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Abstract 
 
 Although feature modelling is a frequently used 
approach to the task of modelling commonality and 
variability within product lines, there is currently no 
standard modelling notation or methodology. On the 
assumption that the commonality/variability model will 
be used as a basis for architecture design, our  
modelling notation allows features to be augmented 
with behavioural detail, captured using the UCM path 
notation. This gives rise to models that capture 
commonality and variability in behaviour as well as in 
product features, and are thus more valuable for 
downstream design activities. This paper outlines the 
modelling notation and describes ongoing work on the 
characterisation of variability points within models 
based on this notation, and on the relationships between 
model fragments and solution domain techniques such 
as design patterns or variability realisation techniques. 
It also describes preliminary work, aimed at evolving an 
intelligent tool that can characterise feature and 
behavioural model fragments and suggest design and 
realisation methods.  
 
Keywords:Feature diagram, Modelling language, UML  
 

1.  Introduction 
 
      Software Product Line engineering [1] aims to 
maximise reuse within a family of related systems, by 
exploiting the commonalities across the family, while at 
the same time managing and accommodating the 
variability. The successful analysis and modelling of 
commonality and variability is therefore a crucial early-
stage activity within software product line engineering. 
The most widely used approach to the capture of 
commonality and variability makes use of feature 
modelling. The basic concepts of feature modelling 
were introduced by Kang et al in 1990 [2], but have 
subsequently been revised and extended by many 
authors. Feature modelling notations and techniques 

continue to be the focus of active research with a 
consequent proliferation of notations and methods. 
Clearly there is a case for trying to agree on a standard 
approach to commonality/variability modelling. Equally 
clearly, there are still some aspects that merit continued 
investigation.  
       In this paper we first briefly explore the basics of 
commonality/variability modelling using feature 
modelling. We then pose what seems to us a fairly 
fundamental question relating to the intended role of the 
commonality variability model within the engineering 
process. How one answers this question influences the 
notation and process needed. We describe our own 
vision of the role that commonality/variability models 
should play, and discuss our notation which combines 
both feature and behavioural modelling facilities. We 
also describe our current research which aims to 
understand the relationships between variability 
exposed within the feature and behavioural model and 
variability realisation techniques. Included among the 
latter are techniques such as those described in [3,4], 
along with design patterns, many of which serve to 
introduce flexibility into software designs. An 
understanding of these relationships opens up the 
possibility of creating an architect’s advisor, i.e. an 
intelligent tool with the ability to analyse the variability 
it finds within the commonality/variability model for an 
intended product line, and identify possible design 
techniques that allow it to be managed. 

 

2. Feature Modelling: Basic Concepts and 
Contemporary Developments 
 
       Feature Modelling originated in the work of Kang 
et al published in 1990 [2]. Their modelling schema 
Feature-Oriented Domain Analysis (FODA) introduced 
the foundational idea of describing product line 
requirements in terms of features that could be 
mandatory, optional or alternative, were organised into 
a tree and could be subject to constraints in the form of 
mutual exclusion or requirement relationships. 



Numerous developments have followed. The FORM 
notation [5,6] made use of layering within the model 
hierarchy, and. allowed the use of feature groups 
wherein selection is based on inclusive OR relations. 
Riebisch et al [7] introduced the idea of using explicit 
UML style multiplicities to constrain the selection of 
features from groups, an approach that has been further 
developed in several papers by Czarnecki et al. [8,9]. 
Using explicit cardinalities to regulate selection from 
groups conveys more flexibility than simply using 
alternative or OR feature groups which become special 
cases in this situation. More recently cardinality values 
have been attached to solitary (i.e. non group) features. 
In this context the cardinality specifies the number of 
times the features and its sub-tree can be replicated.  
       Several authors have made use of feature properties 
or attributes. Fey et al [10] made use of the idea of 
feature properties and introduced two forms of 
relationship involving features and properties. 
Czarnecki et al [8,11] use the slightly different concept 
of attributes. An attribute type can be associated with a 
feature, indicating that a value of that type can be 
assigned during configuration, but only one such 
attribute is allowed per feature.  Modularisation of 
feature models has also been recognised as desirable in 
practice because feature models are often very large. 
Bednasch et.al. [12] proposed an approach based on the 
use of special leaf nodes, while the idea of feature 
macros can be found in the work of Cechticky et al [13]. 
       The potential value of incorporating behaviour in 
some way began to be recognised with the work of Mei 
et al [14]. In their FODM feature modelling notation 
they discuss the concept of behavioural characteristics 
attached to features that are recognised as functional in 
character. In the PLUSS feature modelling approach 
[15] broadly similar motives have prompted Eriksson et 
al. to combine features with Use case models and Use 
Case realisations. As described below the modelling of 
common and variant behavioural characteristics forms a 
key element in our approach.  
       Clearly there is at this time a wide range of 
approaches to commonality/variability modelling and a 
corresponding argument for some form of 
rationalisation. 
 

3. Role of Commonality Variability Models 
 
       What should be the role of commonality and 
variability modelling in product line development? 
Should it be simply a means of recording and 
documenting the common and variant aspects of the 
product line, essentially for the benefit of customers, 
managers and sales personnel, or should it also play a 
more significant role in the software design and 
implementation activities? The answer to this question 

will influence the detailed notation and techniques that 
need to be used to capture the commonality and 
variability. Software systems are often large and the 
construction of commonality/variability models for a 
family of such systems represents a considerable 
investment in effort. In our approach to 
commonality/variability modelling we assume 
implicitly that maximal use should be made of such 
models once they have been constructed. Thus a 
commonality/variability model should certainly 
document the variety of product features and the 
potential for variability in the features supported within 
individual products. It should also allow the creation of 
individual product definitions as valid collections of 
supported features. Most approaches reported in the 
literature share these objectives. In our work we also 
seek to use the model to support the software design 
process, and in particular the derivation of a generic 
architecture for the product family. 
       This aspiration introduces a number of issues. We 
must think carefully about how we should model 
commonality and variability, given the objective of 
using the model to guide architecture development. 
Identifying mechanisms to handle variability at the 
architectural and implementation stages is a significant 
issue in this process. Closely related to this is the 
question: How can we relate variability points within 
the model to actual variability realisation techniques? 
We are beginning to see the cataloguing of variability 
realisation techniques, for example in the work of 
Svahnberg et. al. [3], and the more recent work reported 
in [4]. Moreover, we already have a large literature on 
design patterns [16]. Many of these represent techniques 
for introducing flexibility into software designs, which 
makes them potentially valuable in the context of 
product line architectures, a point recognised by some 
authors [17]. It is probably unrealistic to expect that we 
can reach a stage where variability points manifest 
within commonality/variability models, can be mapped 
directly or uniquely to a particular realisation technique, 
or a particular combination of design patterns. But it 
would still be very useful to architects to be able to 
obtain guidance on possible design strategies. 
      A further issue is how we relate the 
commonality/variability model to the generic 
architecture. Linking these two spaces allows us to 
relate architectural components to the product features 
that they support. This in turn makes it possible to 
derive product architectures from individual product 
feature sets. 
 

4. The QUB  Approach 
  
     In our work we have sought to address all these 
issues. This has led us to develop a unique strategy for 



commonality/variability modelling [18] that is based, 
like most such efforts, on feature modelling, but with 
facilities for capturing feature behaviour and 
behavioural variability. For this purpose we have 
adopted the Use Case Maps (UCM) notation. The UCM 
path notation [19,20,21,22,23] provides a means of 
capturing behaviour at an abstract level, independent of 
any assumed component architecture. A path can be 
attached to any feature provided the behaviour 
associated with the feature can be fully represented by a 
single path. (High level features within the model are 
assumed to aggregate behaviour associated with their 
children). As we relate below, having behavioural 
information allows a more complete characterisation of 
variability points.  
       We have also developed a relational architecture 
description language called ADLARS [24]. This is a 
notation that supports the description of generic 
software architectures with embedded relationships 
between architectural components on the one hand and 
the supported product features on the other. This allows 
variant features within the commonality/variability 
model to be linked, for example, to alternative or 
optional components within the architecture design. 
Hence at the application engineering stage, as soon as 
the feature set for a single product has been defined, it 
becomes possible to generate the architecture for that 
product.  
      We do not discuss ADLARS herein, since it is well 
documented in several publications. Instead we review 
the feature and behavioural modelling notation and then 
go on to describe current research efforts. These are 
focussed on two closely related problems. The first is to 
understand how variability points exposed within 
feature and behavioural models can be related to 
variability realisation techniques, including design 
patterns. The second is to identify the technology 
underpinnings for an ‘intelligent’ tool that could scan 
feature and behavioural models, abstracting out model 
fragments that encompass specific variation points and 
then offer guidance to the software architect on how 
each variability point could be managed in terms of 
software design. These are difficult topics and our 
research on them is at an early stage. 
 
4.1 Feature Modelling Specifics 
  
       In common with the original FODA framework, 
and most subsequent notations, our feature modelling 
schema allows features to be mandatory, optional or 
alternative. A mandatory feature will be supported by 
every product instance that supports it parent. Optional 
features are features that may be present or absent from 
any product within the family. Alternative feature sets 
are sets of features from which only one is selected for 

inclusion in any given product. They are thus mutually 
exclusive: if one is supported the others cannot be. In 
addition, rationalised feature modelling allows the use 
of OR features [26]. An OR feature set is a set of 
features from which one or more may be selected into 
any product within the family. At least one must be 
selected but there is no exclusivity relationship, and in 
fact a product may contain all features within any OR 
feature set. As in FODA, feature selections may be 
subject to constraints and the now-standard constraints 
of mutual exclusion and requirement are supported. 
Features may also have attached properties and, 
borrowing from the work of Fey et al. [10], properties 
may participate in relationships.  
 
4.2. Bi-Directional Feature Modelling 
 
       Perhaps the most radical aspect of the core feature 
modelling scheme is its support for bi-directional 
models [25]. In this approach a conventional top-down 
feature tree models features of the family that are 
software based, or have a software component, and an 
inverted feature tree models the hardware and operating 
system platform. The top-down feature tree follows the 
FORM practice of layering the feature tree. A three-
layer model is used with a capability feature layer, 
which models high level product features, a domain 
technology layer and then an implementation feature 
layer below. 
  

 
 
Fig.1 Screen shot of a bi-directional feature model  
arising from ALS/APR safety procedure used on 
Optical Network Products [31] 
 
      The inverted feature tree can hold features arising 
from the operating system and/or the hardware 
platforms on which the software will operate. There can 
be relationships across the boundary between software 



and the operating system platform. The first form of 
across-boundary relationship is that of mutual 
dependency between an optional or alternative software 
feature in the upper feature tree and an operating 
platform feature. The implication is that the software 
feature requires or depends on the availability of the 
platform feature. If an optional platform feature is 
excluded then the software feature depending on it 
cannot be provided. Although this may be a low level 
feature, the implications can extend upwards to the 
capability feature layer. 
      The second across-boundary relationship is that of a 
hardware-software feature alternative. In this case we 
are dealing with the same feature which may be 
provided in software within one member of the family 
but in hardware within others. This kind of situation 
may arise in practice when the first products within an 
intended family are released with a certain feature 
provided in software; whereas in later models the 
feature migrates to a hardware device such as an ASIC, 
FPGA or DSP (we have encountered this phenomenon 
with some families of network products).  It is worth 
noting that any kind of feature may participate in this 
relationship. Thus, we could have a mandatory feature 
which in some products is provided via software and in 
others via hardware. Likewise we could have an 
optional feature which, within some products, may not 
be provided at all, but if it is provided then it may be 
provided as either hardware or as software. 
 
4.3. Linking Behaviour to Features 
 
       To capture feature behaviour, it is essential to have 
a suitably abstract notation. There are several well 
known notations that are often used for modelling 
behaviour. Within the UML, sequence and collaboration 
diagrams, Use Case diagrams, and activity diagrams can 
all be used for behaviour capture. For a number of 
reasons however [18], we have chosen the Use Case 
Maps path notation as the most appropriate form of 
notation.  
       Use Case Maps, like feature modelling itself, is a 
requirements capture notation. Its focus is on the 
capture of behaviour at a reasonable level of detail. The 
founding concepts of the notation were introduced by 
Buhr [19] and have subsequently been extensively 
developed by Amyot and others [21]. Whereas feature 
modelling is inherently a notation targeted at product-
line requirements, UCM was developed as a general 
purpose requirements modelling notation, aimed at 
providing an abstract, path-centric view of system 
functionality. It has now been standardized and 
integrated into the User Requirements Notation (URN) 
[23]. 
 

4.4. UCM Path Notation 

 
       In the UCM notation, behaviour is captured in 
terms of a causal path. The path begins at a starting 
point, which may have triggering events and/or pre-
conditions associated with it, and it continues to one or 
more end points, which may have associated resulting 
events and/or post-conditions. Along the way it may 
contain responsibility points, representing actions or 
responsibilities that must be discharged in the sequential 
order in which they appear. Paths may have loops, OR-
forks, which indicate alternative paths, and AND-forks 
that give rise to concurrent path segments that may be 
executed in parallel. Alternative paths may be labelled 
with the conditions that give rise to their selection. 
Concurrent and alternatives paths may rejoin at an 
AND-join, or OR-join, respectively.  Data items may be 
created or destroyed and may be placed on, or removed 
from a path. Data placed on a path is considered to 
move along the path. The notation supports the concept 
of a pool, which is a form of generic data store, and data 
items may be moved into or out of pools. Paths may 
contain waiting points representing situations where 
processing is delayed awaiting the arrival of some 
external event, or the satisfaction of some condition. 
Synchronization and rendezvous points may also be 
included.  A timer feature allows the introduction of 
timed path segments, in which execution must complete 
within a defined time, otherwise the normal execution 
path is aborted in favour of an alternative error path. In 
the basic notation a path may cross one or more 
components. Components need not be shown if no 
component architecture is available, or they may be 
included as rectangles.  

 

Take sensor reading 

Compare with 
threshold 

Too high normal 

Reduce 
power Reset timer 

reading 

Increment counter 

 
Fig. 2 An example illustrating the UCM path notatio n 

 
        Where a responsibility point is located on the path 
in such a way that it is coincident with a component, 
this denotes the fact that the responsibility is being 



assigned to that component. An example of a UCM path 
is shown in fig. 2. 
  
4.4.1 Static and Dynamic stubs 
 
       A very important concept in the UCM notation is 
the idea of stubs. When a stub is embedded within a 
path it acts as a placeholder into which further 
behaviour can be plugged. Graphically a stub is 
represented as a diamond on the UCM path, and the 
plug-in behaviour will be represented as another UCM 
path. Stubs can be of two types. The simplest are called 
static stubs and only one subsidiary path can be plugged 
in to them. In this case the plug-in serves as a definition 
of the behavioural detail at that point within the 
containing path. The second kind of stub, called a 
dynamic stub, is characterized by the fact that several 
alternative plug-in maps may be inserted in them. The 
UCM concept is that the actual plug-in may be selected 
at run-time, depending on the satisfaction of associated 
pre-conditions. Dynamic stubs therefore represent 
points at which behaviour may vary. However, the plug-
ins that may be inserted into either static or dynamic 
stubs may themselves contain stubs that may in turn be 
either static or dynamic. So, paths may have stubs for 
which the plug-ins may contain stubs, essentially to any 
level of nesting. Clearly this mechanism provides scope 
for the capture of behavioural variability to any level of 
detail. This is a very important capability and one that is 
exploited fully in the integration of Use Case Maps with 
feature modelling. 
      
4.5 Capturing Feature Behaviour  
 
To add behaviour to a feature, in the simplest case, we 
attach a UCM path to the feature. We follow the 
principle that a UCM path will only be attached to a 
feature if that feature’s associated behaviour can be 
captured by one unique path. At first sight that might 
appear to imply that the allocation of behaviour to a 
feature would preclude the allocation of behaviour to its 
children. However paths can contain stubs. When a 
parent feature has a path with stubs, its children can 
contribute the plug-in behaviour needed. Of course the 
child feature’s path may also contain stubs which accept 
behaviour provided by grandchildren. Thus behaviour 
may be woven into multiple levels within the feature 
model structure.  

  

5. Relating Variability points and 
Variability Realization Techniques 
 
      To derive maximum benefit from the integration of 
these notations we clearly need to understand how to 
use the resulting framework to evolve a generic 

architecture and ultimately, implementation 
components. One of the principal difficulties in 
designing architectures for product lines is the need to 
accommodate variability from product to product.  It is 
therefore important that the commonality/variability 
model should allow a clear understanding of the 
underlying nature of each variability point, and where 
possible, allow the identification of possible variability 
realisation methods. The decision to integrate 
behavioural modelling with feature modelling was 
prompted by this objective.  
       A key theme in our current research efforts is the 
identification of possible variability realisation 
techniques using information within the feature and 
behavioural model. Although still at an early stage, 
factors that we have found to be important include the 
actual pattern of features in the environment of a 
variability point, the pattern of allocation of behaviour 
to those features and the pattern of usage of behavioural 
elements, such as stubs, within the path definitions. 
Properties attached to features can also be important. 
Our long term aim in this endeavour is the creation of 
an ‘intelligent’ tool with the ability to analyse the 
content of a commonality/variability model, characterise 
variability points within the model and offer 
recommendations on possible realisation techniques. 
Clearly this is an ambitious objective and much research 
is still needed. However, the problem is potentially 
more tractable with the fusion of feature and 
behavioural information. Some model fragments with 
mapped behaviour lead fairly readily to realisation 
strategies. For example, consider a feature model 
fragment in which a parent feature has an associated 
path containing a dynamic stub, with as children, an 
alternative feature group whose member features each 
have associated paths. A likely interpretation of this 
situation is a single algorithm with alternative sub-
algorithms, only one of which can be selected. A simple 
pattern, such as the template pattern, could be an 
appropriate realisation strategy in the case of fine-
grained algorithm variability. On the other hand, the 
same feature model structure, but this time with a parent 
feature whose associated behaviour could not be 
represented by a single path, would point to a different 
realisation strategy, perhaps, for example, the strategy 
pattern, as a possible realisation mechanism. The feature 
model fragment has the same structure in both cases, but 
the pattern of allocation of behaviour is different.   
       As this work has progressed, an emerging issue is 
the possible advantage in adding some further facilities 
to the notation. Two new notational concepts that have 
been identified as potentially useful are those of 
property bound alternatives and synchronised 
alternatives. 
 



5.1. Property bound alternatives 
 
       An alternative feature group wherein the alternative 
chosen depends on some property of its parent feature is 
what we refer to as a property bound alternative. 
Graphically this can be represented as shown below in 
fig 3. Feature ‘f’ is a parent feature with a group of five 
alternative children. The value of the ‘selecting 
property’ determines the choice of alternative child 
feature. An important consideration is that it is often 
possible to nominate a binding time for feature 
alternatives. One such option is run-time binding. By 
implication choice of run-time binding in this situation 
means that the selecting property is a variable, whose 
value at run-time will fix the alternative chosen. On the 
other hand a binding time earlier than run-time will 
imply that the selecting property is a constant. It is 
interesting that Svahnberg’s taxonomy of variability 
realisation techniques [3] includes two mechanisms 
described as condition on constant and condition on 
variable, respectively.  

fSelecting property

alt1 alt2 alt3 alt4 alt5

Value of selecting property 
will determine the alternative 
chosen

  
Fig. 3 Illustration of the property bound alternati ve 
concept 
 
       The most appropriate implementation technique 
depends on a number of considerations. If each 
alternative has an attached UCM path (not indicated in 
the diagram) then a fine-grained variability point is 
suggested and a simple programming based approach 
using, for example, a switch construct might be 
appropriate. On the other hand, if the alternative 
features do not have attached paths, then by implication 
we are dealing with coarser grained alternatives. Use of 
conventional pre-processor directives (#IFDEFs) to 
include one file or component instead of another 
represents one possible approach, particularly when the 
alternatives have compile-time binding. If the 
alternatives have run-time binding then design patterns 
like the state pattern can be considered. This discussion 
both illustrates the potential usefulness of this particular 

notational feature, and the way multiple factors impinge 
on the possible variability realisation strategy chosen. 
 
5.2. Synchronised Alternatives 
 
       As described earlier, our modelling notation allows 
platform features to be modelled separately and allows 
relationships to be specified between platform based 
and software based features. It can be the case that 
variability at the platform level is closely coupled to 
variability at the software level. Within a model one can 
find a group of alternative features within the platform 
layer, which are effectively coupled to one or more 
alternative feature groups within the software layer. 
Selection of a particular alternative at the platform level 
effectively fixes the alternative required at each of the 
software based alternative feature groups. We describe 
this scenario as a set of synchronised alternative groups. 
However synchronised alternatives can arise wholly 
among the software based features. The example below 
shows a parent feature ‘f’ with four mandatory children. 
Each child devolves to an alternative feature group and 
all features have associated behaviour. Binding time is 
not shown in the interests of clarity. The set of four 
alternative feature groups are indicated as being 
synchronised, by the link between the four arcs. The 
implications of synchronisation are that either 
a1,b1,c1and d1 or a2,b2,c2 and d2 or a3,b3,c3 and d3 
must be chosen. Given run-time binding, the fragment 
as a whole could be interpreted as indicative of the 
runtime variant component specialisation discussed by 
Svahnberg [3], with the abstract factory pattern being a 
candidate solution strategy. With an earlier binding 
time, other solution strategies become feasible including 
the strategy pattern.  

a b c
d

f

a1     a2     a3       b1      b2       b3         c1       c2  c3         d1      d2      d3

 
Fig. 4 The concept of synchronised Alternative 
Feature Groups 
 
 



6. Grammar based model representations 
 
       Several authors, building on the work of de Jonge 
and Vissor [27], have proposed translating feature 
models into context free grammars [28, 29]. More 
recently Batory [28] has described the interpretation of 
grammar representations in terms of propositional logic 
formulae. The motivation for much of this work comes 
from the need for verifying the correctness of feature 
model selections that represent individual products. 
Using Batory’s work as a starting point we are 
developing a notation to support the translation of 
feature and behavioural models into an attribute-based 
grammar representation that includes information on 
binding times, properties and crucially behavioural 
detail. However the motivation for this extends beyond 
the issue of verification, and includes the provision of 
technology support for a tool to identify design 
techniques from commonality/variability models. As 
part of this effort we are also developing a second, more 
abstract grammar notation capable of describing the 
generic characteristics of model fragments which point 
to particular variability realisation techniques. This is 
intended to provide a means of describing simple rules 
of the general form: 
 
Abstract fragment description  »α  variability realisation 
technique 
 
where »α can be read as “suggests with probability α”.  
The intended strategy will be to match actual grammar 
productions derived from models with the abstract 
fragment descriptions found within rules to enable 
selection of possible realisation techniques. Because 
features can have attached behaviour (which is treated 
as an attribute), and given that the behaviour, specified 
as a UCM path, is itself structured the grammar 
formalism emerging from this work corresponds most 
closely to a higher-order attribute grammar. Recall that 
a normal attribute grammar has a context free grammar 
kernel, which represents a ‘structure tree’, with 
attributes that are associated with the elements within 
the structure, and may be related by semantic functions 
or constraints. In a higher-order attribute grammar [30], 
the attributes can themselves be structured, and 
constraints and functional relationships can be more 
complex.  
 
7. A multiple-tool requirements modelling 
and design environment 
 
       Our research efforts are guided by the overall vision 
of a multiple notation and multiple tool commonality 
variability modelling and architecture development 

framework, for product line design. Verification (see 
e.g. Czarnecki [32]) will be an important function of the 
tools.  Prototype graphical editors have been developed, 
both for the feature and behavioural modelling notation 
and for ADLARS.  Feature and behavioural models, 
created using the graphical tool are saved in XML. They 
can be viewed within a browser with the aid of an XSL 
style sheet and can be imported into the ADLARS 
Graphical editor. This can then be used to create a 
generic software design with linkages back to features. 
Individual product feature sets can then be used to 
produce custom architecture descriptions for the 
products. However, because product features are linked 
to behaviour, the behaviour associated with architectural 
components can be identified, allowed the generation of 
code stubs by the ADLARS Editor. This capability has 
been demonstrated in the prototype tools and is 
currently being further developed.  
 

ADLARS:
a language relating

Architectural components
to features

ADLARS Graphical Editor

Feature and Behavioural
Modelling Notation

Graphical Tool for Feature
and Behavioural modelling

Feature/behavioural
Model

Design assistant

Library of patterns / 
variability realisation
techniques

Generic 
architecture

 
Fig. 5. Multiple tool Requirements modelling and 
design environment. ‘Design Assistant’ is an 
intelligent tool using Commonality/variability mode l 
information to actively support the identification of 
realisation techniques. 
 
 8. Conclusions and future work 
 
       A commonality/variability modelling notation with 
tool support is key to our vision for a product line 
engineering framework. Within this vision, the 
commonality/variability model must perform a number 
of roles.  As well as being a means of documenting 
product options and variability points, it must act as a 
starting point and a source of guidance to the 
downstream software design and development process. 
For this reason, our commonality/variability modelling 
schema combines behavioural modelling with feature 
modelling. This gives a richer pool of information, and 
makes it feasible to consider the possibility of intelligent 
tool-assisted architecture design. When used in 
conjunction with a relational architecture description 



language (a language relating the feature and 
architecture spaces), the behavioural information in the 
model can be carried across to the architecture design. 
Architectural Components therefore can have 
knowledge of the behaviour they must execute, thus 
opening the way for initial code generation. 
       Further work on understanding the relationships 
between variability points revealed within model 
fragment structures, and variability realisation 
techniques, is clearly needed and may lead to new 
notational concepts like those discussed above. 
Additionally, the introduction of explicit cardinality 
annotations, a contemporary concept that has emerged 
from the work of others, is currently under 
consideration.   
       One further point worth noting is that some work 
has been carried out [33] on the derivation of 
performance estimates from Use Case Maps, by first 
generating layered queuing networks (LQNs). This 
raises the possibility of a mechanism for assessing the 
performance costs associated with product features. In a 
product line context, the ability to make estimates of the 
performance implications associated with features and 
feature combinations would be a very useful capability. 
While we are not currently pursuing this issue, we are 
aware of the potential, another potential benefit of 
capturing feature behaviour in terms of the UCM 
notation.  
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