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Abstract- The aim of this paper is to determine the 
stability of higher-order ∆-Σ modulators for sinusoidal 
inputs. The nonlinear gains for the single bit quantizer 
for a dual sinusoidal input have been derived and the 
maximum stable input limits for a fifth-order 
Chebyshev Type II based ∆-Σ modulators are 
established. These results are useful for optimising the 
design of higher-order ∆-Σ modulators. 

 
I. INTRODUCTION 

 
The stable input amplitude limits for ∆-Σ modulators 
is complicated to predict due to the non-linearity 
introduced by the quantizer in the feedback loop. 
Various approaches have been employed to explain 
this nonlinear behaviour. Using quasilinear 
modeling, a new interpretation of the instability 
mechanism for ∆-Σ modulators based on the noise 
amplification curve is given in [1]. This is restricted 
for DC inputs and unity quantizer gains. The 
quasilinear method can be extended to more than 
one input with each input represented by a separate 
equivalent gain. This concept forms the basis for the 
Describing Function (DF) method [2]. In [3] the 
stability analysis for higher-order ∆-Σ modulators 
based on the noise amplification curve was 
performed using the DF method for DC and (single-
tone) sinusoidal inputs for non-unity quantizer gain 
values. In this paper the analysis is extended for 
multiple (dual) tone sinusoidal inputs. 

 
II. QUASILINEAR STABILITY ANALYSIS OF 

∆-Σ MODULATORS 
 

A generic ∆-Σ modulator having its quantizer 
replaced by a gain factor K followed by additive 
quantization noise q(k) [1] is shown in Figure 1. 
 
 
 
 
 
 
 
 
 
  
        Figure 1. Quasilinear ∆-Σ modulator Quantizer Model. 

 
The output of the modulator in the z-domain is given 
by : 

                  )()()()()( zQzNTFzXzSTFzY +=                (1) 

where, Y(z), X(z) and Q(z) are the z-transforms of the 
output, input and quantizer noise signals respectively. 
Also, STF(z) and NTF(z) are the Signal and Noise 
Transfer functions of the ∆-Σ modulator derived from  
Figure 1. 
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Since the poles of the denominator (1+KH(z)) determine 
the stability of the modulator, for a given H(z), there will 
be a certain interval [Kmin, Kmax] for which the modulator 
is stable [4]. Assuming q(k) to be Gaussian white 
stochastic G(0, σq

2) and the transfer function between 
q(k) and y(k) to be known, then the output noise variance 
is given by 
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where, σq
2 is the variance of q(k) and A(K) is the total 

output noise power amplification factor. Using 
Parseval’s relation, A(K) can be found in the time 
domain as [1]: 
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where ntf(k) is the impulse response corresponding to 
NTF(z) and A(k) is the squared two-norm of NTF(z).  
The A(K) curves of the loop-filter are crucial for the 
stability analysis of the ∆-Σ modulators. Typical curves 
for Type II Chebyshev 3rd and 4th order are shown in 
Figure2.  
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               Figure 2. A(K) Curves for Type II Chebyshev NTF. 
 
The Amin value is the global minimum of the curve. It has 
been shown in [1] that for stable operation A(k)>Amin.  
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III. NOISE AMPLIFICATION CURVES – DF 
METHOD 

 
The quasilinear quantizer model in Figure 1 can be 
extended using separate gains Kx and Kn for the DF 
model as shown in Figures 3 and 4 [5]. 
 
 
 
 
 

Figure 3. ∆-Σ modulator Quantizer Signal-Model 
 

 
 
 
 
 
 
 

Figure 4. ∆-Σ modulator Quantizer Noise-Model 
 
Figure 3 describes the model for the input signal with 
linear gain Kx whereas Figure 4 describes the noise signal 
model with linear gain Kn. The combined output signal is 
given by: 
                         ( ) ( )kykyky nx +=)(                             (6) 
The linearised gains for two sinusoidal input signals 
xa(t)=aCos(ω1(t)+φ1), xb(t)=bCos(ω2(t)+φ2) (where a, b 
are constants, ω1, ω2 the sinusoidal frequencies, 1φ and 

2φ  random phases) and a random Gaussian signal 
representing the feedback components have been solved 
for the case of a one-bit quantizer with an output ±∆ in 
Appendix A where the final expressions are shown 
below: 
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and ρa
2=(1/2)(a2/σ2) , ρb

2=(1/2)(b2/σ2). F(.) is the 
confluent hypergoemetric function [6]. The output noise 
variance is given by: 
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where σ2
qab is the quantization noise power for the two 

uncorrelated sinusoidal inputs )(txa  and )(txb . 
Therefore from (4), (9) and (13) the noise amplification 
factor is given by:  
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Since xa(t) and xb(t) are uncorrelated, the power of the 
output signal is given by: 
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where σ2
eb and σ2

ea   are the powers of the sinusoidal 
inputs at the quantizer input which are given by: 
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From (9), (15) and (16) we get: 
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Rearranging (17), the quantization noise is given by: 
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From (8) and (16) we get: 
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Similarly from (7) and (16) for the sinusoid )(txa we 
have: 
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The two simultaneous equations (19) and (20) were 
solved by deploying the MATLAB symbolic toolbox in 
order to get the values of ρa and ρb for various values of 
a and b. 
 

IV. RESULTS & SIMULATIONS 
 

From (19) and (20), the values of ρb have been plotted in 
Figure 5. It is seen that ρb gets bigger as the amplitude b 
increases. However, the increase in ρb gets attenuated as 
the signal amplitude a increases from 0.2 to 0.8.  
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    Figure 5. Variation of ρb versus b for different a amplitudes. 
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Using (18) the quantization noise σ2
qab is plotted in 

Figure 6.  The σ2
qab in the regions b < 0.2, b < 0.4 and b 

< 0.6 for the curves I (a = 0.2), II (a = 0.4) and III         
(a = 0.6) respectively increases mainly due to ρa. As ρa 
becomes bigger when the amplitude a increases from 0.2 
to 0.6, so does σ2

qab. The increase in σ2
qab in the regions 

b > 0.2, b > 0.4 and b > 0.6 for the curves I, II, and III 
respectively is mainly attributed to the increase in ρb. As 
ρb increases with a reduction in the amplitude a  from 0.6 
to 0.2 in Figure 5, so does σ2

qab. 
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Figure 6. Variation of quantization noise versus the two sine 

amplitudes. 
 

Figure 7 shows the noise amplification curves obtained 
from (40) for a = 0.2, 0.4 and 0.6. 
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Figure 7. A(k) variation versus the two sine amplitudes. 
 

Using the values obtained for Aab(k), the stable amplitude 
limits for b have been plotted for the 5th- Chebyshev 
Type II based NTF for a = 0.2 in Figure 8. 
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  Figure 8. Stable limits of amplitude b of 5th-order for a = 0.2. 

Simulations for the 5th-order Chebyshev Type II based ∆-
Σ modulator shown in Figure 9 were performed for 
1638400 samples where the input amplitude was 
increased in steps of 0.1. The maximum stable amplitude 
limits were obtained and compared with simulations as 
shown in Figure 9. Results obtained in [3] were used for 
the DC and single sinusoidal inputs.  
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Figure 9. Simulation results for dc, sine & two sinusoidal 

inputs. 
 
The reason for variation can be attributed to the fact that 
the derivation of the three gains (i.e. 2 sinusoids and one 
Gaussian) is based on the modified non-linearity 
concept. In order to compute the gain for any of the 3 
inputs, it is assumed that the non-linear function has been 
modified in turn by each of the 2 remaining inputs. 
However, in real-time this may not be the case as all the 
3 inputs coexist simultaneously. 

 
V. CONCLUSION 

 
The stability of higher-order ∆-Σ modulators for dual 
tone sinusoidal inputs using the Describing Function 
Method has been predicted. The nonlinear gains for the 
single bit quantizer for a dual sinusoidal input have been 
derived and the maximum stable input limits for 5th-order 
Chebyshev Type II based ∆-Σ modulator have been 
established. Accurate results for the stable amplitude 
curves can be obtained for a range of values of quantizer 
gain K in which the ∆-Σ modulators are likely to operate. 
                

APPENDIX A 
 

In this Appendix, the derivation of the gains for two 
inputs (a dual-tone sinusoidal one Gaussian) for a single-
bit quantizer is made. If the inputs to the nonlinearity are 
of different (Probability Density Functions) PDFs or of 
different magnitudes of similar waveforms, the output 
component from one of these inputs depends not only on 
the magnitude of this particular input but also on the 
magnitudes of all the other inputs. The concept used here 
is the modified linearity concept [7], whereby to 
determine the response to a particular input, the 
nonlinear characteristic is modified in turn by each of the 
input signals present to obtain a modified nonlinearity to 
which the input is applied.  
 



Sinusoidal Gains  
The two sinusoidal inputs considered here are 
xa(t)=aCos(ω1(t)+φ1) and xb(t)=bCos(ω2(t)+φ2) where a, 
b are constants, ω1, ω2 the sinusoidal frequencies, 
assumed to be incommensurate, 1φ and 2φ  are RVs each 
having a uniform PDF in the interval [0, 2π]. The second 
input is the quantization noise assumed to be Gaussian 
G(0, σ) i.e. with zero mean and variance σ2.The modified 
nonlinearity of single-bit quantizer with a random input 
is given by [8]: 
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where ±∆ is the output of the quantizer and q(y) is the 
PDF of the random input. Therefore for a Gaussian 
input: 
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On integration (A2) simplifies to: 
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The non-linearity n1(γ) further modified to n2(γ) by one 
of the sinusoidal signals say )(txa  which is given by [7]: 
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where p(x) is the PDF of )(txa . Therefore:     
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n2(γ) is now the nonlinearity of the quantizer which has 
been modified by the sinusoidal input xa(t) and the 
quantization noise G(0,σ). The next step is to evaluate 
the gain for xb(t) to this modified nonlinearity. The gain 
Kb of the sinusoidal input xb(t) to this non-linearity n2(γ) 
is given by [8]:  

                         dxxrxxnK
b

bb
b ∫

−

= )()(1
22σ

                      (A9) 

where σb
2 = b2/2, is the variance and r(x) the PDF of 

)(txb .  On integrating  (A9) we get the gain Kb for b as: 
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where,   
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In order to obtain the gain for xa(t), we proceed as in 
above to get: 
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Noise Gain  
The modified nonlinearity of order 1 for a Gaussian input 
to a single bit quantizer is given by [8]:                                       
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where H1 is the Hermite Polynomial of the first order. 
Substituting for q(y) and  n(y+γ) in (A20): 
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The noise gain Kn in the presence of another random 
input with PDF p(r) is given by [8] 
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Here we consider the additional random input as a 
combination of two uncorrelated sinusoidal inputs. The 
joint PDF p(r) of the two sinusoidal signals having 
amplitudes a and b, with incommensurate frequencies is: 
p(r)=(r/πab)(1/sinθ), where θ=cos-1{[a2+b2-r2]/2ab}. 
Solving the integral above we get the noise gain as: 
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