

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

Author(s): Brown, T. John; Gawley, Rachel; Spence, Ivor; Kilpatrick, Peter; Gillan,
Charles; Bashroush, Rabih.
Article title: Requirements Modelling and Design Notations for Software Product
Lines
Year of publication: 2007
Citation: Brown, T.J. et al. (2007) ‘Requirements Modelling and Design Notations
for Software Product Lines.’ Proceedings of the First International Workshop on
Variability Modelling of Software-intensive Systems (VaMoS2007), Lemrick, Ireland,
Jan 16-18, 2007.
Link to published version:
http://www.vamos-workshop.net/2007/files/VAMOS07_0005_Paper_2.pdf

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219371794?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://roar.uel.ac.uk/
http://www.vamos-workshop.net/2007/files/VAMOS07_0005_Paper_2.pdf

Requirements Modelling and Design Notations for Software Product Lines.

T.J.Brown, R. Gawley, I. Spence, P. Kilpatrick, C. Gillan, R. Bashroush.
School of Electronics, Electrical Engineering and Computer Science,

The Queen’s University of Belfast.
{r.gawley, tj.brown , i.spence, p.kilpatrick @qub.ac.uk

{C.Gillan, R. Bashroush}@ecit.qub.ac.uk

Abstract

 Although feature modelling is a frequently used
approach to the task of modelling commonality and
variability within product lines, there is currently no
standard modelling notation or methodology. On the
assumption that the commonality/variability model will
be used as a basis for architecture design, our
modelling notation allows features to be augmented
with behavioural detail, captured using the UCM path
notation. This gives rise to models that capture
commonality and variability in behaviour as well as in
product features, and are thus more valuable for
downstream design activities. This paper outlines the
modelling notation and describes ongoing work on the
characterisation of variability points within models
based on this notation, and on the relationships between
model fragments and solution domain techniques such
as design patterns or variability realisation techniques.
It also describes preliminary work, aimed at evolving an
intelligent tool that can characterise feature and
behavioural model fragments and suggest design and
realisation methods.

Keywords:Feature diagram, Modelling language, UML

1. Introduction

 Software Product Line engineering [1] aims to
maximise reuse within a family of related systems, by
exploiting the commonalities across the family, while at
the same time managing and accommodating the
variability. The successful analysis and modelling of
commonality and variability is therefore a crucial early-
stage activity within software product line engineering.
The most widely used approach to the capture of
commonality and variability makes use of feature
modelling. The basic concepts of feature modelling
were introduced by Kang et al in 1990 [2], but have
subsequently been revised and extended by many
authors. Feature modelling notations and techniques

continue to be the focus of active research with a
consequent proliferation of notations and methods.
Clearly there is a case for trying to agree on a standard
approach to commonality/variability modelling. Equally
clearly, there are still some aspects that merit continued
investigation.
 In this paper we first briefly explore the basics of
commonality/variability modelling using feature
modelling. We then pose what seems to us a fairly
fundamental question relating to the intended role of the
commonality variability model within the engineering
process. How one answers this question influences the
notation and process needed. We describe our own
vision of the role that commonality/variability models
should play, and discuss our notation which combines
both feature and behavioural modelling facilities. We
also describe our current research which aims to
understand the relationships between variability
exposed within the feature and behavioural model and
variability realisation techniques. Included among the
latter are techniques such as those described in [3,4],
along with design patterns, many of which serve to
introduce flexibility into software designs. An
understanding of these relationships opens up the
possibility of creating an architect’s advisor, i.e. an
intelligent tool with the ability to analyse the variability
it finds within the commonality/variability model for an
intended product line, and identify possible design
techniques that allow it to be managed.

2. Feature Modelling: Basic Concepts and
Contemporary Developments

 Feature Modelling originated in the work of Kang
et al published in 1990 [2]. Their modelling schema
Feature-Oriented Domain Analysis (FODA) introduced
the foundational idea of describing product line
requirements in terms of features that could be
mandatory, optional or alternative, were organised into
a tree and could be subject to constraints in the form of
mutual exclusion or requirement relationships.

Numerous developments have followed. The FORM
notation [5,6] made use of layering within the model
hierarchy, and. allowed the use of feature groups
wherein selection is based on inclusive OR relations.
Riebisch et al [7] introduced the idea of using explicit
UML style multiplicities to constrain the selection of
features from groups, an approach that has been further
developed in several papers by Czarnecki et al. [8,9].
Using explicit cardinalities to regulate selection from
groups conveys more flexibility than simply using
alternative or OR feature groups which become special
cases in this situation. More recently cardinality values
have been attached to solitary (i.e. non group) features.
In this context the cardinality specifies the number of
times the features and its sub-tree can be replicated.
 Several authors have made use of feature properties
or attributes. Fey et al [10] made use of the idea of
feature properties and introduced two forms of
relationship involving features and properties.
Czarnecki et al [8,11] use the slightly different concept
of attributes. An attribute type can be associated with a
feature, indicating that a value of that type can be
assigned during configuration, but only one such
attribute is allowed per feature. Modularisation of
feature models has also been recognised as desirable in
practice because feature models are often very large.
Bednasch et.al. [12] proposed an approach based on the
use of special leaf nodes, while the idea of feature
macros can be found in the work of Cechticky et al [13].
 The potential value of incorporating behaviour in
some way began to be recognised with the work of Mei
et al [14]. In their FODM feature modelling notation
they discuss the concept of behavioural characteristics
attached to features that are recognised as functional in
character. In the PLUSS feature modelling approach
[15] broadly similar motives have prompted Eriksson et
al. to combine features with Use case models and Use
Case realisations. As described below the modelling of
common and variant behavioural characteristics forms a
key element in our approach.
 Clearly there is at this time a wide range of
approaches to commonality/variability modelling and a
corresponding argument for some form of
rationalisation.

3. Role of Commonality Variability Models

 What should be the role of commonality and
variability modelling in product line development?
Should it be simply a means of recording and
documenting the common and variant aspects of the
product line, essentially for the benefit of customers,
managers and sales personnel, or should it also play a
more significant role in the software design and
implementation activities? The answer to this question

will influence the detailed notation and techniques that
need to be used to capture the commonality and
variability. Software systems are often large and the
construction of commonality/variability models for a
family of such systems represents a considerable
investment in effort. In our approach to
commonality/variability modelling we assume
implicitly that maximal use should be made of such
models once they have been constructed. Thus a
commonality/variability model should certainly
document the variety of product features and the
potential for variability in the features supported within
individual products. It should also allow the creation of
individual product definitions as valid collections of
supported features. Most approaches reported in the
literature share these objectives. In our work we also
seek to use the model to support the software design
process, and in particular the derivation of a generic
architecture for the product family.
 This aspiration introduces a number of issues. We
must think carefully about how we should model
commonality and variability, given the objective of
using the model to guide architecture development.
Identifying mechanisms to handle variability at the
architectural and implementation stages is a significant
issue in this process. Closely related to this is the
question: How can we relate variability points within
the model to actual variability realisation techniques?
We are beginning to see the cataloguing of variability
realisation techniques, for example in the work of
Svahnberg et. al. [3], and the more recent work reported
in [4]. Moreover, we already have a large literature on
design patterns [16]. Many of these represent techniques
for introducing flexibility into software designs, which
makes them potentially valuable in the context of
product line architectures, a point recognised by some
authors [17]. It is probably unrealistic to expect that we
can reach a stage where variability points manifest
within commonality/variability models, can be mapped
directly or uniquely to a particular realisation technique,
or a particular combination of design patterns. But it
would still be very useful to architects to be able to
obtain guidance on possible design strategies.
 A further issue is how we relate the
commonality/variability model to the generic
architecture. Linking these two spaces allows us to
relate architectural components to the product features
that they support. This in turn makes it possible to
derive product architectures from individual product
feature sets.

4. The QUB Approach

 In our work we have sought to address all these
issues. This has led us to develop a unique strategy for

commonality/variability modelling [18] that is based,
like most such efforts, on feature modelling, but with
facilities for capturing feature behaviour and
behavioural variability. For this purpose we have
adopted the Use Case Maps (UCM) notation. The UCM
path notation [19,20,21,22,23] provides a means of
capturing behaviour at an abstract level, independent of
any assumed component architecture. A path can be
attached to any feature provided the behaviour
associated with the feature can be fully represented by a
single path. (High level features within the model are
assumed to aggregate behaviour associated with their
children). As we relate below, having behavioural
information allows a more complete characterisation of
variability points.
 We have also developed a relational architecture
description language called ADLARS [24]. This is a
notation that supports the description of generic
software architectures with embedded relationships
between architectural components on the one hand and
the supported product features on the other. This allows
variant features within the commonality/variability
model to be linked, for example, to alternative or
optional components within the architecture design.
Hence at the application engineering stage, as soon as
the feature set for a single product has been defined, it
becomes possible to generate the architecture for that
product.
 We do not discuss ADLARS herein, since it is well
documented in several publications. Instead we review
the feature and behavioural modelling notation and then
go on to describe current research efforts. These are
focussed on two closely related problems. The first is to
understand how variability points exposed within
feature and behavioural models can be related to
variability realisation techniques, including design
patterns. The second is to identify the technology
underpinnings for an ‘intelligent’ tool that could scan
feature and behavioural models, abstracting out model
fragments that encompass specific variation points and
then offer guidance to the software architect on how
each variability point could be managed in terms of
software design. These are difficult topics and our
research on them is at an early stage.

4.1 Feature Modelling Specifics

 In common with the original FODA framework,
and most subsequent notations, our feature modelling
schema allows features to be mandatory, optional or
alternative. A mandatory feature will be supported by
every product instance that supports it parent. Optional
features are features that may be present or absent from
any product within the family. Alternative feature sets
are sets of features from which only one is selected for

inclusion in any given product. They are thus mutually
exclusive: if one is supported the others cannot be. In
addition, rationalised feature modelling allows the use
of OR features [26]. An OR feature set is a set of
features from which one or more may be selected into
any product within the family. At least one must be
selected but there is no exclusivity relationship, and in
fact a product may contain all features within any OR
feature set. As in FODA, feature selections may be
subject to constraints and the now-standard constraints
of mutual exclusion and requirement are supported.
Features may also have attached properties and,
borrowing from the work of Fey et al. [10], properties
may participate in relationships.

4.2. Bi-Directional Feature Modelling

 Perhaps the most radical aspect of the core feature
modelling scheme is its support for bi-directional
models [25]. In this approach a conventional top-down
feature tree models features of the family that are
software based, or have a software component, and an
inverted feature tree models the hardware and operating
system platform. The top-down feature tree follows the
FORM practice of layering the feature tree. A three-
layer model is used with a capability feature layer,
which models high level product features, a domain
technology layer and then an implementation feature
layer below.

Fig.1 Screen shot of a bi-directional feature model
arising from ALS/APR safety procedure used on
Optical Network Products [31]

 The inverted feature tree can hold features arising
from the operating system and/or the hardware
platforms on which the software will operate. There can
be relationships across the boundary between software

and the operating system platform. The first form of
across-boundary relationship is that of mutual
dependency between an optional or alternative software
feature in the upper feature tree and an operating
platform feature. The implication is that the software
feature requires or depends on the availability of the
platform feature. If an optional platform feature is
excluded then the software feature depending on it
cannot be provided. Although this may be a low level
feature, the implications can extend upwards to the
capability feature layer.
 The second across-boundary relationship is that of a
hardware-software feature alternative. In this case we
are dealing with the same feature which may be
provided in software within one member of the family
but in hardware within others. This kind of situation
may arise in practice when the first products within an
intended family are released with a certain feature
provided in software; whereas in later models the
feature migrates to a hardware device such as an ASIC,
FPGA or DSP (we have encountered this phenomenon
with some families of network products). It is worth
noting that any kind of feature may participate in this
relationship. Thus, we could have a mandatory feature
which in some products is provided via software and in
others via hardware. Likewise we could have an
optional feature which, within some products, may not
be provided at all, but if it is provided then it may be
provided as either hardware or as software.

4.3. Linking Behaviour to Features

 To capture feature behaviour, it is essential to have
a suitably abstract notation. There are several well
known notations that are often used for modelling
behaviour. Within the UML, sequence and collaboration
diagrams, Use Case diagrams, and activity diagrams can
all be used for behaviour capture. For a number of
reasons however [18], we have chosen the Use Case
Maps path notation as the most appropriate form of
notation.
 Use Case Maps, like feature modelling itself, is a
requirements capture notation. Its focus is on the
capture of behaviour at a reasonable level of detail. The
founding concepts of the notation were introduced by
Buhr [19] and have subsequently been extensively
developed by Amyot and others [21]. Whereas feature
modelling is inherently a notation targeted at product-
line requirements, UCM was developed as a general
purpose requirements modelling notation, aimed at
providing an abstract, path-centric view of system
functionality. It has now been standardized and
integrated into the User Requirements Notation (URN)
[23].

4.4. UCM Path Notation

 In the UCM notation, behaviour is captured in
terms of a causal path. The path begins at a starting
point, which may have triggering events and/or pre-
conditions associated with it, and it continues to one or
more end points, which may have associated resulting
events and/or post-conditions. Along the way it may
contain responsibility points, representing actions or
responsibilities that must be discharged in the sequential
order in which they appear. Paths may have loops, OR-
forks, which indicate alternative paths, and AND-forks
that give rise to concurrent path segments that may be
executed in parallel. Alternative paths may be labelled
with the conditions that give rise to their selection.
Concurrent and alternatives paths may rejoin at an
AND-join, or OR-join, respectively. Data items may be
created or destroyed and may be placed on, or removed
from a path. Data placed on a path is considered to
move along the path. The notation supports the concept
of a pool, which is a form of generic data store, and data
items may be moved into or out of pools. Paths may
contain waiting points representing situations where
processing is delayed awaiting the arrival of some
external event, or the satisfaction of some condition.
Synchronization and rendezvous points may also be
included. A timer feature allows the introduction of
timed path segments, in which execution must complete
within a defined time, otherwise the normal execution
path is aborted in favour of an alternative error path. In
the basic notation a path may cross one or more
components. Components need not be shown if no
component architecture is available, or they may be
included as rectangles.

Take sensor reading

Compare with
threshold

Too high normal

Reduce
power Reset timer

reading

Increment counter

Fig. 2 An example illustrating the UCM path notatio n

 Where a responsibility point is located on the path
in such a way that it is coincident with a component,
this denotes the fact that the responsibility is being

assigned to that component. An example of a UCM path
is shown in fig. 2.

4.4.1 Static and Dynamic stubs

 A very important concept in the UCM notation is
the idea of stubs. When a stub is embedded within a
path it acts as a placeholder into which further
behaviour can be plugged. Graphically a stub is
represented as a diamond on the UCM path, and the
plug-in behaviour will be represented as another UCM
path. Stubs can be of two types. The simplest are called
static stubs and only one subsidiary path can be plugged
in to them. In this case the plug-in serves as a definition
of the behavioural detail at that point within the
containing path. The second kind of stub, called a
dynamic stub, is characterized by the fact that several
alternative plug-in maps may be inserted in them. The
UCM concept is that the actual plug-in may be selected
at run-time, depending on the satisfaction of associated
pre-conditions. Dynamic stubs therefore represent
points at which behaviour may vary. However, the plug-
ins that may be inserted into either static or dynamic
stubs may themselves contain stubs that may in turn be
either static or dynamic. So, paths may have stubs for
which the plug-ins may contain stubs, essentially to any
level of nesting. Clearly this mechanism provides scope
for the capture of behavioural variability to any level of
detail. This is a very important capability and one that is
exploited fully in the integration of Use Case Maps with
feature modelling.

4.5 Capturing Feature Behaviour

To add behaviour to a feature, in the simplest case, we
attach a UCM path to the feature. We follow the
principle that a UCM path will only be attached to a
feature if that feature’s associated behaviour can be
captured by one unique path. At first sight that might
appear to imply that the allocation of behaviour to a
feature would preclude the allocation of behaviour to its
children. However paths can contain stubs. When a
parent feature has a path with stubs, its children can
contribute the plug-in behaviour needed. Of course the
child feature’s path may also contain stubs which accept
behaviour provided by grandchildren. Thus behaviour
may be woven into multiple levels within the feature
model structure.

5. Relating Variability points and
Variability Realization Techniques

 To derive maximum benefit from the integration of
these notations we clearly need to understand how to
use the resulting framework to evolve a generic

architecture and ultimately, implementation
components. One of the principal difficulties in
designing architectures for product lines is the need to
accommodate variability from product to product. It is
therefore important that the commonality/variability
model should allow a clear understanding of the
underlying nature of each variability point, and where
possible, allow the identification of possible variability
realisation methods. The decision to integrate
behavioural modelling with feature modelling was
prompted by this objective.
 A key theme in our current research efforts is the
identification of possible variability realisation
techniques using information within the feature and
behavioural model. Although still at an early stage,
factors that we have found to be important include the
actual pattern of features in the environment of a
variability point, the pattern of allocation of behaviour
to those features and the pattern of usage of behavioural
elements, such as stubs, within the path definitions.
Properties attached to features can also be important.
Our long term aim in this endeavour is the creation of
an ‘intelligent’ tool with the ability to analyse the
content of a commonality/variability model, characterise
variability points within the model and offer
recommendations on possible realisation techniques.
Clearly this is an ambitious objective and much research
is still needed. However, the problem is potentially
more tractable with the fusion of feature and
behavioural information. Some model fragments with
mapped behaviour lead fairly readily to realisation
strategies. For example, consider a feature model
fragment in which a parent feature has an associated
path containing a dynamic stub, with as children, an
alternative feature group whose member features each
have associated paths. A likely interpretation of this
situation is a single algorithm with alternative sub-
algorithms, only one of which can be selected. A simple
pattern, such as the template pattern, could be an
appropriate realisation strategy in the case of fine-
grained algorithm variability. On the other hand, the
same feature model structure, but this time with a parent
feature whose associated behaviour could not be
represented by a single path, would point to a different
realisation strategy, perhaps, for example, the strategy
pattern, as a possible realisation mechanism. The feature
model fragment has the same structure in both cases, but
the pattern of allocation of behaviour is different.
 As this work has progressed, an emerging issue is
the possible advantage in adding some further facilities
to the notation. Two new notational concepts that have
been identified as potentially useful are those of
property bound alternatives and synchronised
alternatives.

5.1. Property bound alternatives

 An alternative feature group wherein the alternative
chosen depends on some property of its parent feature is
what we refer to as a property bound alternative.
Graphically this can be represented as shown below in
fig 3. Feature ‘f’ is a parent feature with a group of five
alternative children. The value of the ‘selecting
property’ determines the choice of alternative child
feature. An important consideration is that it is often
possible to nominate a binding time for feature
alternatives. One such option is run-time binding. By
implication choice of run-time binding in this situation
means that the selecting property is a variable, whose
value at run-time will fix the alternative chosen. On the
other hand a binding time earlier than run-time will
imply that the selecting property is a constant. It is
interesting that Svahnberg’s taxonomy of variability
realisation techniques [3] includes two mechanisms
described as condition on constant and condition on
variable, respectively.

fSelecting property

alt1 alt2 alt3 alt4 alt5

Value of selecting property
will determine the alternative
chosen

Fig. 3 Illustration of the property bound alternati ve
concept

 The most appropriate implementation technique
depends on a number of considerations. If each
alternative has an attached UCM path (not indicated in
the diagram) then a fine-grained variability point is
suggested and a simple programming based approach
using, for example, a switch construct might be
appropriate. On the other hand, if the alternative
features do not have attached paths, then by implication
we are dealing with coarser grained alternatives. Use of
conventional pre-processor directives (#IFDEFs) to
include one file or component instead of another
represents one possible approach, particularly when the
alternatives have compile-time binding. If the
alternatives have run-time binding then design patterns
like the state pattern can be considered. This discussion
both illustrates the potential usefulness of this particular

notational feature, and the way multiple factors impinge
on the possible variability realisation strategy chosen.

5.2. Synchronised Alternatives

 As described earlier, our modelling notation allows
platform features to be modelled separately and allows
relationships to be specified between platform based
and software based features. It can be the case that
variability at the platform level is closely coupled to
variability at the software level. Within a model one can
find a group of alternative features within the platform
layer, which are effectively coupled to one or more
alternative feature groups within the software layer.
Selection of a particular alternative at the platform level
effectively fixes the alternative required at each of the
software based alternative feature groups. We describe
this scenario as a set of synchronised alternative groups.
However synchronised alternatives can arise wholly
among the software based features. The example below
shows a parent feature ‘f’ with four mandatory children.
Each child devolves to an alternative feature group and
all features have associated behaviour. Binding time is
not shown in the interests of clarity. The set of four
alternative feature groups are indicated as being
synchronised, by the link between the four arcs. The
implications of synchronisation are that either
a1,b1,c1and d1 or a2,b2,c2 and d2 or a3,b3,c3 and d3
must be chosen. Given run-time binding, the fragment
as a whole could be interpreted as indicative of the
runtime variant component specialisation discussed by
Svahnberg [3], with the abstract factory pattern being a
candidate solution strategy. With an earlier binding
time, other solution strategies become feasible including
the strategy pattern.

a b c
d

f

a1 a2 a3 b1 b2 b3 c1 c2 c3 d1 d2 d3

Fig. 4 The concept of synchronised Alternative
Feature Groups

6. Grammar based model representations

 Several authors, building on the work of de Jonge
and Vissor [27], have proposed translating feature
models into context free grammars [28, 29]. More
recently Batory [28] has described the interpretation of
grammar representations in terms of propositional logic
formulae. The motivation for much of this work comes
from the need for verifying the correctness of feature
model selections that represent individual products.
Using Batory’s work as a starting point we are
developing a notation to support the translation of
feature and behavioural models into an attribute-based
grammar representation that includes information on
binding times, properties and crucially behavioural
detail. However the motivation for this extends beyond
the issue of verification, and includes the provision of
technology support for a tool to identify design
techniques from commonality/variability models. As
part of this effort we are also developing a second, more
abstract grammar notation capable of describing the
generic characteristics of model fragments which point
to particular variability realisation techniques. This is
intended to provide a means of describing simple rules
of the general form:

Abstract fragment description »α variability realisation
technique

where »α can be read as “suggests with probability α”.
The intended strategy will be to match actual grammar
productions derived from models with the abstract
fragment descriptions found within rules to enable
selection of possible realisation techniques. Because
features can have attached behaviour (which is treated
as an attribute), and given that the behaviour, specified
as a UCM path, is itself structured the grammar
formalism emerging from this work corresponds most
closely to a higher-order attribute grammar. Recall that
a normal attribute grammar has a context free grammar
kernel, which represents a ‘structure tree’, with
attributes that are associated with the elements within
the structure, and may be related by semantic functions
or constraints. In a higher-order attribute grammar [30],
the attributes can themselves be structured, and
constraints and functional relationships can be more
complex.

7. A multiple-tool requirements modelling
and design environment

 Our research efforts are guided by the overall vision
of a multiple notation and multiple tool commonality
variability modelling and architecture development

framework, for product line design. Verification (see
e.g. Czarnecki [32]) will be an important function of the
tools. Prototype graphical editors have been developed,
both for the feature and behavioural modelling notation
and for ADLARS. Feature and behavioural models,
created using the graphical tool are saved in XML. They
can be viewed within a browser with the aid of an XSL
style sheet and can be imported into the ADLARS
Graphical editor. This can then be used to create a
generic software design with linkages back to features.
Individual product feature sets can then be used to
produce custom architecture descriptions for the
products. However, because product features are linked
to behaviour, the behaviour associated with architectural
components can be identified, allowed the generation of
code stubs by the ADLARS Editor. This capability has
been demonstrated in the prototype tools and is
currently being further developed.

ADLARS:
a language relating

Architectural components
to features

ADLARS Graphical Editor

Feature and Behavioural
Modelling Notation

Graphical Tool for Feature
and Behavioural modelling

Feature/behavioural
Model

Design assistant

Library of patterns /
variability realisation
techniques

Generic
architecture

Fig. 5. Multiple tool Requirements modelling and
design environment. ‘Design Assistant’ is an
intelligent tool using Commonality/variability mode l
information to actively support the identification of
realisation techniques.

 8. Conclusions and future work

 A commonality/variability modelling notation with
tool support is key to our vision for a product line
engineering framework. Within this vision, the
commonality/variability model must perform a number
of roles. As well as being a means of documenting
product options and variability points, it must act as a
starting point and a source of guidance to the
downstream software design and development process.
For this reason, our commonality/variability modelling
schema combines behavioural modelling with feature
modelling. This gives a richer pool of information, and
makes it feasible to consider the possibility of intelligent
tool-assisted architecture design. When used in
conjunction with a relational architecture description

language (a language relating the feature and
architecture spaces), the behavioural information in the
model can be carried across to the architecture design.
Architectural Components therefore can have
knowledge of the behaviour they must execute, thus
opening the way for initial code generation.
 Further work on understanding the relationships
between variability points revealed within model
fragment structures, and variability realisation
techniques, is clearly needed and may lead to new
notational concepts like those discussed above.
Additionally, the introduction of explicit cardinality
annotations, a contemporary concept that has emerged
from the work of others, is currently under
consideration.
 One further point worth noting is that some work
has been carried out [33] on the derivation of
performance estimates from Use Case Maps, by first
generating layered queuing networks (LQNs). This
raises the possibility of a mechanism for assessing the
performance costs associated with product features. In a
product line context, the ability to make estimates of the
performance implications associated with features and
feature combinations would be a very useful capability.
While we are not currently pursuing this issue, we are
aware of the potential, another potential benefit of
capturing feature behaviour in terms of the UCM
notation.

9. Acknowledgements

We would like to thank the anonymous referees for their
helpful comments on an earlier version of this paper.

10. References

[1] L. M. Northrop, “A Framework for Software Product-Line
Practice – version 3”, Software Engineering Institute, 2001.

[2] Kyo C. Kang, G. C. Shalom, J. A. Hess, W. E. Novak and
A. S. Petersen, “Feature-Oriented Domain Analysis (FODA)
Feasibility Study”, Technical Report CMU/SEI 90-TR-21,
1990.

[3] M. Svahnberg, J van Gurp, and J. Bosch, “A Taxonomy of
variability realization techniques”, Software-Practice and
Experience, vol. 35, 2005, pp. 705-754.

[4] J. van Gurp, J. Savolainen, “Service Grid Variability
Realisation”, Proceedings of the 10th International Software
Product line conference (SPLC2006), IEEE Computer Society
Press, 2006, pp. 85-94.

[5] K. Lee, Kyo C. Kang, W. Chae and B.B. Choi, “Feature-
based approach to object-oriented engineering of applications
for reuse”, Software Practice and Experience, Vol. 30, 2000,
pp. 1025 – 1046.

[6] Kyo C. Kang, S. Kim, J. Lee and K. Lee, “Feature-
Oriented Engineering of PBX Software for Adaptability and
Reusability”, Software Practice and Experience, vol. 29,
1999, pp. 875 – 896.

[7] M. Riebisch, K. Bollert, D. Streitferdt, and I. Philippow,
“Extending feature diagrams with UML multiplicities”, 6th
Conference on Integrated Design and Process Technology
(IDPT), 2002,

[8] K. Czarnecki and C.H.P. Kim, “Cardinality-Based Feature
Modeling and Constraints: A Progress Report”, OOPSLA’05
Workshop on Software Factories, 2005, available from

[9] K. Czarnecki, S. Helsen and U. Eisenecker, “Staged
Configuration Through Specialization and Multi-Level
Configuration of Feature Models”, Software Process
Improvement and Practice, vol.10, no.2, 2005, pp.143-169.

[10] D. Fey, R. Fajta and A. Boros, “Feature Modeling: A
Meta-model to Enhance Usability and Usefulness”,
Proceedings of the 2nd International Conference on Software
Product Lines (SPLC2), Springer, LNCS 2379, 2002, pp. 198
– 216.

[11] K. Czarnecki, T. Bednasch, P. Unger and U. W.
Eisenecker, “Generative Programming for embedded
software: An industrial experience report”, Proceedings of the
ACM SIGPLAN/SIGSOFT Conference on Generative
Programming and Component Engineering (GPCE’02),
Springer LNCS 2487, pp.156-172.

[12] T. Bednasch, “Konzept und Implementierung eines
konfigurierbaren Metamodells fur die Merkmalmodel-
lierung”, available (in german) from http:

[13] V. Chechticky, A. Pasetti, O. Rohlik and W.
Schaufelberger, “XML-based feature modelling”, Proceedings
of the 8th International Conference on Software Reuse:
Methods, Techniques and Tools (ICSR 2004), Springer
LNCS 3017, 2004, pp. 101-114.

[14] H. Mei, W. Zhang, F, Gu, “A Feature Oriented Approach
to Modelling and Reusing Requirements of Software Product
Lines”, Proceedings of the 27th International Computer
Software and Applications Conference (COMPSAC’03). IEEE
Computer Society Press, 2003.

[15] M. Eriksson, J. Borstler, K. Borg, “The PLUSS Approach
– Domain Modeling with Features, Use Cases and Use Case
Realisations”, Proceedings of the 9th International Conference
on Software Product Lines (SPLC 2005), Springer LNCS
3714, 2005.

[16] E. Gamma, R. Helm, R. Johnson, J. Vlissides, “Design
Patterns: Elements of Reusable Object-Oriented Software”,
Addison-Wesley 1995.

[17] S. Hallsteinsen, T.E. Faegri and M. Syrstad, “Patterns in
Product Family Architecture Design”, Proceedings of the 5th
International Software Product Family Engineering Workshop
(PFE 2003), Springer LNCS 3014, 2003, pp261-268.

[18] T. J. Brown, R. Gawley, R. Bashroush, I. Spence, P.
Kilpatrick and C. Gillan, “Weaving Behavior into Feature
Models for Embedded System Families”, Proceedings of the
10th International Software Product line conference
(SPLC2006), IEEE Computer Society Press, 2006, pp. 52-61.

[19] R.J.A. Buhr, R.S. Castleman, “Use Case Maps for Object
Oriented Systems”, Prentice Hall, 1996.

[20] R.J.A. Buhr, “Use Case Maps as Architectural Entities for
Complex Systems”, IEEE Transactions on Software
Engineering, Dec. 1998, pp 1131 - 1155.

[21] D. Amyot, “Use Case Maps as a Feature Description
Language”, Proceedings of FireWORKS ’00, S. Gilmore and
M. Ryan (Eds), Language Constructs for Designing Features.
Springer-Verlag, 2000, pp. 27 - 44.

[22] ITU-T URN Focus Group (2002) Draft Rec. Z152 –
UCM: “Use Case Map Notation (UCM)”, ITU_T, Geneva,
2002.

[23] UCM web site at : http://www.usecasemaps.org.

[24] T.J. Brown, I. Spence and P. Kilpatrick, “A Relational
Architecture Description Language for Product Families”,
Proceedings of the 5th International Software Product Family
Engineering Workshop (PFE 2003), Springer LNCS 3014,
2003, pp282-295.

[25] T.J.Brown, R. Bashroush, I.Spence, P.Kilpatrick,
“Feature Guided Architecture Development for Embedded
System Families”, Proceedings of the IEEE Working
International Conference on Software Architecture, (WICSA),
2005.

[26] K. Czarnecki and U. W. Eisenecker, “Generative
Programming: Methods Tools and Applications, - Chapter 4”,
Addison-Wesley, 2000.

[27] M. de Jonge and J. Vissor, “Grammars as feature
Diagrams”, in ICRS7 Workshop on Generative Programming
(GP2002), online proceedings available at
http://www.cwi.nl/events/2002/GP2002/
2002.html, pp. 23-24.

[28] D. Batory, “Feature Models, Grammars and Propositional
Formulae”, Proceedings of the 9th Software Product line
Conference (SPLC 2005), 2005, Springer LNCS 3714.

[29] K. Czarnecki, S. Helsen andU. Eisenecker, “Formalising
Cardinality-based Feature Models and their Specialisation”,
Software Process Improvement and Practice, vol. 10, no. 1,
2005, pp. 7 – 29.

[30] H. H. Vogt, S. D. Swierstra and M. F. Kuiper, “Higher
Order Attribute Grammars”, Proceedings of the ACM

SIGPLAN Conference on Programming Language Design and
Implementation, 1989, pp. 131-145.

[31] ITU-T Recommendation G.664, “Optical safety
procedures and requirements for optical transmission
systems”, International Telecommunication Union, 2003.

[32] K. Czarnecki and K. Pietroszek, “Verifying feature-based
model templates against well-formedness OCL constraints”,
Proceedings of the 5th international Conference on
Generative Programming and Component Engineering
(Portland, Oregon, USA, October 22 - 26, 2006). GPCE '06.
ACM Press, New York, NY, pp211-220.

[33] D. Petriu and M. Woodside, “Software Performance
Models from System Scenarios in Use Case Maps”,
Proceedings of the 12th International Conference on
Modelling Techniques and Tools, (TOOLS 2002), 2002,
Springer LNCS Vol. 2344.

	VAMOS 07 cs
	VAMOS07_0005_Paper_2

