

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

Author(s): Palmer-Brown, Dominic; Kang, Miao
Article title: Deep Learning in an Adaptive Function Neural Network
Year of publication: 2006
Citation: Palmer-Brown, D. and Kang, M. (2006) ‘Deep Learning in an Adaptive
Function Neural Network’ Proceedings of the AC&T, pp.78-83.
Link to published version:
http://www.uel.ac.uk/act/proceedings/documents/ACT06Proceeding.pdf

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219371565?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://roar.uel.ac.uk/
http://www.uel.ac.uk/act/proceedings/documents/ACT06Proceeding.pdf

Advances in Computing and Technology,
The School of Computing and Technology 1st Annual Conference, 2006

78

DEEP LEARNING IN AN ADAPTIVE FUNCTION NEURAL
NETWORK

Dominic Palmer-Brown, Miao Kang*

Innovative Informatics Research Group;
(d.palmer-brown@uel.ac.uk,).

*Leeds Metropolitan University

Abstract: Artificial neural network learning is typically accomplished via adaptation between
neurons. This paper describes adaptation that is simultaneously between and within neurons. The
conventional neurocomputing wisdom is that by adapting the pattern of connections between neurons
the network can learn to respond differentially to classes of incoming patterns. The success of this
approach in an age of massively increasing computing power that has made high speed
neurocomputing feasible on the desktop and more recently in the palm of the hand, has resulted in
little attention being paid to the implications of adaptation within the individual neurons. The
computational assumption has tended to be that the internal neural mechanism is fixed. However,
there are good computational and biological reasons for examining the internal neural mechanisms of
learning. Recent neuroscience suggests that neuromodulators play a role in learning by modifying the
neuron’s activation function [Scheler] and with an adaptive function approach it is possible to learn
linearly inseparable problems fast, even without hidden nodes. The ADaptive FUction Neural
Network (ADFUNN) presented in this paper is based on a linear piecewise neuron activation function
that is modified by a novel gradient descent supervised learning algorithm [Palmer-Brown;Kang]. It
has been applied to the Iris dataset, and a natural language phrase recognition problem, exhibiting
impressive generalisation classification ability with no hidden neurons.

1. Motivation

True to its name the artificial neuron derives
from a joint biological-computational
perspective. Summing weighted inputs is
biologically plausible, and adapting a weight
is a reasonable model for synaptic
modification. In contrast, the common
assumption of a fixed output activation
function is for computational rather than
biological reasons. A fixed analytical
function facilitates mathematical analysis to
a greater degree than an empirical one.
Nonetheless, there are some computational
benefits to modifiable activation functions,
and they may be biologically plausible as
well. Recent neuroscience suggests that
neuromodulators play a role in learning by
modifying the neuron’s activation function

[Scheler]. From a computational point of
view, it is surprising if real neurons are
essentially fixed entities with no adaptive
aspect, except at their synapses, since such a
restriction leads to non-linear responses
requiring many neurons.
Multi-Layer Perceptrons (MLPs) can be
very effective, but if the activation function
is not optimal, neither is the number of
hiddens which in turn depends on the
function.
Adapting a slope-related parameter of the
activation function may help, but not if the
analytic shape of the function is unsuited to
the problem domain. In contrast, with an
adaptive function approach it should be
possible to learn linearly inseparable
problems fast, even without hidden nodes.
In this paper, we improve the general

Advances in Computing and Technology,
The School of Computing and Technology 1st Annual Conference, 2006

79

learning rule of ADFUNN by using
proximal-proportional function adaptation.
The simplest application of ADFUNN is the
two input exclusive-OR. A single classic
artificial neuron is incapable of solving it,
yet with an adaptive activation function, the
solution is readily learnable with one neuron
[Palmer-Brown].
Another case is the Iris dataset [Fisher]
which consists of 150 four dimensional data.
This linearly inseparable problem can be
solved by a 4 input, 3 output ADFUNN
[Palmer-Brown] network without a hidden
node. The generalisation reaches 100% with
80% of the testing patterns, within 100
epochs.
We also perform natural language phrase
recognition on a set of phrases from the
Lancaster Parsed Corpus (LPC) [Garside].
Generalisation rises to 100% with 150
training patterns (out of a total of 254).
The learned functions resemble noisy
versions of characteristic shapes, so we use
another ADFUNN to recognize (and
therefore select) the best matched analytical
function to the empirical learned one in each
neuron. Before doing this, all noisy data
should be removed from the functions. In
this paper, we compare two different
algorithms for smoothing the learned
function curves, the simple moving average
and least-squares polynomial smoothing.

2. Learning problems tackled with
ADFUNN

We provide a means of solving linearly
inseparable problems using a simple
adaptive function neural network
(ADFUNN), based on a single layer of
linear piecewise function neurons, as shown
in figure 1.

Fig. 1. Adapting the linear piecewise neuron
activation function in ADFUNN
We calculate ∑aw, and find the two
neighboring f-points that bound ∑aw.
However, in our previous work, two f-points
are adapted together if ∑aw is
approximately equidistant from them. In this
paper, the two proximal f-points will be
adapted separately, on a proximal-
proportional basis. The proximal-
proportional value P1 is (Xna+1 - x)/(Xna+1
– Xna) and value P2 is (x - Xna)/(Xna+1 -
Xna). Thus, the change to each point will be
in proportion to its proximity to x. We
obtain the output error and adapt the two
proximal f-points separately, using a
function modifying version of the delta rule,
as outlined in 2.1 to calculate ∆f.

2.1. The General Learning Rule

The weights and activation functions are
adapted in parallel, using the following
algorithm:
A = input node activation, E = output node
error.
WL, FL: learning rates for weights and
functions.

Step1: calculate output error, E, for input, A.
Step2: adapt weights to each output neuron:

∆w = WL Fslope A E
w’ = w + ∆w
weights normalisation

Advances in Computing and Technology,
The School of Computing and Technology 1st Annual Conference, 2006

80

Step3: adapt function for each output
neuron:

∆f (∑aw) = FL E

f’1 = f1 + ∆f P1, f’2 = f2 + ∆f P2

Step4: f (∑aw) = f’ (∑aw); w = w’.
Step5: randomly select a pattern to train

Step6: repeat step 1 to step 5 until the output
error tends to a steady state.

2.2. Iris dataset

The Iris dataset [Fisher] consists of 150 four
dimensional data. Four measurements: sepal
length, sepal width, petal length, and petal
width, were made by Fisher on 50 different
plants from each of three species of Iris (Iris
Setosa, Iris Versicolor and Iris Virginica).
One class is linearly separable from the
other two, but the other two are not linearly
separable from each other.

We apply a 221 input, 4 output ADFUNN
without hidden neurons to solve this
problem. On more than 100 simulations (it
learns the task on no more than 30 epochs in
each run), the correct classification always
reaches 100% with 120 training patterns and
30 testing patterns. An example function
output is as follows, in this case for Iris
Setosa class:

Fig. 2. Iris Setosa function output in
ADFUNN (f-points are initialized to a constant
value (0.5) making it easy to identify the active
range over which adaptation has occurred.)

We can interpret the data by considering
weights and functions together. To identify

Iris Setosa, both petal width and petal length
must be taken into account as they both have
equally strong weights. Thus the NN is easy
to interpret (transparent): for a given range
of petal width plus petal length, as indicated
by the interval between [0.2, 1.2] in the
above figure, the flower is Setosa.

2.3. Phrase Recognition

We generated 254 input patterns using the
pre-tagged corpus from the Lancaster Parsed
Corpus (LPC). A total of 49 bits are used to
encode all possible input symbols. The
terminal symbol groups are: punctuation
(Pu), conjunctions (Co), nouns (NP), verbs
(VP) and prepositions (PP). The non-
terminal symbol groups are sentences (S),
finite clauses (F) non-finite clauses (T),
major phrase types (V) and minor phrase
types (M). There are 4 look-back symbols,
10 phrasal symbols and 1 look-ahead
symbol, which makes a total of 15 inputs
symbols. Thus, the total number of inputs is
49 bits x 15 symbols = 735. According to
LPC there are 41 constituent tags altogether.
Thus we have a 735 inputs and 41 outputs
network to deal with the phrase recognition,
using 254 input patterns. The following is
the learned function output for sentence:

Fig. 3. Sentence function output for phrase
recognition using ADFUNN (f-points are
initialized to a constant value (0.5) making it
easy to identify the active range over which
adaptation has occurred.)
The generalisation reaches 100% with 150
training patterns and 104 testing patterns.
We compare the performance of ADFUNN,
with an MLP connectionist parser phrase

Advances in Computing and Technology,
The School of Computing and Technology 1st Annual Conference, 2006

81

recognizer trained on a much larger
(superset) dataset, and with an MLP simple
back-propagation network trained on the
same dataset. The most obvious advantage
of ADFUNN is the lack of hidden neurons,
whereas 50 hidden layer nodes are required
in the other two networks. Additionally,
ADFUNN achieves 100% correct
classification compared to 98.76% and
89.01% for the best MLP networks.

3. Function Curve Smoothing in
ADFUNN

Along the lines of the previous section, it is
apparent that the learned functions are very
well-regulated. It is possible, for a given set
of analytical function prototypes to
determine which analytical function matches
best a given smoothed curve from the
learned function output. Some points have
never been adapted even though they are
within the active range of adaptation, in
which case they are in effect noise. To
smooth these curves, we use the simple
moving average method and least-squares
polynomial smoothing, respectively.

4. Results

How do these smoothed curves work when
substituted back into the neural network?
We choose the simple moving average
method, because it causes less distortion.
For the natural language processing case, we
substitute simplified curves smoothed by the
simple moving average method for
empirical ones for all of the 41 constituent
tag output classes. The simplified curves
work well, the correct classification is still
100% for all patterns used for training
(254/254*100% = 100%) e.g. for the verb
phrase neuron.

Fig. 4. Substituting the smoothed curve (the
smooth line in the above left hand side) in the
verb phrase neuron. The upper right hand curve
is the original verb function output and the lower
right hand curve is the smoothed version.

5. Related Work

Piazza et al [Piazza; Uncini] make use of an
adaptive spline approach to function
modification, and elsewhere both Fiori and
Piazza [Piazza, Fiori] use a Digital Look-Up
Table (LUT) for the activation function.
ADFUNN is more general than the digital
LUT approach, in the sense that it is an
analogue algorithm incorporating linear
piecewise interpolation between points. This
analogue approach is effective for both
sharp edges and smooth functions.
In the cubic analytic spline approach, a
cubic level of complexity is assumed and a
good suboptimal solution to the cubic spline
curve fitting problem is applied. If the
required function is linear, or a step, ramp or
pulse function, splines are inappropriate; and
in ADFUNN, we don’t have the same
problem of smoothness control that is faced
by adaptive splines. Initial high precision
allows for any f-shape, and subsequently,
the function curve can be simplified by
removing all points that have not been
adapted, or where f is constant over a sub-
range and by smoothing.
In addition, LUT requires a bounded input
address and a suitable linear transformation
(scaling and offset adding) has to be

Advances in Computing and Technology,
The School of Computing and Technology 1st Annual Conference, 2006

82

performed on the output of the linear
combiner in order to obtain the best LUT
address; a problem not faced in ADFUNN
which uses linear interpolation. Our method
is essentially analogue and so hardware
implementation is non trivial, but feasible
using a combination of digital memory for
F-points, amplifiers performing linear
interpolation, and multiplier circuits.

6 Conclusion and Future Work

In this paper, we improved the general
learning rule in ADFUNN and applied it to
the Iris dataset, and a phrase recognition
problem. Two function smoothing methods
were compared for removing noise for the
learned ADFUNN. Applying ADFUNN to
some classification problems is highly
effective even with no hidden nodes. Of the
two smoothing methods, the simple moving
average is more effective and
computationally efficient than the least-
squares polynomial smoothing. And the
smoothed curves work well when
substituted back into the ADFUNN neurons.

A secondary ADFUNN will be used to
recognize the best matched analytical
functions for substitution in the ADFUNN
classifier. Intelligent data analysis with
neural networks requires analysis of the
weights to establish the most important
factors and generate simplified equations to
explain network decisions [Roadknight]. In
ADFUNN, the learned functions also offer
insights into the data [Palmer-Brown;
Kang]. The development of algorithms for
replacing learned functions with matched
analytical ones to automatically generate
mechanistic models from trained networks
will be a significant contribution.
In more complex domains, such as with a
much larger natural language dataset, there
will be a need to use hidden nodes in a ML-
ADFUNN. However, just as the single layer

ADFUNN is more powerful than an SLP, so
the multilayer ADFUNN is expected to be
more powerful in learning than multi-layer
perceptions (MLPs), and may well require
fewer hidden neurons.

References

Fiori, S.: Hybrid Independent Component
Analysis by Adaptive LUT Activation
Function Neurons. Neural Networks, Vol.
15. (2002) 85-94

Fisher, R.A.: The Use of Multiple
Measurements in Taxonomic Problems.
Annals of Eugenics 7(1936) 178-188

Garside, R., Leech, G. and Varadi, T.:
Manual of Information to Accompany the
Lancaster Parsed Corpus. Department of
English, University of Oslo (1987)

Kang, M., Palmer-Brown, D.: An Adaptive
Function Neural Network (ADFUNN) for
Phrase Recognition. To appear in the
International Joint Conference on Neural
Networks (IJCNN), Montréal, Canada
(2005)

Palmer-Brown, D., Kang, M.: ADFUNN:
An Adaptive Function Neural Network. 7th
International Conference on Adaptive and
Natural Computing Algorithms
(ICANNGA), Coimbra, Portugal (2005)

Piazza, F., Uncini, A. and Zenobi, M.:
Neural Networks with Digital LUT
Activation Function. Proceedings of
International Joint Conference on Neural
Networks (IJCNN’93). Nagoya (Japan),
Vol. 2. (1993) 1401-1404

Scheler, G.: Regulation of Neuromodulator
Efficacy: Implications for Whole-Neuron

Advances in Computing and Technology,
The School of Computing and Technology 1st Annual Conference, 2006

83

and Synaptic Plasticity. Progress in
Neurobiology, Vol.72, No 6. (2004)

Scheler, G.: Memorization in a neural
network with adjustable transfer function
and conditional gating. Quantitative
Biology, Vol. 1. (2004)

Roadknight, C.M., Balls, G., Mills, G. and
Palmer-Brown, D.: Modelling Complex
Environmental Data. IEEE Transactions on
Neural Networks, Vol.8, No.4. (1997)856 –
862

Uncini, A., Piazza, F. and Vecci, L.:
Learning and Approximation Capabilities of
Adaptive Spline Activation Function Neural
Networks. Neural Networks, Vol. 11, No. 2.
(1998) 259-270

	AC&T 06 78-83 cs
	1_pdfsam_7_pdfsam_use this ACT06Proceeding

