. Of
course OPUCEUser will be asked permissions for being added
to the creator contactList, and this can make his references
available (if he wants to) in an anonymous way (i.e. without
showing the actual number).

The issue of enforcing constraints on service definitions
relates to obtaining service definitions that are both correct
and safe for the platform (e.g. that use resource correctly).
This issue can be statically covered both by providing a
guided composition process (e.g. helpers and composition
assistants) and with semantic checks on the overall
composition.

B. Full feature editor

The OPUCE platform will provide a full featured editor
with a rich graphical user interface, aimed at rich terminal
devices. The editor will be implemented as a Web resource
accessible through the OPUCE Portal and users will be able to
take part in the service creation process within their favourite
web browser. “Web 2.0” technologies will increase the user
experience, supporting the editor visual appearance and
interactive behaviour.

The service creation tool must have a user friendly and
appealing interface, but one of the main challenges is to offer

7

an intuitive, end-user oriented model for creating service
logics. The model proposed in OPUCE is based on a
composition paradigm: end user will be assembling base
services which will be configured and connected to define the
service flow.

The composition process can be summarized in the
following three simple steps:

• Selection of base services;
• Configuration of properties;
• Linking of base services together.

Base Service
Palette

Editing Area

Configurations and Actions

Fig. 3. Full Feature Editor Areas

Fig. 3 shows the different areas of the full featured editor.
The set of base services available for the service composer

will be displayed in the Base Services Palette and categorized
by concepts. In an end-user oriented service editor, the
graphical representation of base services is very important.
When users look at base services, their shape, icon and name
must immediately recall the concepts the user is familiar with.

Base services are the boxes that can be selected from the
Palette, dragged to the Editing Area and linked together in a
workflow that represents the composed service flow (i.e.
service logic). Selecting a base service in use in the
composition, its properties are displayed in the configuration
panel and the user can set the configurable parameters.

OPUCE specifically addresses telco services that are
intrinsically event-based. Each base service can perform
actions and manage events linking an event with an action,
e.g. defines the action to be performed when the event occurs.
Following the service flow it will be possible to “read out”
services as a sequence of sentences like “WHEN event.name
THEN action.name”. Hence even the names of actions and
events are important, because a proper choice may enable
describing the created service compositions with meaningful
sentences. For instance, supposing that a base service can
manage the event “message is received” and another base
service can perform the action “search telephone number”, if
such an event is linked with such an action, a composition
which can be described with the following sentence is being
defined: WHEN “message is received” THEN “search
telephone number”. In this way a service can be translated in a

sequence of sentences that is close to the natural language.

Send SMS

Third Party Call

Start-Call

When-Call-Is-Terminated

Wait For
Incoming SMS

Send-SMS-to-User

Yellow Pages

When-TelNum-Is-Found

Search-Tel-Number

When-Msg-Is-Received

Editing Canvas

Fig. 4. Service composition example

Fig. 4 shows an example of the “sentence composition”.
The service composer doesn’t need to worry about

synchronous or asynchronous events: each base service is able
to manage events in a common way, through specific handlers
that allow drawing outgoing arcs to be linked to an action.

The full featured editor will also offer the possibility to
create conditional branches in the service flow through a
specific block that represents the intuitive construct “IF …
THEN … ELSE” and increases the expressive power of the
composition model.

Regarding the configuration of the base services taking part
in the flow, users can configure properties in the following
way:

• set a parameter to a specific and literal value
(constant);

• link a parameter to a property of a previous base
service;

• link a parameter to the user profile (or User
Sphere).

Properties are global to base services and there is not an
explicit binding between actions, events and properties. In this
way users can define the data flow configuring base services
and define the service flow linking events to actions, in two
separate and pseudo-independent processes.

Furthermore, in the configuration phase the editor will help
referencing user’s profile data: the idea is that whenever the
semantic of data needed by a base service refers to user’s
information, the editor will help/force to link the information
to the “User Sphere”. For example, if a base service has a
property that requires a telephone number, the editor will
suggest the $Me.phone_number value from the “User
Sphere”. Then the value will be automatically set to the
telephone number of the specific user accessing the service, at
run time.

C. Simplified Editor

The Simplified editor is aimed at Basic Terminals (limited
graphical capabilities), typically mobile terminals, or Basic

8

Users (limited skills). These two targets share some common
ground, which leads to four principles on which the simplified
editor is based on: simplicity, minimum actions, maximum
help and flexibility. All play together to achieve the goal.

For simplicity, a service composed by the basic editor is
summarised to an ordered list of base services, a uni-
dimensional organisation of base services in a chain, however
maintaining unrestricted linking between any of the base
services, that is, any base service can link to any other (one or
more) base service in the chain. This approach is based on
highlighting to the user the set of base services composing the
service. The links between base services can optionally be
showed (Fig 5) or not (Fig 6).

Fig. 5. Chain with link display (wiring shows current linking)

Fig. 6. Chain without link display

The simplicity of the chain concept makes it adaptable to

text mode, using text lists, keeping the same base service
chain concept and maintaining the same menu organisation so
that it is intuitive for the user to migrate between different
terminals (graphical and text based).

Fig. 7. Chain in text mode becomes a list

For minimum actions, the user service creation processed is

shortcutted as much as possible, by automating actions to the
only available option or to the most likely available option.
The automatically achieved configuration is likely (and
hoped) to be the required one for a big majority of cases. This
automatic configuration consists of both linking between base
services and configuring some base services properties.
Automatic linking of components is based on input/output
types. Besides the direct linking of inputs/outputs of the same
exact type, there can be also semantic adaptation which
provides automatic insertion of adaptation components. For
example if there is one base service that requires as input one
location in “city name” format, and another that outputs one
location in coordinated format, then an adaptation service is
introduced that provides the adaptation between the two

formats. The adaptation services are just base regular base
services that are identified (indexed) to be able to perform
semantic adaptation.

Therefore most of the times the only actions required by the
user are place the base services, confirm automatic achieved
configuration and run. Nevertheless, there are, in some cases,
some data that must always be entered by the user, e.g. the
question text for a Poll base service.

For maximum help the Editor includes assisted editing to
guide the user with the next steps required. An example of
assisted editing is Colour Assisted Editing where colours are
used to provide status indication, and to guide user to the next
steps required. For example the colour of each base service in
the chain can provide indication of how far is a base service
from being completely connected within the service being
composed:

• Red can indicate that some required linking is not
complete, so user action is required;

• Yellow can indicate that all required linking is complete
but some was done automatically by the editor and user
confirmation is advisable;

• Green can indicate all linking is complete.

Fig. 8. Chain using colours to indicate linking status

For flexibility, the user can always access the detailed

configuration, although by default it is usually set
automatically and not displayed. This includes the individual
base service configuration and the linking between base
services. That is, the creation detail resolution can be changed,
either automatically based on user profile or manually by the
user. The typical and topmost resolution is the list (chain) of
base services without any configuration or linking detail.

Summarising, the aspects that distinguish the simplified
editor from the full editor are: designed to run on mobile
devices, simplified graphical interface, additional automation
and additional assistance.

V. TOWARDS IMPLICIT PERSONALISATION

Users’ terminals (either fixed or mobile) can be used by
network operators and service providers to learn more about
user’s data, habits and preferences and to take advantage of
this information for service personalization.

While “explicit” service personalization typically requires
users to configure services depending on their needs, implicit
personalization relies on user information analysis and
recommendation.

This information can be used to drive service
personalisation in a more automated way, i.e. without user
intervention, and can be divided into the following categories:

9

• user profile: typically persistent data, e.g. agenda,
address book (social network), devices

• user context: typically more volatile/transient data,
e.g. presence ,location, current device, etc

• service usage: which service is used by the user, in
which context and with which parameters/values

• device usage: what is the user doing on his device.
This information is linked to service usage, although
it relates to the local usage of the device and its
applications

• user preferences: about what the user likes/dislikes,
based on direct feedback or input, or derived
implicitly

The reference architecture used to gather exchange and
provide such user information to the various tools involved in
the user-centric service lifecycle is inspired from Mobilife’s
Context Management Framework [10]. Although main
concepts are similar, the architecture has been generalized to a
User Information Management Framework that could handle
all types of user information, defining lightweight
XML/HTTP interfaces for interactions over mobile networks.

In fact, some data are only available on the device and can
be aggregated with information centrally available to mobile
operators and service providers, for example to extract a
higher-level description of the user context.

As perfect automation on deriving user preferences cannot
be easily achieved from raw context data, recently
collaborative filtering techniques have emerged as a trade-off
between the mainstream personalisation approaches.

Collaborative filtering requires a user to rank a particular
item, and the system can use these data to calculate similarities
among groups of users, and then provide predictions on
possible rank that could be given by a user to an item he has
not evaluated yet. This technique assumes users have different
preferences and once the system identifies that a user is
similar to particular user’s category, it can personalize
services accordingly to this category.

The mechanism behind collaborative filtering systems
requires that a large group of people's preferences are
registered, in order to apply a similarity metric (like Pearson
correlation coefficients) for identifying a subgroup of people
whose preferences are similar.

The main problem with current collaborative filtering
systems is the collection of preferences [11]. In fact, the
system requires that many people could express their
preferences about many items. Since the system only becomes
useful after a number of opinions greater than a critical
threshold have been collected, users will not be very
motivated to express detailed preferences in the beginning
stages, when the system is not able to recommend anything
yet.

The great amount of user information hosted by Telecom
operators can provide a precise picture of user behaviour and
preferences, without requiring to the user any effort to set
his/her own preferences.

Telecom operators can in fact avoid this start-up problem

by collecting preferences that are implicit in people's actions
and usage of services [12]. For example, users who often use
a specific service implicitly express their preference for that
service; profile information like user’s contacts and social
networks are also an important starting point for defining
groups of similar users.

Using such techniques, implicit personalization typically
happens at service execution time for adapting or
personalizing services to match user needs and preferences. At
service creation time, these techniques can also be used by the
end-user service creation environment for identifying, among
the set of services available in the OPUCE Repository, the set
of most suitable services to be shown in the SCE, in order to
be composed by the end user.

VI. SHARING, ADVERTISEMENT AND DISCOVERING

In an environment where items of interest (services in this
case) are short lived, quickly changing and created in great
numbers by users, it is of the uttermost importance to set up a
system to allow their easy discovery. From the perspective of
the creator, while it is possible that he wants to keep the new
service completely private, usually he would like either to
share it with members of his social network (a collaborative
service to keep in touch with his friends, for instance) or to
spread it through the entire community in order to let others
use the same service or even, depending on the billing system,
to get some revenues for its usage by other parties. This is
advertising: the creator and/or the platform pushing
notifications towards potentially interested end users.

From the end-user point of view, the necessity of an
efficient discovery system appears either when he has a need
for a service, but either he is not willing to spend time
building a specific one or the service he needs is so
complicated that it would represent a great effort from his side
to create it from scratch.

In this case, he would prefer to take advantage of the work
done by other members of the community and reuse some
service picked among those already available, either “as is” or
to modify it to better fit his preferences. This is discovery: the
end user actively searching for services matching his needs.

In both cases the need for a system to put in touch the
creator of a service with the potential end-users is obvious, so
advertising and discovering are two different answers to that
necessity.

In other environments of the telco world, the creator is
usually a big entity capable of advertising campaigns using a
plethora of means, but when creators are entities as small as
an end-user, some other solution should be applied.

In the SOA (Service Oriented Architecture) paradigm the
Universal Description Discovery and Integration (UDDI [13])
registry allows the publishing of service descriptions in order
for them to be discovered. Metadata search allows a user to
retrieve a list of suitable services, and this is an approach that
could be reusable for user centric service creation.

The discovery system of the OPUCE platform includes a

10

mix of these two methods: a “push” method called
advertising/sharing, in which a user sends notifications about
a service to other users, and a “pull” method called browsing,
in which a user searches for a specific service matching his
needs using a set of metadata.

The “push” method (advertising/sharing) allows a service
creator to use electronic means of advertising to notify other
users of the platform potentially interested in the new service,
using SMS/MMS, instant messaging, email or the internal
OPUCE inbox. The advertising module of the platform takes
the keywords and metadata defining a service and determines
the most suitable list of potentially interested users, based on a
semantic matching of service definition and user profile.
Then, each of these target users is notified according to his
notification preferences stated in their personal profile. These
preferences let the user specify the preferred means and time
of notification based on various context and presence
variables, and also message filters to prevent spamming. This
way, advertisements are non-intrusive, highly focused and
efficient, and allow easy service sharing and advertising
between small entities such as end users, but also allowing
companies building complicated premium services to spread
them properly to the community.

The “pull” method is on the contrary based on a query
against the service repository. A semantic browser is coupled
to this repository, allowing very narrow searches for very
specific services if needed. Therefore, an end-user is capable
of finding the exact services which matches his needs in terms
of a wide list of parameters, such as bandwidth required or
QoS availability, for instance, and not just using a bunch of
keywords of metadata like in common browsers.

VII. CONCLUSION

In a world where technology complexity is growing, one of
the big and constant challenges is too keep the technology
reachable by the user while increasing the amount of features
available. The key to keep an accessible environment is the
filtering of both the available information and available
options. That is the reason of the success of the internet search
engines.

This is even more critical when the goal is to bring the user
from a passive role to an active role in the system, making him
an agent of the system, as is the case of OPUCE user centric
creation environment.

Identified the new users centric role in the service creation
and execution domain, this paper explains how OPUCE faces
it and is contributing to facilitate and enhance their
participation.

Tools provided by the platform to directly interact with
users such as Service Creator Editors are targeted to deal with
all kind of users, from the skilled ones in computer
technologies to the others less skilled in that field. Associated
with these tools there are others working in background to
provide implicit personalisation and browsing/advertising.

The browsing/advertising system allows easy discovery of

services. In an environment with items so dynamically
evolving and created by small entities as end-users, this
system provides non-intrusive and highly focused notification
of services and semantic driven, narrow browsing, together
with implicit personalization, which will derive user
preferences from their usage of the platform helping them
focusing on their real interests.

The OPUCE platform and particularly the concepts
presented in this paper will enable the arising of new business
models where 3rd parties, either individual users or small
companies can play an important role.

AKNOWLEDGEMENTS

The work presented in this paper is being executed as part
of the OPUCE project and partly funded by the European
Union under contract IST-034101. OPUCE is an Integrated
Project of the 6th Framework Programme, Priority IST.

REFERENCES
[1] Tim O'Reilly. What Is Web 2.0. O'Reilly Network.

http://www.oreillynet.com/pub/a/oreilly/tim/news/2005/09/30/what-is-
web-20.html

[2] Open Platform for User-centric service Creation and Execution,
OPUCE, IST FP6 Integrated Project no. IST-034101,
http://www.opuce.eu

[3] OPUCE project Web site: http://www.opuce.eu
[4] Yahoo! Pipes, http://pipes.yahoo.com
[5] Microsoft Popfly, http://www.popfly.ms
[6] W. K. Edwards, V. Bellotti, A. K. Dey, M. W. Newman “Stuck in the

middle, : The challenges of user-centered design and evaluation for
infrastructure”, Proceedings of the SIGCHI conference on Human
factors in computing systems, pp. 297-304, 2003.

[7] Anind K. Dey and Gregory D. Abowd. Towards a Better Understanding
of Context and Context-Awareness. Graphics, Visualization and
Usability Center of Computing, Georgia Institute of Technology,
Atlanta, GA, USA. {anind,abowd}@cc.gatech.edu}

[8] Pascoe, J. Adding Generic Contextual Capabilities to Wearable
Computers. 2nd International Symposium on Wearable Computer, 1998

[9] Almeida, J.P.A., Baravaglio, A., Belaunde, M., Falcarin, P. & Kovacs, E.
“Service Creation in the SPICE Service Platform.” In: Proceedings of
the 17th Wireless World Research Forum Meeting (WWRF17),
November 15-17, 2006, Heidelberg, Germany

[10] P. Floreen et al.., “Towards a Context Management Framework for
MobiLife,” Proc. 14th IST Mobile & Wireless Summit 2005, Dresden,
Germany, June 2005.

[11] Shardanand U. and Maes (1995), Social information filtering:
Algorithms for automating "word of mouth", Proceedings of CHI'95 --
Human Factors in Computing Systems

[12] Nichols D.M. (1998) "Implicit Rating and Filtering", Proc. DELOS
Workshop on Filtering and Collaborative Filtering, Budapest, Hungary,
Nov. 1997, ERCIM

[13] OASIS, UDDI Specifications, http://www.oasis-
open.org/committees/uddi-spec/doc/tcspecs.htm

	IST 2007 cs
	ISTMobileSummit2007

