

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

To see the final version of this paper please visit the publisher’s website.
Access to the published version may require a subscription.

Author(s): Goix, Laurent-Walter; Valla, Massimo; Cerami, Laura; Falcarin, Paolo.
Article title: Situation Inference for Mobile Users: a Rule Based Approach
Year of publication: 2007
Citation: Goix, L.W. et al. (2007) ‘Situation Inference for Mobile Users: A Rule
Based Approach,’ International Conference on Mobile Data Management, Mannheim,
Germany May 01. IEEE pp.299-303
Link to published version: http://dx.doi.org/10.1109/MDM.2007.63
DOI: 10.1109/MDM.2007.63

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219371824?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://roar.uel.ac.uk/
http://dx.doi.org/10.1109/MDM.2007.63

Situation Inference for Mobile Users: a Rule Based Approach

Laurent-Walter Goix Massimo Valla Laura Cerami Paolo Falcarin
Telecom Italia Lab, Italy Politecnico di Torino, Italy

laurentwalter.goix@telecomitalia.it
massimo.valla@telecomitalia.it

laura.cerami@polito.it
paolo.falcarin@polito.it

Abstract

Mobile phones are being increasingly equipped
with sensors that ease retrieval of context information
about a user. Context data can be aggregated with
information centrally available to mobile operators
and service providers, to infer higher-level information
such as user “situations”, easier to integrate with
services. We have been conducting an internal trial
monitoring the context of different users in their
business life and designing rules to infer high level
situations: logical location, activity and social state. In
this paper we present the infrastructure and the rule-
based reasoning process used for this experiment.

1. Introduction

Cellular phones are becoming users’ best friend and
an opportunity for mobile operators and service
providers to learn more about user’s context, habits and
preferences on the move and to exploit this information
for service adaptation. Mobile phones are increasingly
being equipped with sensors that ease the gathering of
such information coming from the edge to be stored,
processed and reasoned in the network. Such
aggregation, also including information centrally
available to mobile operators and service providers,
allow the inference of higher level information, such as
user situations, that can more easily be linked to
services for personalization or recommendation
scenarios.

We have been conducting an internal trial of several
users over more than a year in their business life,
monitoring and gathering relevant context information
as they evolve in their work ambiance, and designing
rules to infer high level situations based on the raw
data collected. Rule-based systems to infer information
have been investigated: the novelty of our approach is
to apply rule-based reasoning to the mobile
environment with real users involved and to focus on

three dimensions of a user’s situation: logical location,
activity and social state.

In the paper we introduce the trial infrastructure
used to collect and process context data coming from
heterogeneous and distributed sources. We then present
the reasoning process and the domain rules applied to
produce meaningful situations to be used for service
scenarios, and how the inference process has been
implemented using rule-based programming. We
finally discuss related work, and present our future
directions of research.

2. Reference architecture for situation
reasoning

Identifying a mobile user situation requires the
gathering of context information from the mobile
terminal, from the mobile operator’s network and from
central servers that store profile data and more
traditional Information Technology (IT) service related
data (calendar, e-mail, etc.). These IT servers can be
operated by service providers external to the operator’
service layer boundary.

To derive abstract situations from such
heterogeneous context sources, a context brokering
architecture is used to collect, aggregate, and provide
available context data. The reference architecture used
for situation reasoning is illustrated in Figure 1.

In this architecture the mobile phone acts as a
Context Source (CS) by sending periodically, or upon
specific events, context information to a Context
Broker (CB), which aggregates and stores data in a
short-term cache and eventually in a long-term log
memory for post-processing (Context History).

Context information is requested by the Context
Broker to Context Providers (CP) that integrate
external back-end systems to gather context
information. Context Providers and Context Sources
form the Enabler layer, which is further detailed in the
following subsections.

1-4244-1241-2/07/$25.00 ©2007 IEEE 299

Context information is eventually requested by
Context Consumers (CC): examples are context-aware
applications executed on an Application Server or the
same mobile terminals that request aggregated context
data.

The Situation Provider (SP) is the element that
implements the Situation Reasoning process, part of
the Reasoning layer. The SP retrieves context data
from various Context Providers (acting as Context
Consumer), infers the situation of an entity, typically a
user, and provides it as context information back to the
platform for integration with services (acting as
Context Provider). The SP, as well as its interaction
with the service layer, is further described in section 4.

Mobile Terminal
(Teamlife)

Context Broker

Advanced
User

Profile

Context
History

Calendar Address
Book

Brokering

Enablers

Context
 Reasoning SITUATION PROVIDER

Service
Integration

Google
Calendar

OMA
XDM

IMS/SIP
Presence
Server

HTTP
listener

Figure 1. Global architecture of the situation
reasoning process

2.1. Extracting context from the device

In our implementation the TeamLife application

running on the mobile terminal is configured to silently
and periodically send to the Context Broker
information about: nearby Bluetooth devices,
geographical position (from GPS sensor if available)
and GSM/UMTS Cell-ID information. The application
supports multiple user-configurable context update
policies, for example to send context information only
when one specific type or a number of nearby
Bluetooth devices have changed.

2.2 Adding context providers

Besides context data sent by the user device,

additional context information is obtained from
Context Providers registered with the Context Broker.
In particular the following Context Providers have
been used to perform situation reasoning.

• Advanced User Profile (AUP): The AUP is the
logical repository of all profile information about
users. This profile includes in particular: Identity,
Registered User Devices (IMEI, BDAddress, etc
temporarily associated with the user through the
mobile application), SIP address, and Virtual Places,
which associate a location or Bluetooth information to
a name and type (according to the Location Types
Registry [1]). Such locations can be generic (e.g. a
specific meeting room) or meaningful for a user (e.g.
his own office, own car, etc..).
• Contacts/Address Book Information: In our
information model all user’s contacts are centrally
stored in a prototype implementation of the OMA
XDM [2] (XML Document Management) enabler used
as repository for address books in IMS networks.
Contacts are grouped in categories to distinguish, for
example, “family” members, “friends” or “colleagues”.
Since relationship is not standard information within
XDM, we developed a specific XML extension to
represent this concept within each user’s address book.
• Calendar Information: To include appointments and
meetings scheduled for our users, we have integrated
Google Calendar as a centralized repository for event-
related context information. Calendar events returned
from Google Calendar’s APIs [3] are converted by the
provider and stored in the Context Broker cache like
any other context information.

All these Context Providers return information

structured using a proprietary XML-based Context
Markup Language (ContextML), which provides
context data as parameter/values pairs, as well as meta-
information such as source, entity, scope (or context
“topic”), timestamp and validity. Use of this uniform
and simple ContextML language has proved to be very
effective to transport, cache, aggregate and finally
parse context data by Context Consumers.

3. User situation rule engineering

The reasoning process that we have implemented
consists in the inference of a high-level user’s situation
by the means of rule-based reasoning techniques
applied to user profile and context data.
Inferred information can be used to personalize
existing services and to offer new, more attractive
ones.

3.1 Identifying situations

We have defined “situation” the grouping of three
high-level concepts, targeting very abstract and general

300

information that can easily be used for service
personalization.
• Logical location (or “place type”): provides a
user’s position from a logical perspective, associating a
meaning to the place where the user is currently
located. Such location can be absolute or relative, for
example when moving in a vehicle. In case of absolute
position, GPS coordinates and civil location are
associated to the type of place. Alternatively,
BDAddress can be used as location identifier.
Examples of such user location are: “office”,
“own_office”, “meeting_room”
• Activity: provides information related to the user’s
current activity, such as “working”, “formal_meeting”,
“late_to_meeting”, “waiting_formal_meeting”
• Social state: tells whether the user is on its own or
with other people, possibly providing their
relationship. Example values are “with_colleagues”,
“with_friends”, “with_Massimo”, ecc.
In order to obtain this more abstract representation, we
have defined rules which are necessary for reasoning
on each concept of interest and its possible values.
In particular, we define “Context Reasoning” the
process used to derive logical location and social state
from raw context data, and we define “Situation
Reasoning” the identification of the user’s activity
from context data, logical location and social state.
We have then characterized a list of target situations
for a user in a normal working day: such situations
refer typically to combinations of the three main
concepts that can be inferred out of the identified
context data.
For example, when the user has a meeting scheduled in
his Calendar, the rules we have designed can
automatically deduce his current activity, which in this
case can be either waiting_formal_meeting,
late_to_meeting or formal_meeting.
Considering the waiting_formal_meeting example, this
activity will be inferred only if all the following
conditions hold:
• The current user activity is working,
• The user has scheduled a “meeting” event in his/her
Calendar,
• The user is currently in a “meeting room” (logical
location)
• The scheduled meeting place corresponds to the
current user location,
• Some participants are still missing.
Instead, if the user is not at the right place, his/her
activity will be late_to_meeting. In this case, this
activity is used as a trigger of a service that alerts the
related user by SMS to remind him/her of the meeting
and the expected place.
Finally, if all meeting participants are present (by
analyzing nearby Bluetooth devices), the user activity

will be formal_meeting. Such activity can easily be
integrated in context-aware communication services
that filter and optimize calls, for example to forward
non-urgent calls to a voicemail system.

3.2 Selecting the rule language

In order to share the information provided by several
Providers as facts within the reasoning module we
have decided to translate ContextML data in RuleML
[4]. Rules designed to infer situations have also been
represented in RuleML. This choice has enabled us to
express facts and rules in a standard and non-
ambiguous machine-readable formalism, providing
knowledge base independence from the underlying rule
engine. We could hence change rule engine without
rewriting the knowledge base, by using translators.
However, this approach had some limitations as
RuleML does not have all the logical language
features, which are already present in “native” rule
languages like JESS [5].

3.3 Asserting facts from context data

As we needed to apply rules on data coming from
different providers, we had to translate these data in
facts, written in RuleML.
Simple user’s data like attribute-value couples
provided by the ContextML language can be easily
translated in simple facts composed by a sequence of
strings; for example the IMEI code of user’s phone can
be written as an ordered fact, like this:

(assert (IMEI user 123453357776666))

Ordered facts are simply Jess lists, where the first field
(the head of the list) acts as a sort of category for the
fact.
In order to represent complex and structured data as
facts, we have used a technique known as “reification”:
complex data is represented with a set of n simple facts
sharing the same symbol, which acts as a sort of
category identifier for this set.
An example of structured fact could be: “For the user
3357776666 the connection with the cell 222-123-456-
789 represents a location type ‘office’”. This
information is represented by the three following facts:

(assert (user location 3357776666))
(assert (user location 222-123-456-789))
(assert (type location office))

Every time reification became necessary, we have also
added a specific fact “identity” which ties the category
identifier (in the example, location) with the symbol
that was referred unambiguously to the user
(3357776666).

301

(assert (identity 3357776666 location))

3.4 Designing rules

All situation rules have been designed using the
following general template:

(defrule [context pre-conditions] =>
 (assert ([new situation]))
 (retract ([no longer valid situation]))

having less aggregated context information on the left-
hand-side and more aggregated and high level context
on the right-hand-side. Rules can then be composed in
an incremental way having as pre-conditions a Logical
Location (meeting_room) and a Social State
(with_colleagues) from the application of previous
rules, and inferring from them an Activity
(informal_meeting), typically retracting the former
situation contemporaneously.

4. Inferring situation

4.1 The situation reasoning process

The situation reasoning module we have developed
performs six sequential tasks described in Figure 2.

 Rule Engine
Broker

ContextML
facts

RuleML
new facts

RuleML
rules

RuleML
facts

XSLT
RuleML

-> ContextML

XSLT
ContextML
-> RuleML

ContextML
new facts

Context Broker Brokering

Context
 Reasoning

SITUATION PROVIDER

Figure 2. Situation reasoning process

The situation reasoning process is defined as follows:
1. Specification of RuleML rules for situation

inference (only performed once);
(For each inference cycle)
2. Facts extraction from the Context Broker (and

retraction of old facts);
3. Knowledge Base population through the automatic

translation of facts from ContextML to RuleML
through an XSL [6] stylesheet;

4. Execution of rules on the knowledge base in the
Rule Engine Broker that decouples from the actual
underlying rule engine;

5. Possible assertion of new facts in RuleML,
depending on executed rules;

6. Internal notification of the newly deduced facts to
the Situation Provider.

4.2 The situation provider

The Situation Provider is a Context Provider developed
as Stateless EJB and run on a JBoss Application
Server.
Situation information is computed both by interacting
remotely with the Context Broker to retrieve context
information from external Context Providers, and by
interacting locally with the Rule Engine Broker for
situation inference. The Rule Engine Broker is a
software module that integrates multiple rule engines
and provides a single abstract interface based on
RuleML. Our implementation relied on JESS 7.0 as
underlying rule engine.

4.2.1. Retrieving context information. The SP
interacts with the Context Broker to retrieve context
information required for situation inference. In our
implementation the following providers are involved:
CH (Context History) for location-based information
(GSM cell, GPS coordinates & civil location) as well
as nearby Bluetooth devices identifiers provided by the
device; AUP (Advanced User Profile) in particular for
the user Virtual Places and the registered user devices’
information (BDAddress); Calendar Provider, for each
meeting’s name, location and participants’ email
addresses; Address Book, for information related to
full name, SIP URL and relationships (for example
friends or colleagues).

4.2.2 Providing situation information. External
interfaces are provided as REST-like interfaces
through HTTP GET requests by a servlet front-end that
returns ContextML content. Upon remote HTTP
invocation, the servlet retrieves an instance of a
Situation bean implementing the situation reasoning
process and asks him for inferring the entity’s situation
at runtime. The newly produced facts (if any) are then
converted back into ContextML format from RuleML
using a second XSL stylesheet to output the inferred
situation.
We have also designed the SP to monitor a group of
users (by inferring user’s situation at each change of
their raw context) and send a remote notification
whenever a user’s situation changes. Notifications are
provided as external HTTP requests (for example to
activate a service) or through a SIP PUBLISH towards
a predefined SIP Presence Server acting as “Presence
Network Agent” for integration into IMS-based
networks.

302

5. Related work

Nowadays in the area of service personalization, some
service providers are coping with context data
acquisition, interpretation, and aggregation, but there
are different opinions on what should be considered as
“context”. In order to set a boundary between what is
context and what is not, we follow Schilit et al. [7]
view of context as the user’s location, the social
situation and the nearby resources.
Pappas et al. [8] have introduced the concepts of
primitive context, active primitive context and current
context .to model the “discrete adaptation capability of
a system” and its evolution over time. While they use a
predetermined formalization based on three levels, our
implementation relies on a flexible hierarchy of generic
context levels. Furthermore some conflicts could occur
in their model when more primitive contexts become
active. Our paradigm relies on a knowledge base,
which is always consistent: as in a rule engine the rules
execution order is not deterministic, we have defined
an execution priority among rules that could conflict
(i.e. fire simultaneously). We have thus managed the
contemporary use of new facts assertion and retraction
of previously asserted facts that are no longer valid.
Kolari et al. [9] have implemented a context-aware
service platform that allows designing and managing
context-aware applications, which has been validated
by several users. While they have provided an ad-hoc
Java implementation, we have used a rule-based
approach to derive higher-level information from raw
context data in a more flexible way: in our case rules,
depending on their effectiveness, can be easily inserted
in (or removed from) the knowledge base without
changing the core logic of the application, for example
to provide further situations as needed.
Yau et al. [10] have provided a similar hierarchical
Situation modelling and reasoning, describing the
knowledge base with OWL-DL [11] and transforming
it in first-order logic predicates to perform situation
reasoning. While they cope with knowledge
representations and transformations they do not
consider reasoning on situations with a limited
temporal validity; in our approach, whenever a
situation changes or is no more valid it is removed
from the knowledge base, thus we rely on rule engine
features to keep contexts and derived situations
synchronized with dynamically changing raw context
data coming from context providers.

6. Conclusions and future work

This paper introduced a rule-based approach for
inferring situation of mobile business users out of raw

context data collected both on their mobile devices and
within the network. We are currently working at the
optimization of the rule-based reasoning process as
well as the design of rules for other types of situations,
namely travel and home ambiances. Regarding context
and situation information, we are investigating the
gathering of further information related to the user
behaviour, like the applications they use, and are
thinking about adding further dimensions to the
situation information in the future. Finally an
architecture to distribute the reasoning process between
terminals and server components is being considered.

7. References

[1] Schulzrinne H., Tschofenig H., “Location Types

Registry”, IETF RFC 4589, July 2006.
http://www.ietf.org/rfc/rfc4589.txt

[2] XML Document Management (XDM) Specification 1.0,
Open Mobile Alliance (OMA
http://www.openmobilealliance.org/release_program/xd
m_v1_0.html

[3] Google Calendar Data APIs and GData,
http://code.google.com/apis/calendar/overview.html

[4] RuleML: The Rule Markup Initiative,
http://www.ruleml.org/

[5] JESS: the Rule Engine for the Java Platform,
http://herzberg.ca.sandia.gov/jess/

[6] World Wide Web Consortium, XSL Transformation
(XSLT) 1.0, W3C Recommendation,
http://www.w3.org/TR/xslt

[7] Schilit, B.N., Adams, N., and Want, R. “Context-Aware
Computing Applications”. In Proceedings of the 1st
International Workshop on Mobile Computing Systems
and Applications, p. 85-90, 1994.

[8] Pappas A., Giaffreda R., Hailes S., “A Design Model for
Context-Aware Services Based on Primitive Contexts”,
in Workshop on Advanced Context Modeling, Reasoning
and Management (UBICOMP 2004), Sept 2004

[9] Kolari, J., Toivonen, S., “Kontii - Context-aware Mobile
Portal”, ERCIM News no54, 2003

[10]Stephen S. Yau, Junwei Liu, “Hierarchical Situation
Modeling and Reasoning for Pervasive Computing”, in
Proc.ceedings of 3rd Workshop on Software Technologies
for Future Embedded & Ubiquitous Systems (SEUS
2006).

[11]World Wide Web Consortium, OWL Web Ontology
Language. On-line at http://www.w3.org/TR/owl-ref/

303

	ICMDM 07 cs
	MDM-07

