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Abstract: Most corrected seismic data assume a 2nd order, single-degree-of-freedom (SDOF) 
instrument function with which to de-convolve the instrument response from the ground motion. 
Other corrected seismic data is not explicitly de-convolved, citing as reason insufficient instrument 
information with which to de-convolve the data. Whereas this latter approach may facilitate ease of 
processing, the estimate of the ground motion cannot be entirely reliable and therefore methods of de-
convolution have been suggested and described in [1, 2, 4 ,5]]. This paper reviews a relatively 
straightforward implementation of the well-known recursive least squares (RLS) algorithm in the 
context of a system identification problem [4]. The paper then goes on to discuss the order in which 
implementation of the RLS algorithm should be applied when correcting seismic data. Noise 
reduction is typically achieved by de-noising using the discrete wavelet transform [8, 9] or filtering 
the resulting de-convolved seismic data. De-noising removes only those signals whose amplitudes are 
below a certain threshold and is not therefore frequency selective. Standard band-pass filtering 
methods on the other hand are frequency selective, but different cut-off frequencies for band-pass 
filters are applied in different parts of the world when correcting seismic events. These give rise to 
substantial differences in power spectral density characteristics of the corrected seismic data.  
 
1. Introduction 
 
Basic data for earthquake engineering is 
obtained from measurements of ground 
shaking during earthquakes. The first 
accurate measurements of destructive 
earthquake ground motions were made 
during the Long Beach, California 
earthquake of 10/03/33.  Since then, 
considerable improvement have been made 
in strong motion instrumentation and 
measurements.  Analogue systems are the 
simplest devices that are reasonably cheap to 
manufacture and require minimal 
maintenance.  However data from these 
instrument require considerable data-
processing time. Studies suggest that digital 
instruments on the other hand, although 
more expensive to maintain, provide a more 
accurate determination of ground motion 
and reduce data-processing time.  Although 

good progress has been made in replacing 
old instruments with digital ones, the vast 
majority of data currently available have 
been recorded from analogue instruments 
such as the SMA-1. Seismic data is sampled 
over the duration of an earthquake in the 
form of accelerograms.  The accelerometer 
records acceleration as a function of time. In 
fact the output is the response of the 
instrument to the ground motion being 
measured.  The data is inevitably smeared 
with background noise in both the short and 
long frequency range.  Appropriate signal 
processing techniques are therefore 
necessary to extract acceleration data in 
order to mimic the actual ground motion. 
 
2. Instrument de-convolution 
 
In many of the corrected data records 
available, instrument correction is not 
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applied because the header of the original 
data does not provide any information on 
useful instrument parameters or indeed the 
type of instrument used. In a lot of cases the 
seismic data analysed did not, after 
processing without instrument de-
convolution, produce marked differences in 
outputs when processed with instrument de-
convolution. However, with some data 
analysed the differences in outputs, in 
particular for the acceleration response 
spectra were clear and not insignificant. In 
most of the older records the accelerograms 
recorded the characteristics of strong-motion 
earthquakes with single-degree-of-freedom, 
stiff and highly damped transducers whose 
relative displacement )( tx is approximately 
proportional to the ground 
acceleration )( ta g . To obtain estimates of 
the ground acceleration from the recorded 
relative displacement response, an 
instrument correction can be applied as 
follows: 

)()(2)()( 2 txtxtxtag ωγω −−−= &&&            (1)      
where  γ = viscous damping ratio 

ω= transducer natural frequency 
and     )( ta g is the ground acceleration 
The above expression (1) can be used to de-
convolve the recorded motion from the 
ground acceleration in either the time [6] or 
frequency domain [1]  
 
3. De-convolution using the RLS 
algorithm 
 
The usefulness of this method resides in the 
fact that an estimate of the filter coefficients, 
which describe the instrument response, may 
be obtained from the seismic data set itself 
without any prior knowledge of the actual 
instrument used. Since quite often 
instrument data does not accompany the 
seismic data, then this method is a relevant 

implementation because of course each data 
set reflects the individual instrument 
response to some degree. The other methods 
described above apply a one-size-fits-all 
approach.  
The generic algorithm for the inverse filter 
(system identification) problem using the 
Recursive Least Squares (RLS) algorithm is 
shown below in. This scheme applies to any 
adaptive algorithm, with the unknown 
system cascaded with a particular adaptive 
algorithm; the solution converges to the 
inverse of the unknown system. The delay is 
added to keep the system casual so that the 
input data, s(n), has sufficient time to reach 
the adaptive filter. Otherwise it tries to 
minimise the error before the data s(n) has 
reached the adaptive algorithm and can 
never converge. The RLS algorithm 
[4,10,11,12] was chosen in preference to the 
least mean squares (LMS) adaptive 
algorithm. One reason is that the RLS 
algorithm is dependent on the incoming data 
samples rather than the statistics of the 
ensemble average as in the case of the LMS 
algorithm. Therefore the coefficients will be 
optimal for the given data without making 
any assumptions regarding the statistics of 
the process. Another reason is that the RLS 
algorithm converges at a faster rate than the 
LMS. The RLS algorithm can be considered 
in terms of a least squares solution [10] of 
the system of linear equations Ah = d, where 
rank A is n, the number of unknowns. The 
objective is to find the vector (or vectors) h 
of filter coefficients which will satisfy 
equation (1). This has the well-known 
solution equations (2), (3) and (4). 

{ }2minimise dAh −                       (2)                                  

( ) dAAAh TT 1−
=                                (3)                                
( ) dPAdAGh TT == −1                      (4)                                   

However in order to obviate the need of 
evaluating explicitly the inverse auto-
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correlation matrix P, the RLS algorithm 
provides an efficient method of updating the 
least squares estimate of the inverse filter 
coefficients as new data arrive.  
However the RLS algorithm can become 
numerically unstable and indeed with some 
seismic data does just that. Therefore a 
variant of the RLS algorithm is used in this 
paper which, for a given value of λ, reduces 
the dynamic range and leads to stable 
solutions in most cases.  This is the QR 
decomposition-based RLS algorithm 
deduced from the square-root Kalman filter 
counterpart [10,11]. The square root is in 
fact a Cholesky factorisation and the 
derivation of this algorithm depends on the 
use of an orthogonal triangulation process 
known as QR decomposition. 
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Where R is an upper triangular matrix and Q 
is a unitary matrix and A is a data matrix. 
The QR decomposition of a matrix requires 
that certain elements of a vector be reduced 
to zero.  The unitary matrices used zero out 
the matrix elements of A one-by-one or 
column-by-column and leaves an upper 
triangular matrix. It zeros out the elements 
of the input data matrix elements and 
updates the (square root) inverse correlation 
matrix. The QR-RLS is given in equation 
(6); where kγ  is a scalar. 
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The gain vector kk  is determined from the 
1st column of the post-array. kQ  in the 
above expression is a unitary transformation 
which operates on the elements of   

21
1

2/1 /
k

Tu −
− Pλ  and the rows of  21

1
2/1 /

k−
− Pλ   in 

the pre-array zeroing out each one to give a 
zero-block entry in the post-array. The least-
squares weight vector, kh  is updated in 
equation (9), but through equation (7) the 
gain vector, from the post-array equation 
(6), and equation (8) the a priori estimation 
error. 

1
1121
−= rrk k                            (7)      

k
T
kkk uhd 1−−=ε           (8)      

k
T
kkk khh ε+= −1               (9)     

These inverse-filter weights are then 
convoluted with the original seismic data in 
order to obtain an estimate of the true 
ground motion. As in the standard RLS, the 
inverse correlation matrix is estimated, prior 
knowledge is not required, i.e. the algorithm 
is independent of the statistics of the 
ensemble.  
The plots of Fig 2, show frequency and 
phase profiles of two inverse filters derived 
from the data from the El-Centro 1938 and 
1940 seismic events. The frequency 
responses were obtained after the data was 
wavelet de-noised. The instrument 
parameters for these events are 10Hz for the 
instrument period and 0.552 damping.   The 
x-axis is a log-plot to reveal details at the 
low frequencies of interest and to emphasise 
the fact that de-convolution filters are high-
pass, which is consistent with theory. It can 
be seen that at low frequencies to 
approximately 10Hz both the El-Centro RLS 
inverse filters and the theoretical responses 
show an approximately flat response (0dB) 
in the region of interest. In the region greater 
than 10Hz the responses differ slightly but 
again are in general consistent with theory, 
the RLS however provides a better 
indication of instrument performance. The 
gains vary between approximately 40-
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120dB, with the theoretical gain at 
approximately 80dB at half the sampling 
rate. These results demonstrate the 
usefulness of using the QR-RLS in order to 
de-convolve the instrument response without 
any prior knowledge of the instrument 
parameters 
In using the RLS for instrument de-
convolution it is necessary to review the 
order in the implementation of noise 
removal and the application of the inverse 
filter. In using the filtering/de-noising 
methods described below, Butterworth or 
Elliptic band-pass filters, wavelet de-
noising, in conjunction with the standard 2nd 
order differential equation, it doesn’t make 
any difference to the output as to whether 
the filtering/de-noising is pre-or post- the 
instrument de-convolution. This is because 
the solution to the differential equation is the 
same in both situations, it is not an estimate 
based on corrupted or de-corrupted input 
data, and therefore necessarily the inverse 
filter response is always the same. This 
changes with the application of the RLS 
algorithm, because the estimate of the 
inverse filter is dependent on the input data, 
therefore whether it has been pre-filtered or 
not makes a difference. Noise errors should, 
as far as is possible, be removed before an 
RLS instrument correction is applied, since 
the resulting de-convolution may amplify 
the noise inherent in a seismic data set and 
distort the frequency response 
 
4. Wavelet De-noising  
 
This method is based on taking the discrete 
wavelet transform (DWT) [9] of a signal, 
passing the transform through a threshold 
[8], which removes the coefficients below a 
certain value, and then taking the inverse 
DWT in order to reconstruct a de-noised 
time signal. The DWT is able to concentrate 
most of the energy of the signal into a small 

number of wavelet coefficients, after low-
pass filtering with the appropriate filter 
weights depending on the selection of a 
wavelet basis. The dimensions of the 
wavelet coefficients will be large compared 
to those of the noise coefficients obtained 
after high pass filtering. Therefore 
thresholding or shrinking the wavelet 
transform will remove the low-amplitude 
noise in the wavelet domain and the inverse 
DWT will retrieve the desired signal with 
little loss of detail.     
The Sierra Madre seismic event is shown in 
the plots of Figure 3. They show the low 
frequency detail on a log scale and clearly 
some differences between the two correction 
methods are again apparent. The PSD 
demonstrates that the large approximately 
1Hz ground peak has had an insignificant 
impact on the structural frequency, whereas 
the smaller 5Hz-ground peak of the PSD has 
had a considerable impact on the structural 
frequency. 
 
5. Summary 
 
It has been demonstrated that inverse 
filtering using the RLS algorithm yields 
acceptable results when compared to the 
standard 2nd order type de-convolution. This 
is compared to using a 2nd order differential 
solution in either the time or frequency 
domain. In most cases however seismic data 
sets have insufficient information regarding 
the type of recording instrument use, 
furthermore in a lot of cases information on 
the instrument is not available and 
researchers clearly state that instrument 
correction is not applied to the data. The 
RLS algorithm however provides a solution 
to the above problem. It is better indication 
of the actual instrument response. Moreover 
it does not require any information regarding 
the instrument, it only requires the data 
which the instrument has provided, from 
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which it determines an estimate of the 
inverse of the instrument response. The 
point to emphasise however is that the 
standard 2nd order de-convolution is not 
necessarily a good reflection of instrument 
performance, but is probably better than not 
performing a de-convolution at all. 
The order of events is also important 
because the data should be de-noised or 
filtered prior to the instrument correction. 
This is to prevent any amplification of noise 
during the de-convolution process. The 
results however do show that over 
frequencies of interest it is still possible to 
obtain approximately zero magnitude and 
phase response when de-convoluting prior to 
de-noising or filtering, however it is also 
clear that at higher frequencies distortion 
became a lot more apparent. 
Furthermore the paper discussed the 
implementation of the discrete wavelet 
transform, in the correction of seismic data 
which has yielded some significant results. 
The de-noising of seismic data using the 
removes only those signals whose 
amplitudes are below a certain threshold and 
is not therefore frequency selective. This is 
the fundamental difference between using a 
band-pass filter and wavelet thresholding. 
The band-pass filtering does not consider the 
energy content of the signal and noise. 
Hence the removed "noise" may or may not 
have a high-energy content. In the examples 
show the removed "noise" does have 
significant energy. The DWT only removes 
"noise" that has a low energy content and is 
independent of frequency. DWT de-noising 
obviates the need to adjust filter cut-off’s to 
fit particular seismic events and is 
computationally efficient. It is evident that 
selection of filter cut-off frequencies varies 
for different groups of researchers around 
the world. The differences between band 
pass filtering and DWT methods exist, 
rather unsurprisingly, at the low and high 

frequency range of the spectrum. The low 
frequency or long period end is of 
importance in the design of large dams or 
tall building structures. These high cost 
structures may well require the use of 
detailed and accurately corrected 
acceleration time histories.  
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Figure 1 , Generic diagram for estimating an inverse filter 

 
Figure 2, Theoretical and RLS inverse filter frequency response 

profiles for the El-Centro events. 
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Figure 3 The Sierra Madre seismic event is shown in the 4 plots top left: Corrected time 
History top right: Power Spectrum bottom left: acceleration response spectrum bottom right: 
phase plot 
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