

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

To see the final version of this paper please visit the publisher’s website.
Access to the published version may require a subscription.

Author(s): Venezia, Claudio; Falcarin, Paolo.
Article title: Communication Web Services Composition and Integration
Year of publication: 2006
Citation: Venezia, C; Falcarin, P. (2006) ‘Communication Web Services
Composition and Integration’ IEEE Proceedings of International Conference on Web
Services (ICWS-06), September 2006, IEEE Press pp. 523 - 530
Link to published version: http://dx.doi.org/10.1109/ICWS.2006.42
DOI: 10.1109/ICWS.2006.42

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219371663?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://roar.uel.ac.uk/
http://dx.doi.org/10.1109/ICWS.2006.42

Communication Web Services Composition and Integration

 Claudio Venezia Paolo Falcarin
 Telecom Italia Lab Politecnico di Torino
 claudio.venezia@telecomitalia.it paolo.falcarin@polito.it

Abstract

Nowadays, the development of services that span
over both the Internet and telephony networks is
driving significant efforts towards the integration of
services offered by IT providers with telecom operators
ones .Web Services have often been recommended for
providing, composing and realizing Telecom services
but introducing them means facing up with several
challenges.

This work sharpens benefits and drawbacks of Web
Service applications within a Telecom environment
focusing in particular on JAIN SLEE architecture,
which defines a standard environment targeted at
communication-based applications..

1. Introduction

Nowadays telecom service providers are seeking
new paradigms of service creation and execution to
reduce new services time to market and increase
profitability.

The main goal of telecom service providers is the
development of Value Added Services (or next
generation services [1]) that leverage both on the
Internet and on telephony networks, i.e. the integration
of services offered by IT providers with telecom
operators ones.

The main problem is that development of telecom
services has always been constrained by proprietary
interfaces, which increase development and
maintenance costs.

To overcome these constraints the current vertically
integrated networks are expected to migrate to
horizontally layered structures offering open and
standard interfaces; consequently, these goals pose new
requirements on the software development process, on
the platforms hosting these services, and on the
middleware enabling communication among services.

Moreover the reuse and integration of existing IT
services is even made difficult by the increasing
software systems complexity and the different
middleware standards used for communication.

These integration problems can be addressed by
Web Services standards [12,15,16], which are
emerging as a new middleware standard for providing,
composing and integrating IT services [10], but their
introduction in the Telecom domain means facing up
with several challenges.

This paper aims at showing the research and
prototyping activity carried on to provide an effective
composition and integration of Value Added Services
and Web Services.

2. Towards Value Added Services

A value added service [3] aims at encompassing
either communication or enterprise service
components.

The following is an example of a simple
information retrieval target service:

1. The user invokes the service by sending an SMS
whose body contains the information needed to retrieve
the closest merchant of a particular category (e.g.
restaurant, bar or cinema).

2. The service localizes the user, retrieves the
information requested and replies with a SMS
containing the information retrieved.

3. Afterwards the user can send another SMS to be
connected with the found merchant via an audio call.

The former service combines a communication
service (SMS) with an enterprise service, i.e. the
information retrieval services (Yellow Pages Web
Service).

As communication services have particular
performance and availability requirements, it is
difficult to realize such service integration using a
typical application server, which architecture has been
mainly designed for enterprise services.

In fact, enterprise services aim at business
processes, which are typically transactional and
potentially long running.

Instead, communication services have strong real-
time requirements and are based on asynchronous
interactions. Voice mail, call forwarding and ring back
tone are typical examples belonging to this service
category.

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

Moreover while enterprise services are typically
synchronous (RPC Calls) characterized by coarse-
grained events with low frequency, communication
services are typically asynchronous and characterized
by fine-grained events with high frequency.

Within the communication domain, at the control
layer, Session Initiation Protocol [4] is considered the
converging protocol for call and message signaling.
Either fixed or mobile networks will leverage on SIP
for providing integrated capabilities. SIP will improve
the ability to build new services and will play the role
that Web Services (WSDL [16] and SOAP [15]) are
playing in the IT world (the universal glue).

Although they play a similar role in the respective
realms, SIP and SOAP are profoundly different.

For example, a SIP based communication platform
[8] is made up of a set of systems which interact
through a service bus allowing information push based
on a publish/subscribe model.

This platform relies on a SIP Registry which
collects relevant information from a SIP network,
stores and distributes it. This information regards both
service and network elements descriptions. The SIP
Registry is available both for network resources (where
services are running), service managers (watching
services behavior) and service users (interested in
invoking services).

In contrast, next generation service platforms aim at
realizing an effective coexistence between enterprise
and communication services.

In next sections we evaluate if Web Service
technology would help reaching this objective.

3. Communication Web Services

Communication services are usually triggered by
signaling messages like a SIP INVITE or an Instant
message. Communication Web Services [5] are usually
Web Service interfaces of common telecom
functionalities which are triggered by a SOAP
message. They can also exploit different network
resources within the telecom domain and be widely
published and used on the Internet.

For example, this is the list of Communication Web
Services provided in compliance with the relevant
standards (whenever available):

• Third party call: provides the capability to initiate
a call between two actors generated and managed by a
third party.

• Multi media conference: provides the capability to
initiate an audio/video conference with two or more
actors within a session.

• Messaging: a set of Web Services which provide
the capability to send Instant Messages, SMS and
MMS

• Presence: provides the capability to retrieve user
availability information in a network domain.

• Users’ provisioning: provides the capability to
interact with a Data Provisioning DB System by means
of retrieving and storing user profiles information
supporting various communication protocols and
devices.

OMA [14] and ParlayX [11] have been specifying
Web Services interfaces to the most common Telecom
functionalities.

Adapting Telecom functionalities to standard
interfaces (APIs) is not trivial and means losing the
granularity of the proprietary interface. In other words
we gain in terms of service interoperability what we
lose in terms of service capability.

However, the main issue is that most of the
specifications don’t provide support for one of the
main requirement of a Telecom service: asynchronous
interaction.

As a consequence, besides the Service Oriented
Architecture model there is an increasing interest in
Event Oriented Architectures, based on asynchronous
interactions.

In order to obtain fully asynchronous
Communication Web Services, it is crucial having both
an event-based service platform and an event-based
middleware.

For example, the new emerging standard JAIN-
SLEE (Service Logic Execution Environment) [7] aims
at designing an event-based service platform,
overcoming the limitations of J2EE-like application
server, designed only for enterprise services.

On the other hand, many standardization efforts are
currently going on for extending SOAP for
implementing asynchronous interaction style.

Based on the former ideas, a Communication
Application Server (named StarSLEE) inspired to the
JAIN-SLEE specification has been developed, together
with a Service Creation Environment (named StarSCE)
for creating Value Added Services and Communication
Web Services [5].

In the following sections we describe the JAIN-
SLEE standard architecture and the issues regarding
the transformation of a JAIN-SLEE service in a web
service.

4. The JAIN-SLEE Architecture

JAIN SLEE aims at defining a new kind of
application server tailored for deploying value added
services.

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

In particular, a SLEE container is designed for
hosting communication applications while typical
application servers have been designed for enterprise
applications.

Enterprise applications strongly rely on databases
and they are made of heavyweight objects (e.g. EJB)
with a persistent lifetime, transferring data by means of
slow transactions

Such applications typically invoke one another
synchronously (e.g. via Remote Procedure Call, or
Remote Method Invocation) and they usually do not
consider high-availability and performance concerns.

 Instead, the SLEE specification has been designed
for communication applications, a SLEE container
relies on an event based model, with asynchronous
interactions among components.

The design of a SLEE container must meet the
requirements of a telecommunication services, e.g.
handling different kind of events with low latency,
supporting lightweight transactions. Furthermore, a
service deployed on a SLEE container has to be
composed of lightweight components with a short
lifetime, which can be rapidly created, deleted and
updated.

Another important feature of a SLEE service is the
ability of accessing multiple data sources with high
independence of network protocols elements.

Therefore, it must be possible to deploy applications
in the SLEE application environment that use diverse
network resources and signaling protocols.

The integration of a new type of network element,
or external system is satisfied by a Resource Adaptor
Framework that supports integration of network
resources; for example, a SIP server for voice-over-IP
calls and instant messaging, a SMS (Short Message
Service) gateway for communicating with mobile
phones.

Figure 1. StarSLEE communication server

Figure 1 depicts the StarSLEE platform
architecture, which implements the JAIN-SLEE
specification: the SIP resource adaptor triggers the
platform with events originating from the underlying
SIP network. An event router dispatches these events

to existing or new service instances. A service is
composed by various components which interact by
means of events. JAIN SLEE provides a standard
programming model that can be used by the Java
developer community. The programming model has
been designed to simplify the work of the application
developer, promoting software reuse, and ensure that
robust services can be developed rapidly with
minimum configuration effort.

A standard JAIN-SLEE container should be able to
clone application components between processing
nodes in the system as particular processes and nodes
may fail; it has to manage concurrent execution of
application components, and allow application
components to be dynamically upgraded. JAIN SLEE
defines its own component model, which specifies how
service logic has to be built, packaged, and executed,
and how it interacts with external resources.

5. JAIN-SLEE Component Model

The JAIN-SLEE specification includes a
component model for structuring the application logic
of communications applications as a set of object-
oriented components, and for assembling these
components into higher level and more complicated
services.

The SLEE architecture also defines how these
components interact and the container that will host
these components at run-time. The SLEE specification
defines requirements of availability and scalability of a
SLEE platform, even if it does not suggest any
particular implementation strategy.

Applications may be written once, and then
deployed on any application environment that
implements the SLEE specification. The system
administrator of a JAIN SLEE controls the lifecycle
(including deployment, un-deployment and on-line
upgrade) of a service.

The atomic element defined by JAIN SLEE is the
Service Building Block (SBB). An SBB is a software
component that sends and receives events and performs
computations based on the receipt of events and its
current state.

Each SBB is defined by its own SBB-descriptor, an
XML [6] file including information that describes it
(e.g. its name, vendor and version), the list of events it
can fire and receive, and the names of Java classes
implementing the logic of the SBB itself. SBBs are
stateful components since they can remember the
results of previous computations and those results can
be applied in additional computations. SBBs perform
logic based on events received.

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

An event represents an occurrence that may require
application processing. It contains information that
describes the occurrence, such as the source of the
event. An event may asynchronously originate from a
number of different sources, for example an external
resource such as a communications protocol stack,
from the SLEE itself, or from application components
within the SLEE.

Resources are external entities that interact with
other systems outside of the SLEE, such as network
elements (Messaging Server, SIP Server...). A
Resource Adaptor wraps the particular interfaces of a
resource into the interfaces required by the JAIN SLEE
specification.

6. Service composition with StarSCE

In order to provide Value Added Services (VAS)
the service platform must be enhanced with a
composition engine, i.e. a service creation environment
[3] which easily allows building new services by
means of a collection of components. StarSCE allows
the developer to choose the SBBs (Service Building
Block) and link them in a graph structure which is a
graphical representation of the service. A Service
Building Block is either an External IT Web Service
wrapper or a signalling network functionality provider.
In particular, starting from the WSDL interface of a
Web Service, StarSCE consents to automatically create
the correspondent SOAP client wrapped in a new SBB.

The following figure (realized using the StarSCE
graphical service creation environment) shows an
example of a simple service which can be deployed on
the StarSLEE service platform. Moreover given a set
of web services wrapper SBB, StarSLEE can actually
behave as a web service orchestration engine.

Figure 2. Service description

Once a service is graphically composed and the SBBs
have been configured, StarSCE generates an XML file,
called service descriptor.
A service descriptor represents the control-flow graph
of the service composed of different SBBs, each one
defined by its own SBB descriptor.

A service is made up of loosely coupled
components, and it may provide different starting
points, i.e. different SBB instances, each one triggered

by a different kind of event, coming from the resource
adaptors pool.

 Each service instance is then made up of different
SBB instances and one activity context holding
shareable attributes that SBB instances want to share.

 Therefore the state of a service instance can be
represented by attributes stored in an activity context.

 Using StarSCE it is possible to manage the
automatic configuration, dynamic deployment, and
publication of a Value Added Service in a JAIN-SLEE
container.

Figure 3. Service deployment on StarSLEE

Figure 3 shows main entities of StarSLEE
container: a XML service descriptor is sent through th
Service Bus to the Application Server Deployer, which
creates the corresponding service instance (e.g.
TimerService): this service is then running and
listening on the event router, waiting for events coming
from networks underlying the resource adaptors (e.g.
HTTP, SIP).

Telecom domain offers several service description
languages [1], but they have been designed for domain
specific applications and protocols [2]. In the IT
domain, service composition has also been investigated
by the standard body OASIS [13], which has specified
a language to describe orchestration, namely Business
Process Execution Language (BPEL) for WS.

Web Service Orchestration is a standard way to
describe interactions and connections among Web
services defining a higher level business process. This
language is suitable to describe a workflow that is
executed on a central BPEL engine, which controls
execution and message flow.

Our evaluation of BPEL4WS language and related
service execution environments emphasized some
drawbacks in the implementation of many
Communication services using a workflow paradigm
based on Web Service:

• BPEL4WS suits long running business processes
with loose requirements in terms of performance, while
most of telecom services have strong performance
requirements such as low latency time and high
throughput typically not met by BPEL engines.

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

• Component interactions are strongly asynchronous
and Web Services still lack in supporting this
interaction model.

7. Towards Communication Web Service

Transforming a Value Added Service (i.e. a SLEE
service) in a Communication Web Service requires
some modifications to the JAIN-SLEE architecture.

First of all a Web Server must be added for hosting
a SOAP Server (e.g. AXIS [17]). Then, for any service
to be exposed, a Web Service implementation with
related WSDL is provided and it has to interact with
the actual service deployed in the SLEE container.

Therefore, the JAIN-SLEE architecture must be
extended adding a SOAP Resource Adaptor (SOAP-
RA), which acts as a communication bridge between a
SLEE service and its correspondent Web Service
implementation.

An alternative design may be based on adding a
service-specific resource adaptor for each service to be
exported as a web service, but this solution is not
viable: in fact in JAIN-SLEE architecture a resource
adaptor is a wrapper of an external network entity, and
it is designed to be service-independent, because it
must be unaware of which kind of services are
deployed in the SLEE container.

Figure 4. Extended JAIN-SLEE architecture

Once defined the new extended architecture (Figure
4), we can consider two different strategies to export a
SLEE service in a Web Service: a wrapping strategy
and a reengineering strategy.

Using the wrapping approach means considering the
service as a single “black-box” entity which receives
and sends events, meanwhile the reengineering
approach consists in automatically modifying some
parts of the service in order to be exported as a Web
Service.

Following the wrapping strategy implies that the
SOAP-RA should be able to send events the service is

listening to; for example if the target service must be
triggered by means of a SMS, the SOAP-RA should be
able to send this event. Under these assumptions, this
kind of SOAP-RA could send whichever kind of SLEE
events, but this is in opposition to JAIN-SLEE design,
where each Resource Adaptor must only exchange
events related to its own underlying network element.
The SOAP-RA can only send events related to its own
underlying network protocol, thus a SOAP-Event has
been introduced to represent information coming from
whichever Web Service implementation.

Our approach is based on reengineering the value
added service in order to automatically obtain its new
web service version. Every service requires a root SBB
which represents the service entry point (e.g. the red
bordered SBB in Figure 5). Only when a root SBB is
triggered a new service instance is created.

As the Value Added Service has been previously
designed for listening to a particular event type, adding
a new root SBB becomes necessary, i.e. the
ReceiveSOAP SBB. The SOAP request is received
from the SOAP-client through the Web Service
Implementation and forwarded by the SOAP RA to a
root SBB by means of a SOAP event.

 The new root SBB (ReceiveSOAP) is then the
service entry point which extracts data from the SOAP-
Request and put them in the activity context.

Figure 5. ReceiveSOAP SBB

The introduction of a new ReceiveSOAP SBB in
place of the former root is not enough. In fact,
reengineering a service by adding a new SBB requires
a deeper analysis of service structure to find out
dependencies among SBBs, both at the control-flow
level and at the data-flow one.

For example, looking at the service in figure 2, we
can identify different types of SBBs. The TPCC
(Third-Party Call-Control) is a type of SBB
representing the actual service logic implementation
(we can call it “core SBB”) and other SBBs which
main activity is the communication with external
entities, that we call “connector SBBs”. Among these
ones we can further distinguish SBB receiving data
(i.e. the RecvSMS which receives an SMS coming
from the SMS-resource adaptor) from other ones
sending out data (i.e. the SendSMS which sends an
SMS to the SMS-resource adaptor): the ones receiving
data can be labeled “service heads”, because they are

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

typically performed at the beginning of service
execution, while the others sending data can be labeled
“service tails”, because they are typically performed at
the end of service execution.

A service can be described by a direct cyclic graph,
where a node corresponds to a SBB instance, and there
is an arc from node A to node B only if the same type
of event is sent by A and received by B.

Thus “service heads” are nodes with no incoming
arcs, while “service tails” are nodes with no outgoing
arcs.

For example in the service of figure 6 there are
three service heads (ReceiveIM_0, ReceiveIM_1, and
ReceiveIM_2) and two service tails (SendIM_0, and
Echo_0).

Figure 6. Service heads and service tails

On the other hand, the data-flow of a service
instance can be deduced analyzing which attributes are
read from (or written in) the activity context. The
content of the activity context instance represents the
state of the service instance at a particular time.

The attributes stored in the activity context by each
SBB instance can be obtained from the XML service
descriptor file.

In practice, reengineering the service to be
transformed in a Web Service, means making some
design decisions:

1. Which service heads must be replaced by a
ReceiveSOAP SBB.

2. Which service attributes in the activity context
must be mapped to parameters of Web Service
operations.

3. Which interaction style to use between SOAP
clients and the Communication Web Service.

4. Which service attributes in the activity context
must be considered as a result to be sent back to SOAP
clients.

5. Depending on the chosen interaction style, how
service results should be transferred to the SOAP
clients.

Once the developer makes these decisions, StarSCE
can automatically generate the corresponding WSDL

interface, the Web Service Implementation Java code
to be deployed on the Web container, and the code of
the ReceiveSOAP SBB.

Once a Communication Web Service has been
deployed, it is provided with as many operations as the
number of the available service heads. Invoking an
operation mapped to a root service head means
activating an instance of the corresponding service.
The user can then interact with the service instance by
means of invoking operations mapped on any of the
other service heads.

For example, in figure 7 the original service of
figure 6 has been reengineered, applying the following
changes: the root SBB has been replaced by the SBB
ReceiveSOAP_1, the other service head ReceiveIM_1
has been replaced by another ReceiveSOAP SBB
instance, the two service tails have been substituted
two SendSOAP SBBs.

Figure 7. New Service heads and tails

A SendSOAP SBB is used to send service results
back to the SOAP-RA sending a SOAP event
containing attributes in the activity context, previously
selected as service result.

StarSLEE

SOAP RA

SIP RA

HTTP RA

Service Bus

AS Deployer

Event Router

Web Server
SOAP Server

Service

SOAP Client

RecSOAP
Timer

SendSOAP
Service

SOAP-Event

Request SOAP

SessionId

SessionId

StarSLEE

SOAP RA

SIP RA

HTTP RA

Service Bus

AS Deployer

Event Router

Web Server
SOAP Server

Service

SOAP Client

RecSOAP
Timer

SendSOAP
Service

SOAP-Event

SOAP-Event

Request SOAPRequest SOAP

SessionId
SessionId

SessionIdSessionId

Figure 8. Example scenario

Figure 8 shows how a Communication Service is
accessed via SOAP:

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

1. The SOAP client request reaches the Web
Service implementation of the SLEE Service;

2. The Web Service collects the parameters and
delivers them to the SOAP RA;

3. The SOAP RA in turn identifies the
corresponding reengineered SLEE Service and triggers
it by generating the proper SOAP event, containing the
service name and the parameters of the invoked Web
Service operation;

4. The root SBB (ReceiveSOAP) receives the
SOAP event, creates the service instance, and then it
copies the operation’s parameters in the service activity
context;

5. The service is executed and results are sent to
the SOAP-RA with a SOAP event.

At this point, using a synchronous interaction style
implies that SOAP-RA has to provide two more
operations: getStatus and getResult. Invoking the
former operation, while a service instance is running,
allows SOAP clients to gain information on the state of
its execution, polling on the latter returns service
results whenever available.

 Another important feature of SOAP RA is keeping
a service session. In fact a session-ID is created and
delivered to the SOAP client and it has to provide it for
any further operation invocation. This session-ID is
used to keep the link between the Web Service client
and the corresponding StarSLEE service instance.

8. Service discovery

Service discovery and advertising are key facets in a
Telecom environment. A SIP network leverages on its
native publish-subscribe model to “push” new services
information to clients belonging to a given network
domain.

The IT domain still lacks in discovery standards and
solutions. Nevertheless a communication service
platform aiming at composing and integrating Web
Services is fully concerned with static and dynamic
discovery of web-services. Furthermore the discovery
process has to sort candidate services that fulfils given
functionality and quality parameters, and can be
combined in order to realize value added services.
Therefore, new processes, methods, and tools need to
be provided to extend current software development
practices to support these requirements. Discovering
Web Services dynamically consists in identifying
alternative services to replace services already
participating in a given composition that may become
unavailable or fail to meet specific functional or
quality requirements during service execution. It is a
challenging activity since it requires efficient discovery
of alternative services that precisely match the

functional and quality requirements needed and
replacement of these services during run-time
execution in an efficient and non-intrusive way.

At its foundation, UDDI is a group of specifications
that lets Web service providers publish information
about their Web services and it lets Web service
discoverers or requesters search that information to
find a Web Service and run it.

UDDI specification is then focused on the
information model that enables a suitable
categorization of the published services, but it does not
address the following important requirements in
Telecom domain:

• Late binding: since service references are
published as static data, Web Services are forced to be
up and running continuously on a given URL. No
dynamic instantiation of services and references is
therefore possible.

• Personalization: UDDI does not support any form
of personalization, i.e. the result of a specific query is
the same for any requestor.

• Authorization: there is no mechanism in UDDI
that allows defining and enforcing complex
authorization policies for service requestors when
inquiring the registry and retrieving the details of the
services.

• Reference validity: UDDI does not guarantee that
the service reference returned to the application (in
response to a Get Service operation) really points to a
Web Service.

In order to meet these requirements a “UDDI
proxy” has been prototyped (see Figure 9). The proxy
routes queries from a client application to the UDDI
registry and provides additional and personalized
capabilities, mediating the access to the actual UDDI
registry.

The proxy can control the access to the information
contained in the UDDI Registry allowing/denying the
access, basing on a Service Requestor’s Authorization
Profile. The UDDI proxy is also able to dynamically
create the Web Services instances, guaranteeing the
existence of the Web Service, and to personalize the
Web Service instances based on the Service Requestor
identity.

Service
Requestor

UDDI
Proxy

Web
Service
Instance

WS
Factory
Service

Authorization
Server

Profiles

UDDI
Registry

Service Platform

ne
w

Figure 9. UDDI proxy architecture

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

The proxy exposes standard UDDI interfaces to the
applications, so that the interactions with it are right
the same as the ones with ordinary UDDI registry (i.e.
UDDI clients use the same UDDI API). The solution
has minimal impact on the pre-existing architecture
since it does not require modifying the existing
elements. In fact it only implies to add a separate node
(the proxy), reconfiguring the applications by
providing the reference to the new node and by
configuring the UDDI registry to accept inquiries from
the proxy.

9. Conclusions and Future Work

There is an increasing interest in introducing Web
Service technology in telecom service platforms, but to
get to a successful applicability to this domain many
weaknesses have still to be overcome. A
communication web service platform would be more
familiar for Internet application developers, but it
could imply some limitations in the usage of the
network capabilities in term of provided features.

Meanwhile emerging event based asynchronous
engines (such as JAIN-SLEE) are designed for telecom
environment but capable of integrating also Web
Services.

Our work shows both benefits and drawbacks in
supplying a telecom application server (inspired to
JAIN-SLEE) with Web Services facilities to enable
Value Added Services composition and execution.

Aside the SOAP solution described in this work, we
are currently working on an enhanced version of the
SOAP resource adaptor in accordance with Web
Service Notification [18] family of specifications,
which standardize the way Web services can interact
using the Notification pattern, which specify a way for
consumers to subscribe to a producer for notifications
whenever a particular event occurs.

Web Services can act asynchronously as long as
they make their own state persistent. This was reached
referring to the Web Service Resource Framework
(WSRF) family of specifications [17], which defines a
generic and open framework for modeling and
accessing stateful resources using Web services.

In the asynchronous scenario, a SOAP server
redirects inbound messages to the SOAP-RA, which
creates a SOAP event to be dispatched by means of the
event router of the JAIN-SLEE container. Then,
whenever a service needs to contact back the client it
triggers an event to the SOAP RA which calls back the
client.

Acknowledgments

The authors want to thank Roberto Antonini, GianPiero Fici,
Anna Picarella, and Alessia Salmeri for their valuable
contribution to this work, which has been partially funded by
the European Commission, under contract IST-2002-2.3.2.3,
project SeCSE (Service Centric Systems Engineering).

10. References

[1] C.A. Licciardi, and P. Falcarin, “Analysis of NGN service
creation technologies”, Annual Review of Communications
vol. 56, IEC, 2003, pp 537-551.
[2] C.A. Licciardi, and P. Falcarin, “Next Generation
Networks: The services offering standpoint”. In
Comprehensive Report on IP services, Special Issue of the
IEC, 2002.
[3] Glitho, R.H., Khendek, F., De Marco, A., “Creating
Value Added Services in Internet Telephony: An Overview
and a Case Study on a High-Level Service Creation
Environment”. In IEEE Transactions on Systems, Man, and
Cybernetics - Part C: Applications and Review, Vol. 33, n. 4,
November 2003.
[4] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston,
J. Peterson, R. Sparks, M. Handley, E. Schooler, SIP: Session
Initiation Protocol, RFC 3261, June 2002.
[5] A. Baravaglio, C.A. Licciardi, C. Venezia. “Web Service
Applicability in Telecommunications Service Platforms”. In
Proc. of the International Conference on Next Generation
Web Services Practices, Seoul, Korea, August 2005
[6] XML (eXtensible Mark-up Language) specification. On-
line at http://www.w3.org/XML/
[7] JAIN SLEE (JSLEE) v1.1, Java Specification Request
(JSR) 240, 2005, http://www.jcp.org/jsr/detail/240.jsp
[8] G. Valetto, L.W. Goix, G. Delaire, “Towards Service
Awareness and Autonomic Features in a SIP-enabled
Network”. In Proc. of the Workshop on Autonomic
Communication (WAC2005), Athens, Greece, October 2005.
[9] “Introduction to UDDI: Important Features and
Functional Concepts”, OASIS, October 2004
[10] J. Chung, K. Lin, R. Mathieu, “Web Services
Computing: Advancing Software Interoperability”, IEEE
Computer, October 2003, pp 35-37.
[11] The Parlay Group: Parlay X Working Group, “Parlay X
Web Services White Paper”, The Parlay Group, 2002.
[12] UDDI Spec Technical Committee, “UDDI Version
3.0.2”, OASIS, 2004
[13] OASIS, “Business Process Execution Language for Web
Services (Version 1.1)”, OASIS, 2003
[14] Open Mobile Alliance (OMA) specifications. On-line at
http://www.openmobilealliance.org
[15] SOAP (Simple Object Access Protocol) specifications.
On-line at http://www.w3.org/TR/soap/
[16] WSDL (Web Service Definition Language)
specification. On-line at http://www.w3.org/TR/wsdl
[17] Web Service Resource Framework specifications. On-
line at http://www.oasis-open.org/committees/wsrf
[18] Web Service Notification specifications. On-line at
http://www.oasis-open.org/committees/wsn

IEEE International Conference on Web Services (ICWS'06)
0-7695-2669-1/06 $20.00 © 2006

	ICws 2006 cs
	ICWS-06

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

