

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

Author(s): Falcarin, Paolo; Goix, Laurent Walter
Title: An Aspect-Oriented Approach for Dynamic Monitoring of a Service Logic
Execution Environment
Year of publication: 2006
Citation: Falcarin, P. and Goix, L.W. (2006) ‘An Aspect-Oriented Approach for
Dynamic Monitoring of a Service Logic Execution Environment’, in IEC Annual
Review of Communications, vol. 59, Chicago: International Engineering Consortium
(IEC) pp.237-242.
Publisher link: http://www.iec.org

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219371596?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://roar.uel.ac.uk/�
http://www.iec.org/�

An Aspect-Oriented Approach for Dynamic Monitoring of a Service Logic

Execution Environment

Paolo Falcarin
1
, Laurent Walter Goix

 2

1
 Politecnico di Torino, Dipartimento di Automatica e Informatica, Torino, Italy

paolo.falcarin@polito.it
2
 Telecom Italia, Torino, Italy

laurentwalter.goix@telecomitalia.it

Abstract

Service creation environments play a relevant role in

new telecom applications because they enable openness

and programmability by offering frameworks for the

development of value added services.

The JAIN SLEE specification defines a Java

framework for executing event-based distributed services

made up of components, called Service Building Blocks.

In such a complex architecture, monitoring is an

indispensable technique to test the dynamic behavior of a

system, debug the code, gather usage statistics or

measure the quality of service.

 Program instrumentation is needed to insert

monitoring code into the system to be monitored, which is

typically a manual and time-consuming task.

This paper describes a language-based approach to

automate program instrumentation and monitoring

management using a dynamic Aspect Oriented

Programming (AOP) framework.

The basic notions of AOP and the use of the JBoss

AOP framework features are described, in order to allow

a highly modular and easily configurable implementation

of reusable monitoring code. Using an Eclipse-based

system administration console, it is possible to manage

remotely the dynamic deployment and update of

monitoring code in a service deployed on a JAIN-SLEE

container.

1. Introduction

A service creation environment addresses the main

feature of service programmability. This means the ability

of implementing new services faster, with higher software

reuse and rapid configuration. Another important issue is

the capability to offer to users the same service

everywhere, providing a seamless access from different

terminals (mobile phones, SIP-phones [6], UMTS

phones…). Among different service creation technologies

[1, 2], the JAIN APIs for Integrated Networks bring

service portability, convergence, and secure network

access to telephony and data networks.

By providing a new level of abstraction and associated

Java interfaces for service creation across Public Switched

Telephone Network (PSTN), packet or wireless networks,

JAIN technology enables the integration of Internet and

telecommunication networks.

Moreover, by allowing Java applications to access

resources within the network, the JAIN idea is shifting the

communications market from many proprietary closed

systems to a single network architecture where services

can be rapidly created and deployed.

The JAIN Service Logic Execution Environment

(SLEE) [14, 15] is an integral part of the set of JAIN

API‟s. It is the logic and execution environment in which

communication applications are deployed to use the

different network resources defined by the other JAIN

API‟s. Basically, the JAIN SLEE specification defines

interfaces and requirements for communication

applications relying on JAIN standards.

2. JAIN SLEE

JAIN SLEE is a standard architecture defining an

environment targeted at communication-based

applications.

The specification includes a component model for

structuring the application logic of communications

applications as a set of object-oriented components, and

for arranging these components into higher level and more

complicated services. The programming language used by

application developers in JAIN SLEE is Java.

The SLEE architecture also defines the contract

between these components and the container that will host

these components at run-time. The SLEE specification

supports the development of highly available and scalable

distributed SLEE specification-compliant Application

Servers, even if it does not suggest any particular

implementation strategy. More importantly, applications

may be written once, and then deployed on any

application environment that implements the SLEE

specification. The system administrator of a JAIN SLEE

controls the lifecycle (including deployment, un-

deployment and on-line upgrade) of a service.

The lifecycle management is achieved through the use

of the standard management interfaces provided by a

compliant JAIN SLEE, typically reusing Java

Management Extensions (JMX) techniques [16]. A

service includes meta-information that describes it, for

example its name, vendor and version, and any program

code that is associated to it. The program code can include

Java classes and Service Building Blocks.

The atomic element defined by JAIN SLEE is the

Service Building Block (SBB). An SBB is a software

component that sends and receives events and performs

computations based on the receipt of events and its current

state.

SBBs are stateful components since they can

remember the results of previous computations and those

results can be applied in additional computations. SBBs

perform logic based on the receipt of events. Events are

used to represent occurrences of importance that may

occur at arbitrary points in time. For example the act of an

external system delegating to the SLEE a call setup may

occur at any point in time and is therefore easily modeled

as an event.

An SBB definition includes meta-information that

describes it (e.g. its name, vendor and version), the list of

events that it can receive, and Java classes that provide the

logic of the SBB itself.

An event represents an occurrence that may require

application processing. It contains information that

describes the occurrence, such as the source of the event.

An event may asynchronously originate from a number of

different sources, for example an external resource such as

a communications protocol stack, from the SLEE itself, or

from application components within the SLEE.

Resources are external entities that interact with other

systems outside of the SLEE, such as network elements

(Messaging Server, SIP Server...). A Resource Adaptor

adapts the particular interfaces and requirements of a

resource into the interfaces and requirements of the JAIN

SLEE.

StarSLEE [7] is a prototype event-based execution

engine for telecommunication applications inspired from

JAIN SLEE specification that reuse the concept of SBBs

and Resource Adaptors; in this work we applied dynamic

AOP techniques for managing runtime monitoring on

StarSLEE.

3. Aspect Oriented Programming

Aspect-Oriented Programming (AOP) [5] is a new

programming paradigm extending object-oriented

software development. The main purpose of AOP is

separation of concerns, developed orthogonally from the

main functionality of a software system.

While the term „concern‟ represents whichever

specific requirement to be implemented in a software

system, cross-cutting concerns are requirements whose

implementation is difficult to modularize, e.g. security,

persistence, logging, etc…because the code involved by

these concerns is scattered throughout several classes in

an object-oriented application (see figure 1).

Figure 1. Example of crosscutting concerns

Instead, with AOP, developers can remove scattered

code related to crosscutting concerns from classes and

placing them into first-class elements called aspects. In

this way the original classes are no more responsible of

managing functionalities not related to their core

functionality. A direct consequence of aspect use is that

less code needs to be written, code that would otherwise

be spread throughout the system can now be modularized

in one place.

In figure 2 it is easy to see that now the doSomething()

method contains only business related code.

It means that now we are able to completely separate

crosscutting concerns from business ones, thus, at the

implementation level, by keeping aspects separate from

the target application methods they interact with, the

application source code is easier to understand.

Therefore, with this new structure, if it is necessary to

modify the logging-related code, this can be changed in

one place and not in each class.

Figure 2. Crosscutting concerns in AOP

AOP methodology is implemented by different

platforms, like AspectJ [10], AspectWerkz [11],

AspectC++ [8], and JBoss-AOP [12] which are, among

others, the most stable and widespread AOP frameworks;

all these tools rely on their own join-point model, which

defines the points along the execution of a program that

can be possibly addressed by an aspect.

Thus, AOP involves a compiling process, called

weaving, for the actual insertion of aspect code into pre-

existing application source code or byte code. Weaving

can occur at compile-time, load-time, and run-time.

In AOP terminology an aspect is composed by a set of

pointcuts and advices. The term „advice‟ represents the

implementation of a crosscutting concern, i.e. additional

code to be executed in particular points of the application

code.

Advices can be of three types: before, after and

around; a before advice is executed before the join-point

(e.g. before method execution), an after advice is executed

after the join-point (e.g. after returning of method

execution), and an around advice is executed instead of a

join-point (e.g. it replaces the method body

implementation).

AOP also involves means of identification of the join

points to be affected by an aspect. The AOP term

„pointcut‟ implicitly defines at which points in the

dynamic execution of the program (at which join-points)

extra code should be inserted. Pointcuts can describe sets

of join points by specifying, for example, the objects and

methods to be considered, or a specific method call or

execution. Moreover, wildcards and logical operators can

be used to combine pointcuts in more complex ones,

identifying a wider set of join-points.

The term “Dynamic AOP” is attributed to platforms

allowing the insertion (and withdrawal) of aspects at

runtime: this means that an aspect can be dynamically and

remotely inserted (and then further changed) without

stopping the application.

Moreover, AOP has been used to instrument source

code and collect dynamic information about a system.

Putting together these features, in this work we have

implemented a remote system monitoring and logging

framework which is able to insert (and then change at run-

time) monitoring code in a JAIN SLEE distributed

application.

4. The monitoring Aspect in JBoss-AOP

JBoss-AOP is a Java framework for dynamic AOP that

can be run within or outside of JBoss Enterprise

Application Server. For example, JBoss-AOP allows you

intercepting a method call and transparently insert

additional code (aspect) when the method is invoked.

All AOP constructs are defined as pure Java classes

and bound to the application code via an XML [5] file

containing the pointcut definitions.

This XML file (jboss-aop.xml) is read at process start-

up by the JBoss container which defines the maximum

superset of join-points that can be defined in application

code, i.e. where an interception could occur at runtime.

In figure 3 there is an example of XML file which

prepares the body of method “method” of class “Foo”.

<?xml version="1.0" encoding="UTF-8"?>

<aop>

<prepare

 expr="execution(public void Foo->method())"/>

</aop>

Figure 3. An Example of jboss-aop.xml file

After that, during application loading, JBoss prepares

application classes, instrumenting their bytecode with the

addition of “hooks”, i.e. invocations to aspect‟s advice.

If joint-points are not instrumented in application code

at first deployment, it will be impossible to bind them to a

new interceptor at runtime. Such a mechanism reduces

overhead on the process at runtime by limiting checks on

joint points and enhances security avoiding any code to be

intercepted.

The JBoss-AOP framework is based on invocation

objects implementing the Invocation interface.

Invocation objects are the representation of join points

at runtime. They contain runtime information about their

join points and also drive the flow of aspects.

There are different invocation objects:

 MethodInvocation is created and used when a

method is intercepted.

 ConstructorInvocation is created and used when a

constructor is intercepted.

 FieldInvocation is an abstract base class that

encapsulates field access.

 FieldReadInvocation, extends FieldInvocation

and is created when a field is read.

 FieldWriteInvocation extends FieldInvocation,

and is created when a field is written to.

 MethodCalledByMethod is allocated when using

"call" pointcut expressions. This particular class

encapsulates a method that is calling another

method so that you can access the caller and

callee.

Similarly, MethodCalledByConstructor and

ConstructorCalledByMethod are allocated respectively

when a constructor is calling a method and vice-versa.

In JBoss-AOP an aspect is a class implementing the

Interceptor interface. This class must implement two

methods: getName(), which returns the name of the aspect

interceptor, and invoke(), which represents the advice

method and provides the invocation object as input.

The most important method of the Invocation interface

is the invokeNext(). Calling the invokeNext() method

means executing the intercepted method or constructor (or

other) and returns the return value of that method if any.

Not calling that method will not execute the

intercepted code meaning overwriting it and interfering

with the normal execution of the method.

Figure 4. Example of Interceptor

As exemplified above, one can easy see multiple

usages of interceptors by acting either as before, after or

around advice based on when the invokeNext() method is

called.

Dynamic AOP hence becomes a powerful tool for

Application Servers such as SLEE, enabling many

monitoring applications such as testing, logging, Service

Level Tracing, statistics gathering, bug fixing, etc.

5. Aspect Deployment on the Service Bus

The Service Bus [17] is an event-based distributed

middleware that allows for runtime deployment and

monitoring of service-level information over

heterogeneous resources of a communication network. In

particular, it allows deploying aspects over several

running SLEE containers at the same time, using a new

type extension called “Aspect”. This overall mechanism

enables the local development of aspects and their remote

deployment on to the network.

Figure 5. The SLEE service bus

The picture in the previous figure describes the

mechanisms used within the Service Bus for SLEE servers

to subscribe to AOP-related information while an AOP

deployment console publishes the command to deploy or

undeploy aspects.

The steps to follow for deploying an aspect through

the Service Bus are:

1) Write, compile the interceptor and put it into a JAR.
2) Deploy the JAR file on to an HTTP server.
3) Send a publish message through the Service Bus,

indicating the target SLEE(s) and specifying the

AOP-related information as follows:

a. Name: logical name, corresponding to a primary

key, i.e. a unique identifier between an

interceptor and a pointcut.

b. Pointcut: the pointcut used to intercept the

classes to be monitored.

c. Interceptor name: the fully-qualified name of the

interceptor class.

d. URL: the HTTP URL of the JAR file containing

the interceptor class.

Below is an example of such AOP-related

information published through the Service Bus to deploy

an aspect on a target SLEE.

<name>myAspect</name>

<pointcut>

 execution(void myPackage.Aclass->method(..))

</pointcut>

<interceptor>test.InterceptorExample</interceptor>

<jar>http://anySite/interceptionExample.jar</jar>

Figure 6. Aspect configuration in SLEE

The following figures respectively display the

successful installation (figure 7) and the undeploy

command of an aspect on a SLEE (figure 8) in the

Eclipse-based Service Bus management console.

Figure 7. Monitoring Aspect deployment

Figure 8. Monitoring Aspect undeployment

6. Discussion and Future Work

In JAIN SLEE architecture, monitoring [13] is an

indispensable technique to test the behavior of a system,

debug the code, obtain usage statistics or measure the

quality of service.

Program instrumentation, which is typically a manual

and time-consuming task, is often used to insert

monitoring code into the system to be monitored before

service deployment.

AOP has been already used to automate code

instrumentation before deployment [4] but, with this

approach, it is not possible to dynamically change

monitoring code after service deployment.

In our approach, using dynamic AOP for managing

monitoring tasks has revealed several advantages: a

monitoring aspect is developed once and then deployed to

different containers, using the Eclipse-based administrator

console. The adaptation to different classes is eased by the

power and flexibility of language-based constructs

(pointcuts).

The added value of our approach is the use of a

dynamic AOP framework. This allows the fast

deployment of new monitoring aspects on different SLEE

containers already running to dynamically modify their

behavior.

Future enhancements of the monitoring platform will

mainly target a friendly usage of this technology by

creating a library of aspects of interest for SLEE

containers, SBBs and services, and the addition of wizards

for handling aspect templates. Aspect templates

parameters could be easily instantiated to ad-hoc aspects

for the system to be monitored.

7. References

[1] Licciardi, C.A., Falcarin, P., Analysis of NGN service

creation technologies. In Annual Review of

Communications vol. 57, IEC, December 2003.

[2] Licciardi, C.A., Falcarin, P., Next Generation Networks:

The services offering standpoint. In Comprehensive

Report on IP services, Special Issue of the International

Engineering Consortium, October 2002.

[3] Glitho, R.H., Khendek, F., De Marco, A., Creating Value

Added Services in Internet Telephony: An Overview and a

Case Study on a High-Level Service Creation

Environment. In IEEE Transactions on Systems, Man, and

Cybernetics - Part C: Applications and Review, Vol. 33,

n. 4, November 2003.

[4] Mahrenholz, D., Spinczyk, O., and Schroeder-Preikschat,

W. Program Instrumentation for Debugging and

Monitoring with AspectC++. In Proceedings of the 5th

IEEE International Symposium on Object-oriented Real-

time Distributed Computing, Washington DC, USA, April

2002.

[5] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C.

Lopes, J. M. Loingtier, and J. Irwin, "Aspect-oriented

programming" Proc. of 11th European Conference Object-

Oriented Programming, 1997, pp. 220-242.

[6] J. Rosenberg, H. Schulzrinne, G. Camarillo, A. Johnston,

J. Peterson, R. Sparks, M. Handley, E. Schooler, SIP:

Session Initiation Protocol, RFC 3261, June 2002.

[7] A. Baravaglio, C.A. Licciardi, C. Venezia. Web Service

Applicability in Telecommunications Service Platforms.

In Proc. of the International Conference on Next

Generation Web Services Practices, Seoul, Korea, August

2005

[8] AspectC++ project. On-line at http://www.aspectc.org

[9] XML (eXtensible Mark-up Language) specification. On-

line at http://www.w3.org/XML/

[10] AspectJ project. On-line at http://eclipse.org/aspectj

[11] AspectWerkz project. On-line at

http://aspectwerkz.codehaus.org

[12] JBoss AOP framework. On-line at

http://www.jboss.org/developers/projects/jboss/aop

[13] Mahrenholz, D.: Minimal invasive monitoring. In

Proceedings of Fourth IEEE International Symposium on

Object-Oriented Real-Time Distributed Computing, May

2001 pp. 251 – 258.

[14] JAIN SLEE API Specification, Java Specification Request

(JSR) 22, 1999. On-line at

http://www.jcp.org/jsr/detail/22.jsp

[15] JAIN SLEE (JSLEE) v1.1, Java Specification Request

(JSR) 240, 2004. On-line at

http://www.jcp.org/jsr/detail/240.jsp

[16] Java Management Extensions (JMX), On-line at

http://java.sun.com/products/JavaManagement/

[17] G. Valetto, L.W. Goix, G. Delaire. Towards Service

Awareness and Autonomic Features in a SIP-enabled

Network. In Proc. of the Workshop on Autonomic

Communication (WAC2005), Athens, Greece, October

2005.

http://www.w3.org/XML/
http://aspectwerkz.codehaus.org/
http://www.jcp.org/jsr/detail/240.jsp
http://java.sun.com/products/JavaManagement/

	IEC 06 cs
	Falcarin-Goix-Annual-review-submitted

