

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

To see the final version of this paper please visit the publisher’s website.
Access to the published version may require a subscription.

Author(s): Falcarin, Paolo; Torchiano, Marco.
Article title: Automated Reasoning on Aspects Interactions
Year of publication: 2006
Citation: Falcarin, P. and Torchiano, M. (2006) ‘Automated Reasoning on Aspects
Interactions’, IEEE/ACM Proceedings of International Conference on Automated
Software Engineering (ASE 2006), Tokyo, Japan, September 2006 pp 313 - 316
Link to published version: http://dx.doi.org/10.1109/ASE.2006.19
DOI: 10.1109/ASE.2006.19

CORE Metadata, citation and similar papers at core.ac.uk

Provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219371675?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://roar.uel.ac.uk/
http://dx.doi.org/10.1109/ASE.2006.19

Automated Reasoning on Aspects Interactions

Paolo Falcarin, Marco Torchiano
Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, Italy

Paolo.Falcarin@polito.it, Marco.Torchiano@polito.it

Abstract

The aspect-oriented paradigm allows weaving
aspects in different join points of a program. Aspects
can modify object fields and method control flow, thus
possibly introducing subtle and undesired interactions
(conflicts) among aspects and objects, which are not
easily detectable.

 In this paper we propose a fully automated
approach to discover conflicts among classes and
aspects directly from Java bytecode. The novelty of this
work is the usage of a rule engine for identifying
possible conflicts among advices, methods, and fields.

 The knowledge base is obtained through static
analysis of classes and aspects bytecode. The possible
conflicts are represented by means of rules that can be
easily extended and customized.

1. Introduction

Aspect-Oriented Programming [1] (AOP) is a powerful
methodology, but imprudent use of aspects may
complicate development and debugging tasks. Badly
designed aspects may interact harmfully with methods
and other aspects changing the control flow and
modifying shared data, like objects fields.

The work presented in this papers aims at helping
developers and maintainers to automatically analyze an
aspect-oriented code base for discovering conflicts due
to aspects interactions.

We developed JECOM (Java Extensible Conflict
Manager), a tool able to extract interactions among
aspects and classes, and read-set and write-set of
methods and advices.

These data are transformed in a set of “facts”
populating the knowledge base of a rule engine. We
represent potential conflicts with rules to be matched
on the knowledge base executing the rule engine.

The main contributions of this paper are:
• the introduction of a rule engine to detect

potential conflicts,
• a method for producing a knowledge base from

the code and the relative implementation,

• An approach for expressing potential conflicts
through rules, allowing easy extensibility.

We assume the reader is familiar with AOP concepts
(non included for space reason).

In next sections the conflict management problem
and related work are described; after that we describe
our approach, and we draw conclusions.

2. Classification of Conflicts

 AOP allows insertion of (aspect) code throughout the
application code base. Understanding the behavior of
an aspect-oriented application can be difficult because
an aspect can interact with several classes and other
aspects. While some of these interactions may have
been explicitly designed by the developer, others may
be unwanted and can be considered as conflicts, i.e.
side-effects, resulting, for example, from bad wildcards
usage, or risky refactoring of the application codebase.

The use of wildcards in pointcut definition is
helpful but its real impact cannot be identified when
the pointcut is written. Moreover, dynamic pointcuts
can match different join-points at different times,
depending on data values (e.g. the ‘cflow’ construct in
AspectJ); in addition, using the ‘if’ construct in
AspectJ, the advice execution depends on data in the
‘if’ condition.
 The usage of these powerful pointcuts limit the
possibility of modeling all aspect-class interactions,
and, as a consequence, the possibility to reason about
them using static analysis [9] has to exclude dynamic
pointcuts, because the behavior of the corresponding
advices cannot be deduced at compile-time.

All of the above problems contribute to the possible
unexpected composition of different aspects at the
same join-point at compile-time or run-time.
 AOP tools like AJDT [8] can discover and visualize
such simple interactions, but there are other ones that
are not detected. AJDT compiler limits risks of such
interactions defining precedence rules among aspects
and among advices in the same aspect.
 Our approach allows identifying interactions in
AspectJ applications and allows developer customizing

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

rules in order to find out more complex interactions on
the code base and to evaluate the impact of each aspect
on the classes.
 Tessier et al [6] classify aspects interactions on
different criteria. Depending on involved elements
there are intra-aspect interactions (between advices in
the same aspect), inter-aspect interaction (e.g. when an
aspect’s advice acts on the advice of a different
aspect), and the typical aspect-class interactions.
 Moreover conflicts can be considered ‘static’ if they
can be identified at compile-time and ‘dynamic’ if they
can be detected at run-time, e.g. during testing.
 The kind of interaction between an advice and
methods has been used by Rinard et al [5] to classify
advices in four categories, namely: augmentation,
narrowing, replacement, and combination. If, after
weaving, the entire body of the method always
executes (e.g. with read-only aspects, like logging and
monitoring), the advice is an augmentation one. A
narrowing advice can decide if a method will be
executed or not (e.g. an advice that checks pre-
conditions before allowing the method to execute),
while a replacement advice substitutes the whole
method. All other cases are considered combination
advices, i.e. when the method and aspect interact in
another way.
 Rinard et al [5] also defines scopes as set of fields
accessed by an object or by an aspect. When an aspect
reads data modified by another aspect, the interaction
is an ‘observation’; when one aspect modifies data read
by the other one, then it is an ‘actuation’, and when
both modify some shared data it is a ‘combination’.
Moreover if aspects both read the same data then they
are ‘independent’, while if no join-points are shared
they are ‘orthogonal’.
 According to this classification, a “conflict-free”
application only presents orthogonal, independent and
observation interactions, and where advices are all of
type augmentation or narrowing.

3. JECOM Approach

JECOM (Java Extensible Conflict Manager) aims at
helping developers and maintainers to automatically
analyze an aspect-oriented code base for discovering
conflicts due to aspects interactions.

The interactions analysis has four sequential phases:
1. Bytecode Analysis of the target application to

extract interactions among aspects and classes
directly form bytecode;

2. Knowledge Base Creation: translating the above-
mentioned information in a set of “facts”
populating the Knowledge Base;

3. Rule Base creation: reusing or augmenting the set
of rules representing potential undesired
interactions;

4. Conflict Analysis: running the rule engine for
querying the collected data and detecting if some
potential conflicts exist in the target application.

In next section we introduce the usage of Bernstein’s
conditions for reasoning on aspects interactions.

3.1 Bernstein’s Conditions in AOP

In operating systems theory it is possible to evaluate if
two processes can run in parallel, checking if the input
data-sets of two processes are independent of each
other's output data-sets, and if their output data-sets are
independent. Bernstein [3] formalized these constraints
by means of three conditions which can be expressed
using set-theory, since they predicate two kinds of sets:
the Read-Set and the Write-Set of a process, which are
respectively the set of data read by a process and the
set of data written by a process.
 In this work we consider the read/write-sets of each
method/advice as the fundamental information for
detecting interactions between aspect’s advices and
object’s methods. In this work a read/write set is a set
of class fields.
 If RA and WA respectively denote Read-Set and
Write-Set of an advice A, and RM and WM respectively
denote Read-Set and Write-Set of a method M then
Bernstein’s conditions can be rewritten as follows:
1. RA WM = Ø
2. WA RM = Ø
3. WA WM = Ø
In practice the specified sets must be disjoint in all
three conditions in order to guarantee independence
between an advice and a method.
Rinard et al [5] defines scopes as set of fields accessed
by a method or by an advice. Following their
terminology, the first Bernstein condition holds in case
of observation interaction, the second one holds in case
of actuation, and the third one in case of combination.
When all Bernstein conditions hold, the advice scope
and the method scope are independent, while they are
orthogonal if all the Bernstein conditions hold and their
read sets are disjoint (RA RM = Ø).

3.2 From Bytecode to Facts

Analyzing an aspect-oriented codebase requires an
intermediate step of modeling the knowledge base
Understanding the interactions among aspects and
classes, requires acquisition of data from the code in
order to build a model.

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

Our tool analyzes the Java bytecode of an
application built with the AspectJ compiler.

Tessier et al [6] have developed a model for
representing interactions among aspects and classes in
the early design phase.

This model is a graph of nodes representing aspects
and classes while edges represent a join-point, i.e an
interaction between an aspect and a class.

We extended this model to represent relationship
between a method and an advice and between advices:
our model has a finer granularity because the basic
model elements are shared variables (fields), functions
(methods or advices), and interactions.
 In our model, the interaction between an aspect and a
class is decomposed into a set of Link structures
representing the interaction between an advice and a
join-point in a class or in another aspect. We model the
Link structure as a tuple of the following elements:
• aspectID: is the fully-qualified name of the aspect;
• adviceID: is the fully-qualified name of the

advice;
• adviceType: can be of three types (before, after,

around);
• declarationOrder: is the number (extracted from

the bytecode) identifying the position of the advice
within the aspect;

• classID: is the fully-qualified name of the class or
aspect advised by aspectID;

• methodID: is the fully-qualified name of the
method (or advice) advised by adviceID;

• joinPointID: is a unique identifier of the join-point
in the advised class, and it is extracted directly
form the bytecode of the advised class (or aspect).

 The resulting graph obtained by merging all the
extracted Links, can have big dimensions on a large
codebase. In order to shrink the analysis on aspects of
interest, the developer can choose the aspect from
which start the reverse engineering activity.
Each link is translated in a fact and inserted in the
knowledge base of the rule engine.
This graph is not enough for discovering all kinds of
interactions. Some conflicts indeed can be due to
Bernstein conditions violation.
In the knowledge base a Read/Write Set is an
unordered set of RWS tuples, which represents a
read/write access; each tuple is formed by these slots:
• classID: is the fully-qualified name of the class (or

aspect) containing the accessed field;
• setType: can be “RS” in case of a read access, or

“WS” for a write access;
• methodID: is the name of method or advice

accessing the field;
• fieldId: is name of the field accessed by the

methodID.

3.3 Reasoning on Code

A rule engine reasons on facts applying pattern-
matching techniques, in order to identify which facts
satisfies a rule. A rule engine, in the simplest terms,
continuously applies a set of if-then statements (rules)
to a set of assertions (facts). In our work a fact is a
tuple representing a type of structured information, i.e.
the interactions among classes, aspects and their
methods, advices and fields.

In our work the rule base can be augmented by the
developer and the knowledge base is updated each time
the aspect-oriented application is rebuilt, and a new
bytecode version has to be inspected.

JECOM relies on Jess1 [7] rule engine, which is
developed in Java, it has good performance (improving
the typical pattern matching Rete algorithm [2]), and it
offers a Java API (compliant with the standard JSR 94
[2]) for adding facts and rules to the working memory,
but it can also load the knowledge base from files
written in Jess language.

The knowledge base is obtained through static
analysis of classes and aspects bytecode. The possible
conflicts are represented by means of rules that can be
easily extended and customized.

The following figure depicts a rule written in the Jess
language. This rule allows detecting all advices which
advise themselves recursively in an aspect-oriented
codebase. The rule is applied on the knowledge base
composed of a set of Link facts, each one representing
an interaction between an advice and a join-point, by
means of a tuple of elements. Each element of this
tuple is a couple of strings representing a variable
(identified by a starting question mark in its identifier)
and its type. For example ‘?A’ is the aspect name and
aspectID means that A can represent one of the aspect
names in the application.

Each element of this tuple is a couple of strings
representing a variable (identified by a starting
question mark in its identifier) and its type. For
example ‘?A’ is the aspect name and aspectID means
that A can represent one of the aspect names in the
application.

1 Jess is a registered trademark of Sandia National Laboratories. Jess
source code, binary code and all Jess documentation associated with
Jess code is owned and under copyright registration by Sandia
Corporation.

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

Figure 1. Rule detecting recursive advice

 Moreover, the variable Adv can contain whichever
advice name, and M can contain whichever method
name, among the existing names inserted in the
knowledge base after the bytecode analysis phase.
 Given this Link structure, the rule matches if the
name of the advice Adv is equal (see the eq operator, in
prefix notation in Jess language) to the advised method
name M, which can be also an advice. The rule engine
simply looks for values of Adv and M which are equals
among all the Link structures (i.e. the direct
interactions) stored in the knowledge base.
 A developer can add new customized rules for
identifying particular interactions on a subset of the
code base; as a consequence it is possible to evaluate
the impact of a single aspect insertion detecting the
classes (and their fields) which are directly affected by
aspect advices.
 Ideally, the developer can add rules for discovering
indirect interactions of further levels but the
performance of this deeper analysis can degrade
depending on dimensions of the code base.

4. Conclusions

The detection of interference and conflicts among
aspects is an emerging research field.
The existing aspect-oriented tools are recently offering
more assistance to programmers in the detection of
direct interactions among aspects and classes: for
example AJDT visualizes all these interactions in the
development environment, but it is not able to
understand if this interaction can be harmful (i.e. a
conflict) and, as a consequence, raising an appropriate
warning.
The novelty of our work is the usage of a rule engine
for identifying possible conflicts among advices,
methods, and fields; this approach allows developer
creating customized rules to identify potential conflicts
(direct and indirect) on the whole codebase or on a
subset related to an aspect.

JECOM tries to help developers in understanding
the aspect-oriented program in case of indirect
interactions, and evaluating the impact of a new aspect
insertion in a pre-existing codebase.

Further work will consist on validating JECOM on
larger codebase and allowing the user to modify the
knowledge base, removing useless facts, i.e. removing
interactions which have been considered safe during
previous analysis (i.e. using the rule engine as an
expert system).

Acknowledgments

The authors want to thank Alessandro Di Giovanni for
his valuable contribution to this work.

5. References

[1] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.
Lopes, J. M. Loingtier, and J. Irwin, "Aspect-oriented
programming," presented at 11th European Conference
Object-Oriented Programming, 1997.

[2] C. L. Forgy, "Rete: A Fast Algorithm for the Many
Pattern / Many Object Pattern Match Problem". On
Artificial Intelligence 19 (1982), 17-37.

[3] A. J. Bernstein, “Program analysis for parallel
processing”. IEEE Trans. On Electronic Computers.
Ottobre 1966. pp. 757-762.

[4] The Java Rule Engine API (JSR 94) specification. On-
line at http://www.jcp.org/en/jsr/detail?id=94.

[5] M. Rinard, A. Salcianu, and S. Bugrara, “A
Classification System and Analysis for Aspect-
Oriented Programs”. In Proc. 12th Int. Symposium on
the Foundations of Software Engineering (FSE-12),
Newport Beach, USA, Nov. 2004.

[6] F. Tessier, M. Badri, and L. Badri, “A Model-Based
Detection of Conflicts Between Crosscutting Concerns:
Towards a Formal Approach”. Int. Workshop on
Aspect-Oriented Software Development (WAOSD
2004), September 2004, Beijing, China.

[7] Jess project homepage. On-line at
http://herzberg.ca.sandia.gov/jess/

[8] AJDT project. On-line at http://eclipse.org/ajdt
[9] D. Sereni, and O. de Moor, “Static analysis of aspects”.

In Proc. 2nd int. conference on Aspect-Oriented
Software Development, pages 30–39. ACM Press,
2003.

21st IEEE International Conference on Automated Software Engineering (ASE'06)
0-7695-2579-2/06 $20.00 © 2006

	ASE 2006 cs
	ASE-06

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

