

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

To see the final version of this paper please visit the publisher’s website.
Access to the published version may require a subscription.

Author(s): Mouratidis, Haralambos., Weiss, Michael., Giorgini, Paolo.
Article Title: Modelling Secure Systems Using An Agent Oriented Approach and
Security Patterns
Year of publication: 2006
Citation: Mouratidis, H., Weiss, M., Giorgini, P. (2006) ‘Modelling Secure Systems
Using An Agent Oriented Approach and Security Patterns’ International Journal of
Software Engineering and Knowledge Engineering 16 (3) 471-498
Link to published version: http://dx.doi.org/10.1142/S0218194006002823
DOI: 10.1142/S0218194006002823

Information on how to cite items within roar@uel:
http://www.uel.ac.uk/roar/openaccess.htm#Citing

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219371641?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://roar.uel.ac.uk/
http://dx.doi.org/10.1142/S0218194006002823
http://www.uel.ac.uk/roar/openaccess.htm#Citing

International Journal of Software Engineering and Knowledge Engineering
c© World Scientific Publishing Company

MODELLING SECURE SYSTEMS USING AN AGENT-ORIENTED
APPROACH AND SECURITY PATTERNS

HARALAMBOS MOURATIDIS

School of Computing and Technology, University of East London,

Barking Campus, Longbridge Road, RM8 2AS, England

h.mouratidis@uel.ac.uk

MICHAEL WEISS

School of Computer Science, Carleton University,

1125 Colonel By Dr, Ottawa, Ontario K1Y 0Z3, Canada

weiss@scs.carleton.ca

PAOLO GIORGINI

Department of Information and Communication Technology, University of Trento,

Via Sommarive 14, I-38050, Povo, Trento, Italy
paolo.giorgini@dit.unit.it

In this paper we describe an approach for modelling security issues in information sys-

tems. It is based on an agent-oriented approach, and extends it with the use of security
patterns. Agent-oriented software engineering provides advantages when modeling se-

curity issues, since agents are often a natural way of conceptualizing an information

system, in particular at the requirements stage, when the viewpoints of multiple stake-
holders need to be considered. Our approach uses the Tropos methodology for modelling

a system as a set of agents and their social dependencies, with specific extensions for

representing security constraints. As an extension to the existing methodology we pro-
pose the use of security patterns. These patterns capture proven solutions to common

security issues, and support the systematic and structured mapping of these constraints
to an architectural model of the system, in particular for non-security specialists.

Keywords: Agent-oriented software engineering, security, patterns, Tropos

1. Introduction

Modern information systems support critical worldwide infrastructures such as
transportation, finance and communication. Consequently, critical and sensitive in-
formation is stored on such systems. As a result, it is widely accepted that security is
of particular importance to these information systems. Moreover, it has been argued
that in order to help towards the development of secure information systems, secu-
rity concerns must inform all phases of the development process of an information
system.12 However, dealing with security concerns is not simple. This is mainly due
to the following reasons: (1) non-security experts are involved in the development

1

2 H. Mouratidis, M. Weiss, and P. Giorgini

of systems that require knowledge of security; (2) many different concepts are used
between security specialists and software engineers; (3) there is an ad hoc approach
towards security; (4) both systems and security engineering are quite complex; and
(5) it is difficult to fully test the proposed solutions at the design level.

As a result, researchers have initiated work to address these problems (see Sec-
tion 7 for an overview). However, all of these approaches consider security as a
one-dimensional problem, that is, they only provide solutions to isolated problems.
We believe that the integration of agent-oriented software engineering and secu-
rity patterns represents an effective solution to this concern. That is mainly due
to the appropriateness of agent-oriented approaches for dealing with security is-
sues in information systems, and the appropriateness of patterns for transferring
security-related knowledge to developers that are not security experts.

Security requirements are mainly obtained by analysing an organization’s at-
titude towards security and after studying its security policy. An agent-oriented
perspective allows us to model the objectives of multiple stakeholders and their
interactions, and to analyze how security requirements propagate to the rest of
the system. In addition, an agent-oriented view is perhaps the most natural way
of characterising security issues in software systems. Characteristics, such as au-
tonomy, intentionality and sociality, provided by the use of agent-orientation allow
developers to first model the security requirements at a high level, and then incre-
mentally transform these high-level requirements to security mechanisms.

In our previous work we described an extension to the agent-oriented soft-
ware engineering methodology Tropos for modelling security issues in information
systems.21,22 In this paper we propose the use of security patterns as a complement
to this methodology. Security patterns capture design experience and proven solu-
tions to security-related problems in such a way that can be applied by non-security
experts.13 Security patterns also prevent ad hoc solutions by helping apply proven
solutions in a systematic and structured way. In addition, they introduce abstraction
layers which help closing the gap between security experts and developers.

The rest of the paper is structured as follows. Section 2 describes the agent-
oriented development methodology Tropos enhanced with security concepts to en-
able it to model security issues throughout the development phases of an information
system. In Section 3 we introduce a case study, the electronic Single Assessment
Process (eSAP) system — an integrated health and social care information system
for the assessment of the needs of older people for which security is an important
concern — that demonstrates the use of these security extensions. In Section 4 we
present a set of security patterns, and in Section 5 we demonstrate, using the eSAP
system as an example, how these patterns can be applied within the architectural
design phase of the Tropos methodology. Section 6 provides a formal model of the
completeness of the pattern language. Section 7 presents a discussion of related
work, and Section 8 concludes the paper and outlines directions for future work.

Modelling Secure Systems Using an Agent-Oriented Approach and Security Patterns 3

2. Agent-Orientation and the Tropos Methodology

Agent-Oriented Software Engineering (AOSE) is emerging as a powerful, new
paradigm for the development of information systems. Its major modeling construct
is the agent, which demonstrates properties such as autonomy, intentionality, social-
ity, identity and boundaries, strategic reflectivity, and rational self-interest.29 As a
result, agent-orientation provides a higher level of abstraction than other software
development paradigms, such as object-orientation. However, an important point
of agent-oriented software engineering is that its use for the analysis and design of
a system does not necessarily impose the use of agents in the implementation.

Tropos is a development methodology tailored to the description of the organisa-
tional environment of a system and the system itself.6 Tropos emphasizes the early
requirements analysis that precedes requirements specification, addressing the need
to understand how and why the intended system would meet the organisational
goals. This allows for a more refined analysis of system dependencies, leading to a
better treatment not only of the system’s functional requirements but also of its
non-functional requirements, such as security, reliability, and performance.

Tropos adopts the i* modelling framework, which uses the concepts of actors,
goals, tasks, resources and social dependencies for defining the obligations of actors
(dependees) to other actors (dependers).28 Actors have strategic goals and intentions
within the system or the organisation and represent (social) agents (organisational,
human or software), roles or positions (a set of roles). A goal represents the strategic
interests of an actor. We differentiate between hard goals (or simply goals) and soft
goals. Soft goals represent non-functional requirements and have no clear definition
or criteria for deciding on whether they are satisfied or not. An example of a soft
goal is “the system should be scalable”. A task represents a way of doing something.
Thus, for example a task can be executed in order to satisfy a goal. A resource
represents a physical or an informational entity, while a social dependency between
two actors indicates that one actor depends on another to accomplish a goal, execute
a task, or deliver a resource. Figure 1 shows the notation for these concepts.

Although Tropos was not conceived with security in mind, a set of security con-
cepts, such as security constraint, secure entities and secure dependencies have been
proposed by Mouratidis that allow Tropos to model security aspects throughout the
full development process.21,22 A security constraint is defined as a constraint that
is related to the security of the system, while secure entities represent any secure
goals/tasks/resources of the system. Secure goals are introduced to the system to
help in the achievement of a security constraint. A secure goal does not define
specifically how the security constraint can be achieved, since (as in the definition
of a goal) alternatives can be considered. However, this can be modeled as a secure
task, which secure task represents a particular way for satisfying a secure goal.

A secure dependency introduces security constraints, proposed either by the
depender or the dependee in order to successfully satisfy the dependency. Both the
depender and the dependee must agree on these constraints for the dependency

4 H. Mouratidis, M. Weiss, and P. Giorgini

Fig. 1. Notation used by the Tropos modelling framework. It uses the concepts of actors, goals,

tasks, resources and social dependencies for defining the obligations between actors.

Fig. 2. Extensions to the Tropos notation for modelling security concepts.

to be valid. The depender expects the dependee to satisfy the security constraints,
while the dependee will make an effort to deliver the dependum by satisfying the
constraints. The security concepts added to Tropos are shown in Figure 2.

Tropos covers five main software development phases:6

• early requirements analysis, concerned with the understanding of a problem
by studying an existing organisational setting;

• late requirements analysis, where the system is described in its operating
environment, along with relevant functions and security requirements;

• architectural design, where the global system architecture is defined in
terms of subsystems, interconnected through data and control flows;

• detailed design, where each architectural component is defined in terms of
inputs, outputs, control, and security aspects; and

• implementation, during which the system components are implemented ac-
cording to the previous phases (not necessarily agent-based).

Modelling Secure Systems Using an Agent-Oriented Approach and Security Patterns 5

Fig. 3. Actor diagram for the eSAP system.

3. Using the Security Extensions of the Tropos Methodology

To demonstrate how the above security concepts and procedures can be used in
the development of secure information systems, we consider the electronic Single
Assessment Process (eSAP) system, an integrated health and social care information
system for the effective care of older people.23 Security is an important concern for
eSAP, since security breaches of such a system might result in personal and health
information to be revealed, which could lead to serious consequences.

3.1. Early Requirements Analysis

During the early requirements analysis phase, the goals, dependencies and the se-
curity constraints between the stakeholders (actors) are modeled with the aid of an
actor diagram.6 Such a diagram involves actors and the dependencies between the
actors. Some of the actors involved in the eSAP system along with their dependen-
cies and security constraints are shown in Figure 3.

However, an actor diagram does not provide an analysis of the individual actor’s
goals and the security constraints imposed on them. This information can be mod-
elled with the aid of rationale diagrams.6 In a rationale diagram, an actor’s goals

6 H. Mouratidis, M. Weiss, and P. Giorgini

Fig. 4. Rationale diagram for the Older Person actor.

and security constraints are explicitly analysed. A dashed circle encloses the actor.
Figure 4 illustrates the rationale diagram of the Older Person actor.

3.2. Late Requirements Analysis

Once the actors have been analysed and their goals, dependencies and security
constraints identified, we can proceed to the late requirements analysis phase. In
this phase, the functional, security, and other non-functional requirements for the
system to be are elaborated. The system to be is introduced as one or multiple
actors that have a number of dependencies with the other actors of the organization
(as defined during the early requirements phase). For example, the eSAP system
contributes to the goals of the stakeholders as shown in Figure 5.

The introduced system (the eSAP system in our case study) is further anal-
ysed using the same concepts used for the analysis of the other actors. Figure 6
shows a rationale diagram of the eSAP system. To satisfy the security objectives of
the system, different security constraints are imposed. In our example, the security
constraints have been derived from the security policy for medical information sys-
tems identified by Anderson.2 Then, the security constraints are further analysed
according to security constraint analysis.21,22

For instance, by analysing the Keep System Data Private security constraint in
Figure 6, we derive that tasks such as Check Access Control, Check Authentication,

Modelling Secure Systems Using an Agent-Oriented Approach and Security Patterns 7

Fig. 5. Actor Diagram including the eSAP system as an actor.

and Check Information Flow must be achieved in order to fulfill this security con-
straint. Each of those tasks can be achieved by considering different alternatives.
For example, Check Authentication can be achieved in three different ways: Check

Password, Check Digital Signature, or Check Biometrics.
The introduced system (the eSAP system in our case study) is further anal-

ysed using the same concepts used for the analysis of the other actors. Figure 6
shows a rationale diagram of the eSAP system. To satisfy the security objectives of
the system, different security constraints are imposed. In our example, the security
constraints have been derived from the security policy for medical information sys-
tems identified by Anderson.2 Then, the security constraints are further analysed
according to security constraint analysis.21,22

4. Security Patterns for Multiagent Systems

Using the security-oriented extension of the Tropos methodology we have identified
the security requirements of the system during early and late requirements analysis.
The next phase of the methodology is the architectural design phase. During this
phase, the requirements are transformed into a design. However, as discussed in

8 H. Mouratidis, M. Weiss, and P. Giorgini

Fig. 6. Rationale diagram for the eSAP system.

Modelling Secure Systems Using an Agent-Oriented Approach and Security Patterns 9

Agency Guard

Agent Authenticator

Access ControllerSandbox

ensure agent's identity

if not authenticated by
a trusted source

need to restrict access to the
agency's resources

Fig. 7. Roadmap of the pattern language for secure agent systems

Section 1 for a developer without knowledge of security this could be a very dif-
ficult task, possibly resulting in the development of a non-secure system. For this
reason we introduce security patterns. Patterns capture existing proven experience
in software development and help to promote best design practices.9

Patterns are often organized in the form of pattern languages. A pattern language
is a set of closely related patterns that guides the developer through the process of
designing a system. Using a pattern language, a design starts as a “fuzzy cloud”
that represents the system to be realized. As patterns are applied, parts of the
system come into focus, each pattern suggesting new patterns to be applied that
refine the design, until no more patterns can be applied.5

A pattern language for the development of secure agent-based systems should
employ agent-oriented concepts, such as intentionality, autonomy, sociality and iden-
tity. The structure of a pattern should be described not only in terms of collabo-
rations and the message exchange between the agents, but also in terms of their
social dependencies and intentional attributes, such as goals and tasks. This allows
for a complete understanding of the pattern’s social and intentional dimensions.

Our pattern language has four patterns: Agency Guard, Agent Authenticator,
Sandbox, and Access Controller. Figure 7 provides a “roadmap” of the pattern
language. The arrows in the roadmap show dependencies between patterns, and
point from one pattern to the patterns that developers may want to consult once
this pattern has been applied. The roadmap thus suggests to begin the architectural
design with the Agency Guard pattern. The annotations on the arrows summarize
the rationale for selecting a pattern in the context of another pattern.

We use the Alexandrian format for organizing each pattern.3 In this format, the
sections of a patterns are context, problem and forces, solution, and rationale, each
section set off from the next by a set of stars. Brief descriptions of the problem and
solution are put in boldface, followed by more detailed discussions. The rationale
section is organized into benefits, liabilities, and related patterns.

10 H. Mouratidis, M. Weiss, and P. Giorgini

4.1. Agency Guard

. . . a number of agencies exist in a network. Agents from different agencies must
communicate with each other, or exchange information. This involves the movement
of some agents from one agency to another, or requests from agents belonging to
one agency for resources belonging to another agency.

A malicious agent that gains unauthorized access to the agency can dis-
close, alter or, generally, destroy data residing in the agency.

Many malicious agents will try to gain access to agencies that they are not allowed
to access. Depending on the level of access the malicious agent gains, it might be
able to completely shut down the agency, or exhaust the agency’s computational
resources, and thus deny services to authorised agents. The problem becomes the
more severe the more backdoors there are to an agency, enabling potential malicious
agents to attack the agency from many places. On the other hand, not all agents
trying to gain access to the agency must be treated as malicious, but rather access
should be granted based on the security policy of the agency.

Therefore:

Ensure that there is only a single point of access to the agency.

When a Requester Agent wishes to access resources of an Agency or move to this
agency, its requests must be forwarded through an Agency Guard that is responsible
for granting or denying access requests according to the security policy of the agency.
The Agency Guard is the only point of access to the Agency, and cannot be bypassed,
that is, all access requests must go through the Agency Guard. In traditional terms,
the concept of an Agency Guard is referred to as a monitor.1

The structure of the pattern in terms of the actors involved and their social
dependencies is shown in Figure 8. The remaining dependencies are as follows.
The Agency depends on the Agency Guard to grant or deny access to the Agency.
The Agency Guard will grant or deny access according to the security policy of the
Agency, and depends on the Agency to obtain this security policy.

Benefits:

• Only the Agency Guard needs to be aware of the security policy, and it is
the only entity that must be notified if the security policy changes.

• Being the single point of access, only the Agency Guard must be tested for
correct enforcement of the agency’s security policy.

Liabilities:

Modelling Secure Systems Using an Agent-Oriented Approach and Security Patterns 11

Fig. 8. Structure of the Agency Guard pattern.

• A single point of access to the agency can degrade the performance of the
agency (that is, the response time for handling access requests).

• The Agency Guard is a single point of failure. If it fails, the security of the
agency as a whole is at risk.

Related patterns:

• Agent Authenticator – ensures the identity of the Requester Agent.

4.2. Agent Authenticator

. . . you are using Agency Guard to protect access to an agency or its resources.
To be allowed access, agents must be authenticated, that is, they must provide
information about the identity of their owners.

Many malicious agents will try to masquerade their identity when re-
questing access to an agency.

If such an agent is granted access to the agency, it might try to breach the agency’s
security. In addition, even if the malicious agent fails to cause problems in the
security of the agency, the agency under attack will no longer trust the agent im-
personated by the malicious agent.

Therefore:

12 H. Mouratidis, M. Weiss, and P. Giorgini

Fig. 9. Structure of the Agent Authenticator pattern.

Authenticate agents as they enter the agency.

Requester Agents have to be authenticated by the Agency. By authenticating the
agent, the Agency Guard makes sure it comes from an owner that is trusted by the
Agency. Each Requester Agent’s owner and each Agency have a public/private key
pair. The Agent Authenticator can authenticate the Requester Agent in two ways: the
agent can be digitally signed with the owner’s private key, or with the private key
of the Agency in which the agent resides. In order for the second approach to work,
mutual trust must be established between the sending and receiving agencies (each
Agency can be set up so it has a list of trusted agencies). If the Agent Authenticator

does not trust the Agency from which the agent originates, it can reject the agent,
or accept it with minimal privileges and execute it in a Sandbox.

The structure of the pattern is shown in Figure 9. The Agency Guard depends on
the Agent Authenticator to authenticate the agent, and, in turn, the Agent Authen-

ticator has to receive the request from the Agency Guard. The Agent Authenticator

has to send the notification to the Agency Guard once the agent is authenticated.

Benefits:

• Since authentication concerns are dealt with in a single location, it is not
necessary to provide each agent with its own authentication mechanism.

• The use of an Agent Authenticator ensures that Requester Agents are au-
thenticated, before they can request a resource from the agency.

Modelling Secure Systems Using an Agent-Oriented Approach and Security Patterns 13

• When implementing the system, only the Agent Authenticator must be
checked for correct enforcement of the agency’s security policies.

Liabilities:

• The Agent Authenticator is a single point of failure. If it fails, the security
of the agency as a whole is at risk.

Related patterns:

• Sandbox – allows running an agent that could not be authenticated with
minimal privileges.

• Access Controller – restricts access to the agency’s resources.

4.3. Sandbox

. . . you are using Agent Authenticator to ensure the requester agent’s identity, but
the requester agent cannot be properly authenticated. This can be the case either
when the agent could not be authenticated, or if it has been authenticated by an
agency that the receiving agency does not trust.

An agency is most likely exposed to a large number of malicious agents
that will try to gain unauthorized access to it.

Although the agency will try to prevent access to those agents, it is possible that
some of them might be able to gain access to the agency’s resources. Thus, it is nec-
essary for the agency to operate in a manner that will minimize the damage which
can be caused by unauthorized agents gaining access. In addition, some unautho-
rized agents might be allowed access by the agency in order to provide services the
agency’s agents cannot provide. Thus, the agency must be cautious to accept such
unauthorized agents without putting its security at risk.

Therefore:

Execute the agent in an isolated environment that has full control over
the agent’s ingoing and outgoing messages.

Implementing this principle prevents any malicious code from doing something it is
not authorised to do. The code is allowed to destroy anything within a restricted en-
vironment (a sandbox), but it cannot touch anything outside. The concept is similar
to the Java security model, and the chroot environment in UNIX. The Sandbox ob-
serves all system calls made by the code, and compares them to the agency-defined
policy. If any violations occur, the Agency can shut down the suspicious agent.

The structure of the pattern is shown in Figure 10. The Agency depends on the
Sandbox to observe and control the Requester Agent’s activities, and the Sandbox

depends on the Agency to know the agency’s policies for agents sent to the Sandbox.

14 H. Mouratidis, M. Weiss, and P. Giorgini

Fig. 10. Structure of the Sandbox pattern.

Benefits:

• Agents not authorised but valuable for the agency can be executed without
compromising its security.

• The agency can identify possible attacks (by observing the actions of the
agents in the sandbox).

Liabilities:

• Some computational resources of the agency might be diverted to non-useful
actions, if non-useful agents are sandboxed.

• The use of a sandbox introduces an extra layer of complexity.

Related patterns:

• N/A

4.4. Access Controller

. . . you are using Agent Authenticator to ensure the requester agent’s identity. Now
you need to restrict access to the agency’s resources. Many different agents can exist
in an agency, which require access to the agency’s resources in order to achieve their
operational goals. However, they should can only access specific resources.

Modelling Secure Systems Using an Agent-Oriented Approach and Security Patterns 15

Fig. 11. Structure of the Access Controller pattern.

Agents belonging to an agency might try to access resources that they
are not allowed to access.

Allowing this to happen might lead to serious problems such as the disclosure of
private information, or the alteration of sensitive data. In addition, different security
privileges will be applied to different agents in the agency. The agency should take
into account its security policy and consider each access request individually.

Therefore:

Intercept all requests for the agency’s resources.

The agency uses an Access Controller to restrict access to each of its resources. Thus,
when a Requester Agent requests access to a resource, the request is dispatched to
the Access Controller, which then checks the security policy, and determines whether
the access request should be approved or rejected. Only if the request is approved,
is the request forwarded to the corresponding Resource Manager.

The structure of the pattern is shown in Figure 11. The Requester Agent depends
on the Resource Manager for the resource, and the Agency depends on the Access

Controller for checking the request. The Access Controller, in turn, depends on the
Agency for receiving the security policy and for forwarding the request, which it
forwards to the Resource Manager in case the request is approved.

16 H. Mouratidis, M. Weiss, and P. Giorgini

Benefits:

• The agency’s resources are used only by agents allowed to access them.
• Different policies can be used for accessing different resources.

Liabilities:

• There is a single point of attack. If the Access Controller is compromised,
the system’s access control system fails.

Related patterns:

• N/A

4.5. Qualitative Evaluation of the Pattern Language

An important question that might be raised is how well the proposed language
prevents developers from building systems that contain security holes. One answer
to this question is to evaluate how well our language follows the guiding principles
for secure information systems design developed by Viega and McGraw.26

In accordance with these principles, the different patterns of the language allow
developers to break up the security of the system into different components (prin-
ciple of comparmentalization) that are simple to develop and manage (principle of
keeping the system simple). For example, the Agency Guard pattern indicates that
there is only one point of access to the system, considerably reducing the design
effort required if there was more than one way to access the system.

Moreover, the application of the patterns of the language to the development
of a system ensures that in case of failure the system will fail safely (principle of
failing securely), since if one component fails, security is still achieved with the rest
of the patterns. For example, if the Authenticator fails, the Sandbox pattern ensures
that any agent arriving at the system will be running in a restricted environment
without any privileges that might endanger the security of the system.

To protect a system, the pattern language proposes different levels of security
including authentication, access control, and sandboxing, and as a result it promotes
the principle of practicing defence in depth by avoiding a monolithic solution that
would provide security only at one level of defence. The Access Controller pattern
ensures that agents are allowed access only to resources they need, and as a result
it practices the principle of least privilege. In addition, the Authenticator pattern
ensures that only authorised entities have access to specific information, thus use
of the pattern satisfies the principle of promoting privacy.

Finally, the language adheres to the principle of community resources by em-
ploying patterns that were derived from well-tested agent security solutions.

Although these principles cannot guarantee 100% security (no approach can
guarantee that), their authors estimate that they cover about 90% of all potential

Modelling Secure Systems Using an Agent-Oriented Approach and Security Patterns 17

problems by providing help in three different ways: by preventing common errors
during the development process; by coping with unknown attacks; and by facilitating
the understanding of security patterns and providing security insight.

5. Applying the Security Patterns

In this section we describe how the security patterns can be employed during the
architectural design stage of the Tropos methodology. The integration of the pat-
terns at this stage of the methodology will help identify additional actors to fulfill
the security goals of the system without putting its security at risk.

During architectural design the global system architecture is defined in terms
of subsystems (actors) and their interconnection through data and control flows.
From a security viewpoint, an important step of this stage is to identify the actors
responsible for achieving the system’s security goals. Security patterns can greatly
help identifying those actors without putting the security of the system at risk.

5.1. Guidelines for Applying the Pattern

Although different developers might approach the application of the patterns dif-
ferently, depending on their experience, the following guidelines can be adopted:

(1) Identify the secure goals of the system. In this step, the secure goals of the
system as derived during late requirements analysis. For instance, as shown in
Figure 6, there are three main secure goals for the eSAP system: Ensure Data

Availability, Ensure Data Integrity, and Ensure System Privacy.
(2) Identify the secure tasks for each secure goal. This step involves the identification

of secure tasks that correspond to the secure goals identified during the previous
step. Consider, as an example, the Ensure System Privacy secure goal of the eSAP
system. This is achieved by the following secure tasks: Check Information Flow,
Check Authentication, and Check Access Control.

(3) Identify the security challenges introduced by the secure tasks. During this step,
the security challenges facing the developer trying to satisfy the secure tasks
are identified. Consider, for instance, the Check Authentication and Check Access

Control secure tasks identified in the previous step. In order to satisfy the for-
mer, all communications and information exchanges of the eSAP system with
external agents must be authenticated, whereas to satisfy the latter, every agent
in the system must only have access to designated resources.

(4) Identify the patterns that address the security challenges. When the security
challenges have been identified, the pattern language can be used to provide
solutions to those challenges. In the example, in response to the first challenge,
the Agency Guard pattern can be applied to restrict access to the eSAP system
as a whole, and Agent Authenticator to provide authentication checks.

18 H. Mouratidis, M. Weiss, and P. Giorgini

Fig. 12. Example of applying the security patterns. This diagram is the result of applying the

patterns Agency Guard, Agent Authenticator, and Access Control in sequence.

5.2. Application to the eSAP Example

The application of the security patterns amounts to instantiating the generic roles
described in their solutions to concrete actors in the system under development. For
example, consider the the Obtain Updated Care Plan Information secure goal of the
Older Person actor modelled in Figures 4 and 5. The system needs to ensure that
only entitled users can obtain access to the plan information.

We start by applying the Agency Guard pattern, which restricts access to the
agency to a single point. When we instantiate the generic roles prescribed by this
pattern, Older Person takes on the role of Requester Agent, the eSAP system cor-
responds to Agency, and a new actor, eSAP Guard, is introduced to assume the
role of Agency Guard. The result is shown in Figure 12. As shown, the pattern also
introduces two new dependencies (Grant Access and Provide Security Policy).

Next we apply the Agent Authenticator pattern to ensure the identity of the
Older Person agent (Check Authentication subgoal of Ensure Data Privacy), and the
Access Controller pattern in order to restrict the Older Person’s access to their own
medical records (Check Access Control subgoal of Ensure Data Privacy). The Sandbox
pattern is not applicable, since the Older Person is a trusted user.

Application of these patterns leads to the introduction of more new actors and
social dependencies between those actors and existing ones. The Authenticator fills
the role of Agent Authenticator, and with it one new goal dependency (Authenticate

Agent), and four resource dependencies (between Authenticator and eSAP Guard,
and Older Person, respectively) are added to the model. Similarly, with the Access

Modelling Secure Systems Using an Agent-Oriented Approach and Security Patterns 19

Controller two new goals (Check Security Policy, and Provide Security Policy), as well
as two new task dependencies (involving the eSAP Agency, the eSAP Agency Guard,
and the Care Plan Manager in the role of the Resource Manager) are introduced.

The use of the patterns of our pattern language helps developers to delegate
the responsibilities of particular security goals to particular actors defined by the
patterns. In addition, the developer knows the consequences that each pattern in-
troduces to the system under development. For example, the application of Agent
Authenticator means that during implementation only the Agent Authenticator must
be checked for assurance, while the application of Access Controller implies that dif-
ferent policies could be used for accessing different resources.

6. Assessing Completeness of the Pattern Language

In this section we address the issue of the completeness of our language by formal-
izing properties of our patterns. The basic idea is to follow the “uses” links between
patterns, which can be found in the Related Patterns sections, and record the prob-
lems addressed by each pattern, as well as the new problems they raise. From this
we can either conclude that the application of our patterns helps establish security
(that is, that all security problems raised are resolved), or that we need to add more
patterns to our language in order to resolve the open problems.

The properties of a pattern that we need to formalize are, therefore, problem,
solution, and consequences (new problems raised). Problems and solutions will be
represented as Formal Tropos properties. Formal Tropos (FT) is a a specification
language that offers all the standard mentalistic notions of Tropos.14 It supplements
them with a rich temporal specification language inspired by KAOS.10 FT allows for
the description of the dynamic aspects of Tropos models. More precisely, in FT we
focus not only on the intentional elements themselves, but also on the circumstances
in which they arise, and on the conditions that lead to their fulfillment.

A FT specification describes the relevant elements (actors, goals, dependencies,
etc.) of a domain and their relationships. The description of each of the elements is
structured in two layers: an outer and an inner layer. The outer layer is similar to
a class declaration. It associates a set of attributes with each element that define
its structure. There is also a set of predefined special attributes such as Actor,
Depender and Dependee. The inner layer expresses constraints on the lifetime
of the objects, given in a typed first-order linear-time temporal logic.

For reasons of space, we only present the formalization of patterns related to
authentication and their relationships. For each pattern, we formalize the problem
addressed, the solution, and the new problems introduced. The formalization of the
problems appear where they are first raised, and are referenced in later patterns.
This approach also proved helpful in ensuring that the description of a problem did
not use any of the new intentional elements introduced by the solution.

The following is an excerpt of the initial outer layer of the FT specification
that we will refer to in the formalization of pattern properties. For each pattern we

20 H. Mouratidis, M. Weiss, and P. Giorgini

will indicate how this specification is refined (by specifying the new elements and
attributes added by the pattern) upon applying the pattern.

Actor Agency

Actor RequesterAgent

Attribute
constant owner : AgentOwner

Actor AgentOwner

Goal Dependency GainAccessToAgency

Depender RequesterAgent

Mode achieve

Resource Dependency AccessRequest

Dependee RequesterAgent

Attribute
constant resource : Resource

Mode achieve

Resource Dependency Resource

Dependee RequesterAgent

6.1. Agency Guard

The formalization of Agency Guard models the problem that requester agents can
access the agency from multiple places via the GainAccessToAgency goal dependency.
Problem P1 specifies that there is a way for a RequesterAgent to gain access to
the agency by exploiting multiple GainAccessToAgency dependencies in which it
participates. Solution S1 resolves this problem, as specified in the last clause of the
assertion. However, it also adds a new problem (P2). The formalization of problem
P2 states that ensuring that agents can only access the agency through a single
point does not also ensure that the agents are who they claim to be.

Problem

/* P1: A malicious agent can gain unauthorized access to the agency from multiple
places, not all of which provide the same level of security. */

∃ ra : RequesterAgent (∃ ga1, ga2 : GainAccessToAgency (ga1.depender = ra ∧
ga2.depender = ra ∧ ga1.dependee 6= ga2.dependee)))

Solution

/* S1: Ensure that there is only a single point of access to the agency. */

Modelling Secure Systems Using an Agent-Oriented Approach and Security Patterns 21

∀ ra : RequesterAgent (∀ ga1, ga2 : GainAccessToAgency (ga1.depender = ra ∧
ga2.depender = ra) → (ga1.dependee = ga2.dependee))

As part of the solution the outer layer model is refined by adding the following
new elements (one actor and two dependencies) and new attributes:

Actor AgencyGuard /* added */

Goal Dependency GainAccessToAgency

Depender RequesterAgent

Dependee AgencyGuard /* added */
Mode achieve

Resource Dependency AccessRequest

Depender AgencyGuard /* added */
Dependee RequesterAgent

Attribute
constant resource : Resource

Mode achieve

Resource Dependency SecurityPolicy /* added */
Depender AgencyGuard

Dependee Agency

Mode achieve

Goal Dependency GrantDenyAccess /* added */
Depender Agency

Dependee AgencyGuard

Mode achieve

New problems

/* P2: Agents can enter the agency by posing as another agent. */

∃ ar : AccessRequest (∃ ra : RequesterAgent (ar.dependee = ra ∧
ar.dependee.owner 6= ra.owner))

6.2. Agent Authenticator

The solution (S2) of Agent Authenticator resolves problem P2. It states that if Re-

questerAgents are signed with their owners’ private keys, they can be authenticated
via the corresponding public keys, and can no longer masquerade as another agent.

Problem

/* P2: Agents can enter the agency by posing as another agent. */

22 H. Mouratidis, M. Weiss, and P. Giorgini

Solution

/* S2: Agents must prove their identity. Agents are authenticated via their owner’s
or their originating agency’s public keys. */

∀ ar : AccessRequest (∀ ra : RequesterAgent (ar.dependee = ra ∧
∀ ao : AgentOwner (ra.owner = ao ∧ ∃ ds : DigitalSignature (

ds.dependee = ra ∧ ra.key = ao.privateKey)) →
ar.dependee.owner = ra.owner)) /* via the owner’s public key */

As part of the solution the outer layer model is refined as follows:

Actor AgentAuthenticator /* added */

Actor AgentOwner

Attribute
constant privateKey : Key /* added */

Actor RequesterAgent

Attribute
constant owner : AgentOwner

constant key : Key /* added */

Resource Dependency Key /* added */
Depender RequesterAgent

Dependee AgentOwner

Mode achieve

Resource Dependency DigitalSignature /* added */
Depender AgentAuthenticator

Dependee RequesterAgent

Mode achieve

Resource Dependency AuthenticationDecision /* added */
Depender AgencyGuard

Dependee AgentAuthenticator

Mode achieve

Resource Dependency AuthenticationRequest /* added */
Depender AgentAuthenticator

Dependee AgencyGuard

Mode achieve

Note that, for reasons of space, authentication via trusted agencies was left out
from this formalization. However, it would be included in a similar manner.

Modelling Secure Systems Using an Agent-Oriented Approach and Security Patterns 23

New problems

/* None */

6.3. Benefits of the Formalization

The formalization allows us to model how the application of a given pattern results
in assertions being added to the model. We can now formally reason about the
security problems resolved by a given security solution. For example, consider the
assertion made by solution S2. It states that the apparent initiator of an AccessRe-

quest (that is, the agent owner on whose behalf the request is made) is identical with
the owner of the RequesterAgent, if the agent has been signed with the initiator’s
private key. Thus, the application of the Agent Authenticator pattern eliminates the
possibility of one agent masquerading as another (formalized as problem P2).

Formalization also leads to a deeper understanding of the patterns and their
interrelationships, and confidence in the completeness of the pattern language. As
a result we were able to discover problems with a given solution that were, in
many cases, non-obvious observations about the solution. We were then also able
to propose missing patterns to resolve those problems. For example, an implicit
assumption made by solution S1 in the Agency Guard pattern was that the owner
of the RequesterAgent and the agent owner on whose behalf the AccessRequest was
made were one and the same. However, this assumption is not necessarily true, since
the RequesterAgent can pose as another agent (as stated by problem P2).

In summary, the formalization allows us to decide when the application of our
patterns resolves all security problems raised either at the late requirements analysis
stage (which provide the initial input to the application of the pattern language),
or when new problems are added as a result of applying patterns, and thus more
patterns need to be applied, in turn, to resolve those problems.

7. Related Work

Our approach integrates two well known areas of software engineering research,
agent-oriented software engineering and security patterns.

7.1. Agent-Oriented Software Engineering

Liu et al. have presented work to identify security requirements using agent-oriented
concepts, whereas Yu and Cysneiros provide an approach to model and reason about
non-functional requirements (with emphasis on privacy and security).20,30 In his
Non-functional Requirements (NFR) framework, Chung applies a process-oriented
approach to represent security requirements as potentially conflicting goals, and
explains how they can be used during the development of software systems.8 In
addition, Jürgens proposes UMLsec, an extension of the Unified Modeling Language
(UML), to include modelling of security related features, such as confidentiality and

24 H. Mouratidis, M. Weiss, and P. Giorgini

access control.17 The concept of obstacles is used in the KAOS framework to capture
undesirable properties of the system, and to define and relate security requirements
to other system requirements.10 Sindre and Opdahl define the concept of a miuse
case to describe security-related functions that a system should not allow.25

The main problem with these approaches is that they only provide solutions
to isolated problems. that is they consider security a one-dimensional problem. For
instance, the NFR framework assumes that all developers have some kind of security
knowledge. UMLsec only supports the design phase, whereas the work of Liu et al.
is focused on the requirements elicitation stage. By contrast, our approach considers
all development stages from early requirements elicitation to design.

7.2. Security Patterns

The idea of developing a set of patterns or a pattern language for capturing proven
security solutions is, by itself, not new. Yoder and Barcalow proposed a set of pat-
terns that can be applied when adding security to an application.27 Lee Brown et al.
proposed an Authenticator pattern, which performs the authentication of a request-
ing process before granting access to distributed objects.19 Building on this work,
Fernandez and Pan document a pattern language for security models.13 Finally,
Schumacher applies the pattern approach to the security problem by proposing a
set of patterns, which contribute to the overal process of security engineering.24

Although this review is by no means complete, most of the proposed security-
related patterns and pattern languages have been developed from an object-oriented
perspective. As stated by Fernandez and Pan, the intent of these patterns is to “spec-
ify the accepted models as object-oriented patterns”.13 However, it has been argued
that there is no single paradigm or language for implementing patterns. Patterns
can be integrated with any paradigm used for constructing software systems. We
believe that the introduction of the agent-oriented paradigm has opened another
important area for the use of patterns, as discussed next.

7.3. Merging these Areas

One of the main arguments for the use of an agent-oriented, as opposed to an
object-oriented approach, is that agent-oriented concepts for the decomposition of
a system, such as goals, plans and actors, are more intuitive and easier to use than
object-oriented concepts, such as data, behaviour and objects.6,16 In addition, the
agent approach provides a paradigm for designing the types of complex distributed
systems that require, among other things, a common abstraction for representing
both human users (via agents that act on their behalf), as well as software entities
that manage other subsystems or resources (agents as resource managers). Thus,
the combination of patterns and agent-orientation is likely to be very important,
since the higher level of abstraction and the encapsulation of agents allows an easier
identification and characterisationof reusable parts.

Modelling Secure Systems Using an Agent-Oriented Approach and Security Patterns 25

However, if patterns and pattern languages are to be integrated with agent-
oriented approaches, it is necessary to develop them using agent-oriented concepts,
such as intentionality, dependency, autonomy, sociality and identity.28 In doing so,
we feel it is essential to describe the structure of a pattern not only in terms of
the messages exchanged between the participating agents, but also in terms of their
social dependencies and intentional attributes, such as goals and tasks.

In this way, we can achieve a complete understanding of the social and inten-
tional dimensions of a pattern, two factors of greate importance when developing
information systems from an agent-oriented perspective. This view has been also
argued by other researchers. For example, Deugo et al. conclude that differences in
the way agents and objects communicate and interact with their environment, the
level of autonomy agents possess, and the fact that agents are often highly mobile
motivate the separate notion of an agent pattern.11

Thus, research on agent patterns has started to evolve and some catalogues of
agent patterns have already been presented in the literature. Hayden et al., provide
a catalogue of coordination patterns inherent in multi-agent architectures.15 The
proposed patterns are grouped into four basic architectural styles: hierarchical, fed-
erated, peer-to-peer, and agent-pair. Kendall et al. propose patterns for intelligent
and mobile agents.18 In this work the authors argue that agent systems must have
a strong foundation based on well defined patterns. Aridor and Lange present a
catalogue of design patterns for creating mobile agent applications.4 They divide
their patterns into three classes: travelling, task and interaction.

Although these approaches are helpful and provide a first step for the integration
of patterns and agent-oriented software engineering, they also demonstrate two
important limitations. Firstly, there is a lack of a framework to support the analysis
of the requirements, and determine precisely the context within which a pattern can
be applied. Secondly, and more specific to our topic, there is a lack of agent-oriented
security patterns. Our work provides a step towards overcoming these limitations
by defining an agent-oriented security pattern language, and by integrating this
language with an agent-oriented software engineering methodology.

8. Conclusion

In this paper we have proposed an approach for the development of secure infor-
mation systems that merges two important software engineering paradigms: agent-
oriented software engineering (AOSE) and patterns. In particular, we have described
a pattern language based on agent-oriented concepts, and we have demonstrated its
applicability, with the aid of a real-case study, and how it can be integrated within
the architectural design stage of the Tropos agent-oriented methodology. Moreover,
we have addressed the completeness of the patterns of our language by formalising
the properties of its patterns. We believe that the integration of these two paradigms
provides a complete and mature solution for the development of secure information
systems. We consider the integration to be complete, since we believe that those

26 H. Mouratidis, M. Weiss, and P. Giorgini

paradigms complement each other:

• AOSE provides concepts and notations suitable for modeling security issues in
information systems, such as autonomy, intentionality and sociality.

• Patterns complement agent-oriented techniques by transferring security knowl-
edge to non-security application experts in an efficient manner.

We also consider the integration to be mature as such an integration will make
security solutions more widely available, providing novice and non-security expert
developers with the capability of implementing secure information systems.

Future work includes extending our pattern language with more security pat-
terns, and identifying its relationship to other (non-security) agent-based patterns.
In addition, we will work towards the integration of the pattern language with other
development phases of the Tropos methodology.

References

1. C. Alexander, S. Ishikawa, and M. Silverstein, A Pattern Language: Towns, Buildings,
Constructions, Oxford University Press, 1977.

2. E. Amoroso, Fundamentals of Computer Security Technology, Prentice Hall, 1994.
3. R. Anderson, Security Engineering: A Guide to Building Dependable Distributed Sys-

tems, Wiley, 2001.
4. Y. Aridor, D. Lange,Agent Design Pattern: Elements of Agent Application design,

in Proceedings of the International Conference on Autonomous Agents, ACM Press,
1998.

5. K. Beck, and R. Johnson, Patterns Generate Architectures, in: European Conference
on Object-Oriented Programming (ECOOP), LNCS 821, 139–149, Springer, 1994.

6. P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, and A. Perini, TROPOS: An
Agent-Oriented Software Development Methodology, Journal of Autonomous Agents
and Multi-Agent Systems, 8(3), 203–236, Kluwer, 2004.

7. L. Chung, Dealing with Security Requirements During the Development of Informa-
tion Systems, in: Conference on Advanced Information Systems (CAiSE), 234–251,
ACM, 1993.

8. L. Chung, B. Nixon, E. Yu, and J. Mylopoulos, Non-Functional Requirements in Soft-
ware Engineering, Kluwer, 2000.

9. J. Coplien, Software Patterns, SIGS books, 1996, also available from:
http://users.rcn.com/jcoplien/Patterns/WhitePaper/SoftwarePatterns.pdf.

10. A. Dardenne, A. van Lamsweerde, S. Fickas, Goal-Directed Requirements Acquisition,
Science of Computer Programming, special issue on the 6th International Workshop
on Software Specification and Design, Vol. 20, 3–50, 1993.

11. D. Deugo, M. Weiss, E. Kendall, Reusable Patterns for Agent Coordination, In Coor-
dination of Internet Agents, Springer, 2001.

12. P. Devanbu, and S. Stubblebine, Software Engineering for Security: a Roadmap, in
Conference on the Future of Software Engineering, 226–239, ACM, 2000.

13. E. Fernandez, and R. Pan, A Pattern Language for Security Models, in: Conference
on Pattern Languages of Programs (PLoP), 2001.

14. A. Fuxman, L. Liu, et al., Specifying and Analyzing Early Requirements in Tropos,
Journal of Requirements Engineering, 9:2. 132–150, May 2004.

Modelling Secure Systems Using an Agent-Oriented Approach and Security Patterns 27

15. S. C. Hayden, C. Carrick, Q. Yang, A Catalog of Agent Coordination Patterns,Agents
1999,pp 412-413

16. N.R. Jennings, An Agent Based Approach for Building Complex Software Systems,
Communications of ACM, 44:4, April 2001.

17. J. Jürjens, Towards Development of Secure Systems with UMLsec, in: Conference
on Fundamental Approaches to Software Engineering (FASE), LNCS 2029, 187–200,
Springer, 2001.

18. A. Kendall, P.V. Murali Krishna, C. V. Pathak, C.B. Suresh, Patterns of Intelligent
and Mobile Agents, Proceedings of the 2nd International Conference on Autonomous
Agents, 1998

19. F. Lee Brown, E. Fernandez, The Authenticator Pattern, in: Conference on Pattern
Languages of Programs (PLoP), 1999.

20. L. Liu, E. Yu, J. Mylopoulos, Analysing Security Requirements As Relationships
Among Strategic Actors, in: Second Symposium on Requirements Engineering for In-
formation Security (SREIS), 2002.

21. H. Mouratidis, P. Giorgini, G. Manson, and I. Philp, A Natural Extension of Tropos
Methodology for Modelling Security, in: Agent-Oriented Methodologies Workshop at
OOPSLA, 2002.

22. H. Mouratidis, P. Giorgini, and G. Manson, Modelling Secure Multiagent Systems,
in: International Joint Conference on Autonomous Agents and Multiagent Systems
(AAMAS), 859–866, ACM, 2003.

23. H. Mouratidis, I. Philp, and G. Manson, Analysis and Design of eSAP: An Integrated
Health and Social Care Information System, in: International Symposium on Health
Information Managements Research (ISHIMR), 2002.

24. M. Schumacher, Security Engineering with Patterns, LNCS 2754, Springer, 2003.
25. G. Sindre, and A. Opdahl, Eliciting Security Requirements by Misuse Cases, in: Con-

ference on Technology of Object-Oriented Languages and Systems (TOOLS), 120–131,
2000.

26. J. Viega and G. McGraw, Building Secure Software-How to Avoid Security Problems
the Right Way, Addison-Wesley, September 2002.

27. J. Yoder, and J. Barcalow, Architectural Patterns for Enabling Application Security,
in: Conference on Pattern Language of Programs (PLoP), 1997.

28. E. Yu., Modelling Strategic Relationships for Process Reengineering, Ph.D. thesis, De-
partment of Computer Science, University of Toronto, Canada, 1995.

29. E. Yu, Agent-Oriented Modelling: Software versus the World, in: International
Workshop on Agent-Oriented Software Engineering (AOSE), LNCS 2222, 206–225,
Springer, 2002.

30. E. Yu, L. Cysneiros, Designing for Privacy and Other Competing Requirements, in:
Symposium on Requirements Engineering for Information Security (SREIS), 2002.

	IJSEKE 06 citation info
	IJSEKE06-2 edited

