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HYPER SLIDING MODE CONTROL: 
A NOVEL APPROACH ACHIEVING ROBUSTNESS WITH 

MODEL ORDER UNCERTAINTY  
 

Stephen J Dodds 
Control Research Group 

stephen.dodds@spacecon.co.uk; s.j.dodds@uel.ac.uk 
 

Abstract: A novel approach to the control of plants with model order uncertainty as well as 
parametric errors and external disturbances is presented, which yields a specified closed loop dynamic 
response.  Its foundations lie in sliding mode control, but the set of output derivatives fed back extend 
to a maximum order of maxr 1− , where maxr  is the maximum likely rank of the plant.  In 

conventional sliding mode control, the number of output derivatives fed back is a set of state variables 
equal in number to r 1− , where r is the rank of the plant and derivatives of higher order than r 1− , 
which are not state variables, are not fed back, meaning that the plant order must be known in 
advance.  In hyper sliding mode control, originated by the author, although the output derivatives of 
higher order than r are not plant state variables, they become state variables of the closed-loop system 
and take part in the sliding mode.  Thus, in cases where the maximum order of the output derivative 
exceeds r 1− , the order of the closed-loop system is greater than that of the plant, which is a small 
price to pay for retaining the extreme robustness properties of sliding mode control. 
The method is illustrated by means of simulations of a motion control system employing a permanent 
magnet synchronous motor.  An initial evaluation of the method is made by considering three plants 
with different orders and ranks, the first being the unloaded drive, the second being the drive 
controlling the motor rotor angle with a mass-spring load attached and the third being the drive 
controlling the load mass angle of the same attached mass-spring load.  The simulations indicate that 
the control system does indeed yield robustness including plant order uncertainty. 
 
 
1. Introduction 
Sliding mode control (Utkin, 1992) is a well 
known technique for achieving robustness, 
but only with respect to external disturbances 
and uncertainties in the parameters of a plant 
model of known form.  This method, as it 
stands, cannot achieve robustness with 
respect to plant model order uncertainty but 
when the model order is known, it not only 
achieves stability but can achieve a specified 
closed-loop dynamic response that does not 
change significantly in the presence of 
parametric changes or external disturbances.  
It is also applicable to nonlinear plants. This 
paper presents an approach that retains the 

robustness features of conventional sliding 
mode control and additionally accommodates 
plant order uncertainty.  
The method was discovered as a result of an 
experiment on sliding mode control that 
worked successfully despite an error that 
violated the conventional rules of control 
theory.  In order to describe this situation, the 
sliding mode control method will be briefly 
described.  Figure 1 shows the general block 
diagram of a sliding mode control system 
designed to yield a precisely defined closed-
loop dynamic performance for a single input, 
single output (SISO) plant. 
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There are many different forms of sliding 
mode control system, but this one will 
suffice for the purpose of this paper.   

 
Figure 1: General SISO sliding mode control. 

Here, 
T

1 2 nx x x =  x L , is the state vector, 
where n is the order of the plant, and 

( ) Tr 1y y y − =   
y &L  is the vector of output 

derivatives.  The rank (or relative degree) of 
the plant is r, such that the rth output 

derivative is ( ) ( )r
ry h ,u= x  and is not a state 

variable because of its dependence on the 
control input, u.  The elements of y are all 
state variables and the set of equations for 
the derivatives of y constitute a 
transformation to a new set of state variables.  
As can be seen, the sliding mode control law 
is a bang-bang control law in which u 
switches between maximum and minimum 
values of mu±  when S passes through zero. 

The switching surface, ( )rS y , 0=y , is 
designed such that over the normal range of 
operating states, u is automatically switched 
to the value that drives y towards the surface.  
In this way, y is held on the surface while u 
rapidly switches between mu+  and mu−  , in 
theory at an infinite frequency and with a 
continuously varying mark-space ratio.  
Under these circumstances, the point, y, in 
the output derivative space appears to slide in 

the surface and the system is said to be 
operating in a sliding mode.  Also, during 
this sliding motion, the closed-loop system is 
governed by the differential equation, 
( )rS y , 0=y , i.e., 

 ( )( )r 1
rS y , y y y 0− =&L . (1) 

Remarkably, if the switching function, is 
linear, i.e.,  

( ) ( )( )r 1
r r 1 2 r 1S y , y y q y q y q y −

−= − + + + +y & && K

then the closed loop system is linear with 
transfer function 

 ( )
( ) 2 r 1

r 1 2 r 1

y s 1
y s 1 sq s q s q−

−

=
+ + + +K

 (2) 

which is independent of the plant parameters 
and the external disturbance.  Furthermore, the 
coefficients, 1q , 2q , …, r 1q − , may be chosen 
independently to design the system by pole 
assignment to achieve any desired dynamic 
performance, within the limitations of the 
hardware.  It must also be realised that this 
performance is only attained while in sliding 
motion.  The condition for sliding motion is 
that the point, y, in the r dimensional space 

with components, ( )r 1
ry , y, y, y −& L , is driven 

back towards the switching surface (1) from 
both sides by the control law. This is expressed 
mathematically as 
 SS 0<&  (3)  
This condition will only be satisfied over a 
finite region of the switching surface and, in 
general, this region may be increased in size by 
increasing the maximum control level, mu . 
The sliding mode control system described 
above is a state feedback control system.  If the 
plant is of full rank, then r n=  and 

( ) Tn 1y y y − =   
y &L  is a complete state vector, 

enabling complete control of the plant 
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according to standard control theory. If, 
however, the plant is not of full rank, i.e., 
r n< , then the sliding mode control law can 
only control a subsystem of the plant with the 

state variables, ( )r 1
ry , y, y, y −& L .  There then 

exists an uncontrolled subsystem of order, 
n r− .  The dynamics of this uncontrolled 
subsystem is referred to as the zero dynamics.  
In fact, a linear plant with transfer function, 
( ) ( ) ( ) ( )y s u s N s D s= , which is not of full rank 

has n r−  zeros and the poles characterising the 
zero dynamics are roots of ( )N s 0= , i.e., the 

plant zeros. Zero dynamics will be seen in one 
of the plants considered later. 
 
2. Output Derivative Feedback  
    Robust Control Law  
 
According to standard control theory, it is only 
necessary to feed back a complete set of state 
variables to the control law. In particular, 
attempting to feed back variables such as  
( ) ( )r

ry h ,u= x  or higher derivatives of y is 

really considered ‘against the rules’ because of 
the creation of algebraic loops through their 
dependence on u and its derivatives.  The 
proposed control law, however, deliberately 
uses these further derivatives and is simply that 
of Figure 1 without any restriction on the order 
of the output derivatives being fed back and 
with the switch replaced by the gain, K.  In this 

case, ( )rS y , y  will be called simply the sliding 

function since there is no switch.   It is shown in 
Figure 3 for a linear plant and a linear sliding 
function. 

 
Figure 3: Linear output derivative robust control 

law applied to a linear plant. 

Then 

( )
( ) ( )

m
j

d j r
j 1

n N m
i k j

i d k j
i 1 k 1 j 1

1K 1 b s y s d s
K

y s
1 1 a s K 1 q s 1 b s
K

=

= = =

   + −    =
    
 + + + +           

∑

∑ ∑ ∑

Thus the order, of the closed-loop system is  

 c
n if N m n

n
N m if N m n

+ ≤
=  + + >

 (4) 

If N m n+ > , then the following applies: 

 ( ) ( )rN
k

k
k 1

lim 1y s .y s
K

1 q s
=

=
→∞

+∑
 (5) 

The system can then be designed by pole 
assignment but in the above limit, the closed 
loop characteristic equation becomes: 

 
N m

k j
k j

k 1 j 1
1 q s 1 b s 0

= =

  
 + + =     

∑ ∑  (6) 

and therefore m of the closed-loop poles are the 
zeros of the plant transfer function, which 
cannot be changed and it is essential that all of 
these poles are in the left half of the s-plane. It is 
evident that the order of the closed-loop system 
increases beyond the plant order, n, by an 
amount equal to the number of output 
derivatives that do not qualify as state variables.  
If plant model order uncertainty is considered, 
it is necessary to choose an upper limit, maxr , 
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of the plant rank, which the real plant is 
guaranteed not to exceed.  Then the controller 
can be designed with maxN r= .  In fact, the 
controller will produce the same closed-loop 
performance, according to (5), for a whole 
range of different plants of rank ranging 
between 1 and maxr .  
 
3. Application to a Vector Controlled  
    PMSM Drive 
 
In this section a motion control system will 
be developed for a simulation study of hyper 
sliding mode control. The plant is a vector 
controlled PMSM driving a mechanical load 
of variable order and rank.  First the 
mechanism will be described and modelled.  
Then a practicable version of the robust 
output derivative control law will be 
formulated.  Figure 4 shows an overall block 
diagram of the motion control system. 

 
Figure 4: Motion control system for 

simulation study 

3.1 Driven mechanism 
 
The driven mechanism is a balanced mass 
with moment of inertia, LJ , coupled to the 
motor shaft via a torsion spring with spring 
constant, sK , as shown in Figure 5. 

 
Figure 5: Model of the driven mechanism. 

The corresponding torque balance equations 
are as follows: 
 ( )r r c Lre s L rJ Kθ = Γ −Γ + θ −θ&&  (7a) 

 ( )L L s r L LeJ Kθ = θ − θ − Γ&&  (7b) 
where rJ  is the rotor moment of inertia, rθ  
is the rotor angle, Lθ  is the load mass angle, 

LreΓ  and LeΓ  are the external load torques 
applied, respectively, to the rotor and the 
load mass and cΓ  is the control torque 
produced by the motor. 
The vector control scheme is based on 
forced dynamic control (Dodds, 2005),  
yielding the following speed control loop 
transfer function: 

 
( )
( ) ( )

2
r

rd s

s 1
s 1 9 2T sω

 ω
 =
 ω + 

 (8) 

From Figure 5, the transfer function 
relationships with ( )r sω  as input, for plants 

bi  

au  

bu  

cu  

cΓ

+  

ai  

rdω  

rω  

Driven 
Mechanism 

Vector 
Speed 

Controller 

Robust 
Position 

Controller 

Power 
Electronics 

PMSM

dy  

y  

meΓ  

meΓ  −  

LeΓ

rω  

LreΓ

LeΓ  

LθsK
LJ  

rJ

rθ  
cΓ

a) mechanical configuration

+

−

y&&

1
s

sK

r

1
J s

 
rθ

1
sL

1
J s

Lθ
&  −

−

++ +

+

LreΓ
Lθ

cΓ
LrΓ LdΓ

b) block diagram 



Advances in Computing and Technology, 
The School of Computing and Technology 1st Annual Conference, 2006 
 

 

146

1, 2 are both 
( )
( )

r

r

s 1
s s

θ
=

ω
 and for plant 3 is 

( ) ( ) ( )
( )

s r Le
L 2

L s

K s s s
s

s J s K

ω − Γ
θ =

+
. Combining these  

with (8) yields the following plants: 
Plants 1 and 2:  

( )
( ) ( )

2
r

rd s

s 1 1
s s 1 9 2T sω

 θ
 =
 ω + 

 (9) 

Plant 3: 

  ( )
( ) ( )

( )

2

s rd Le
s

L 2
2

L s
s

9K s s 1 s s
2T

s
9s 1 s J s K

2T

ω

ω

 
ω − + Γ  

 θ =
 
+ +  

 

 (10) 

 
The fact that Plants 1 and 2 are identical and 
independent of the rotor external load torque, 

LreΓ , is due to the robustness already given 
by the forced dynamic speed control law 
(Dodds, 2005) which artificially decouples 
the mass-spring load from the system.  
With reference to (9) and (10), the maximum 
rank is maxr 5= .  Figure 7 shows a block 
diagram of the outer robust position control 
loop for this case corresponding to Figure 3, 
with low-pass measurement noise filtering, 
with a time constant, f sT T�  where sT  is the 
settling time. It is assumed that, as is usual in 
electrical drives the angular velocity 
measurements, rω  and Lθ

& , are both 
available, so that only three approximate 
differentiations are necessary in the 
controller. The output derivative feedback 
gains, 1q  to 4q  are determined by pole 
assignment, using the author’s settling time 
formula, ( )s cT 1.5 1 N T= + , for a linear 

system with coincident poles at cs 1 T= − . 

 
Figure 7: Outer robust control loop  

 
In this case 
 

( )
( )

( )

2 N N
r 1 2 N s

y s 1 1
y s 1 q s q s q s T

1 s
1.5 1 N

= =
+ + +  

+ + 

K

 
where maxN r 1 4= − = .   
Thus: 
 

 
( ) ( )
( ) ( )

2
1 s 2 s

3 4
3 s 4 s

q 4. 2T 15 q 6. 2T 15

q 4. 2T 15 q 2T 15

 = =

 = =

 (11) 

 
4. Simulations 
 
The Mechanical load parameters for plants 2 
and 3 are:  JL=0.01 Kgm2; Ks=9 Nm/rad 
The forced dynamic control law parameters 
are set to Ts = 0.2s; K=200; Tf = 0.0001s; Tso 

= 0.001s; with the derivative feedback gains 
according to (22). 
For all three plants, a step reference angle of 
2 rad was applied.  The robustness against 
external disturbances was tested by applying 
external load torques according to Figure 7. 
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Figure 7: External load torques. 

 
Figures 8 to 15 show simulations without 
mismatching of the PMSM parameters. 
It is evident from Figure 8 that the system is 
very robust with respect to changes in the 
driven mechanical load and both load torques. 
 

 
Figure 8: Angle step responses of Plants 1, 2 and 3. 

Figure 12 shows the rotor angle for Plant 2 
being very accurately controlled while the 
sprung load mass is uncontrolled and left to 
oscillate.  This is a consequence of the 
dynamic load torque, dΓ , being 
counteracted by the forced dynamic inner 
loop speed controller (Dodds 2005).  

 
Figure 12: Plant 2 rotor and load mass angles. 

Further development of the robust controller 
would be needed in order to achieve active 
damping of the sprung load mass oscillations 
while satisfactorily controlling the rotor angle.  
Figure 14 shows the sprung load mass angle 
being accurately controlled while the rotor 
angle is varied by the controller to apply the 
necessary control torques to the sprung mass 
via the spring.   

 
Figure 14: Plant 3 rotor and load mass angles. 

In contrast to Plant 2, Plant 3 is of full rank 
(no transfer function zeros) and this explains 
the stable behaviour of the whole system. 
Figure 16 shows the responses of all three 
plants when the rotor moment of inertia is 
over-estimated by 50%.   
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Figure 16: Responses: +50% rotor m.o.i. error. 

 
The remarkable degree of robustness is 
achieved by the forced dynamic controller, 
since such an error in the rotor moment of 
inertia is equivalent to an added (or 
subtracted) rotor mass, reflected by a change 
in the dynamic load torque, LdΓ , (ref., 
Figure 5), which is estimated by the 
observer and counteracted by the controller 
(Dodds 2005). 
 
5. Conclusions and Suggestions for  
 Further Work 
 
The simulations carried out indicate that the 
new robust output derivative controller is 
capable of controlling the selected third and 
fifth order plants with the same specified 
dynamic responses, in the presence of external 
disturbances.  It is therefore recommended 
that the technique is investigated for a much 
wider range of plants. 
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