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Abstract: Artificial neural network learning is typically accomplished via adaptation between 
neurons. This paper describes adaptation that is simultaneously between and within neurons. The 
conventional neurocomputing wisdom is that by adapting the pattern of connections between neurons 
the network can learn to respond differentially to classes of incoming patterns. The success of this 
approach in an age of massively increasing computing power that has made high speed 
neurocomputing feasible on the desktop and more recently in the palm of the hand, has resulted in 
little attention being paid to the implications of adaptation within the individual neurons. The 
computational assumption has tended to be that the internal neural mechanism is fixed. However, 
there are good computational and biological reasons for examining the internal neural mechanisms of 
learning. Recent neuroscience suggests that neuromodulators play a role in learning by modifying the 
neuron’s activation function [Scheler] and with an adaptive function approach it is possible to learn 
linearly inseparable problems fast, even without hidden nodes. The ADaptive FUction Neural 
Network (ADFUNN) presented in this paper is based on a linear piecewise neuron activation function 
that is modified by a novel gradient descent supervised learning algorithm [Palmer-Brown;Kang]. It 
has been applied to the Iris dataset, and a natural language phrase recognition problem, exhibiting 
impressive generalisation classification ability with no hidden neurons. 
 
1. Motivation 
 
True to its name the artificial neuron derives 
from a joint biological-computational 
perspective. Summing weighted inputs is 
biologically plausible, and adapting a weight 
is a reasonable model for synaptic 
modification. In contrast, the common 
assumption of a fixed output activation 
function is for computational rather than 
biological reasons. A fixed analytical 
function facilitates mathematical analysis to 
a greater degree than an empirical one. 
Nonetheless, there are some computational 
benefits to modifiable activation functions, 
and they may be biologically plausible as 
well. Recent neuroscience suggests that 
neuromodulators play a role in learning by 
modifying the neuron’s activation function 

[Scheler]. From a computational point of 
view, it is surprising if real neurons are 
essentially fixed entities with no adaptive 
aspect, except at their synapses, since such a 
restriction leads to non-linear responses 
requiring many neurons. 
Multi-Layer Perceptrons (MLPs) can be 
very effective, but if the activation function 
is not optimal, neither is the number of 
hiddens which in turn depends on the 
function.  
Adapting a slope-related parameter of the 
activation function may help, but not if the 
analytic shape of the function is unsuited to 
the problem domain. In contrast, with an 
adaptive function approach it should be 
possible to learn linearly inseparable 
problems fast, even without hidden nodes.  
In this paper, we improve the general 
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learning rule of ADFUNN by using 
proximal-proportional function adaptation. 
The simplest application of ADFUNN is the 
two input exclusive-OR. A single classic 
artificial neuron is incapable of solving it, 
yet with an adaptive activation function, the 
solution is readily learnable with one neuron 
[Palmer-Brown].  
Another case is the Iris dataset [Fisher] 
which consists of 150 four dimensional data. 
This linearly inseparable problem can be 
solved by a 4 input, 3 output ADFUNN 
[Palmer-Brown] network without a hidden 
node. The generalisation reaches 100% with 
80% of the testing patterns, within 100 
epochs.   
We also perform natural language phrase 
recognition on a set of phrases from the 
Lancaster Parsed Corpus (LPC) [Garside]. 
Generalisation rises to 100% with 150 
training patterns (out of a total of 254).  
The learned functions resemble noisy 
versions of characteristic shapes, so we use 
another ADFUNN to recognize (and 
therefore select) the best matched analytical 
function to the empirical learned one in each 
neuron. Before doing this, all noisy data 
should be removed from the functions. In 
this paper, we compare two different 
algorithms for smoothing the learned 
function curves, the simple moving average 
and least-squares polynomial smoothing.  
 
2. Learning problems tackled with 
ADFUNN 
 
We provide a means of solving linearly 
inseparable problems using a simple 
adaptive function neural network 
(ADFUNN), based on a single layer of 
linear piecewise function neurons, as shown 
in figure 1.  

 

Fig. 1. Adapting the linear piecewise neuron 
activation function in ADFUNN 
We calculate ∑aw, and find the two 
neighboring f-points that bound ∑aw. 
However, in our previous work, two f-points 
are adapted together if ∑aw is 
approximately equidistant from them. In this 
paper, the two proximal f-points will be 
adapted separately, on a proximal-
proportional basis. The proximal-
proportional value P1 is (Xna+1 - x)/(Xna+1 
– Xna) and value P2 is (x - Xna)/(Xna+1 - 
Xna). Thus, the change to each point will be 
in proportion to its proximity to x. We 
obtain the output error and adapt the two 
proximal f-points separately, using a 
function modifying version of the delta rule, 
as outlined in 2.1 to calculate ∆f. 
 
 
2.1. The General Learning Rule 
 
The weights and activation functions are 
adapted in parallel, using the following 
algorithm: 
A = input node activation, E = output node 
error. 
WL, FL: learning rates for weights and 
functions. 
 
Step1: calculate output error, E, for input, A. 
Step2: adapt weights to each output neuron: 
 

∆w = WL Fslope A E 
w’ = w + ∆w 
weights normalisation 
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Step3: adapt function for each output 
neuron: 

∆f (∑aw) = FL E 

f’1 = f1 + ∆f P1, f’2 = f2 + ∆f P2 

Step4: f (∑aw) = f’ (∑aw); w = w’. 
Step5: randomly select a pattern to train  

Step6: repeat step 1 to step 5 until the output 
error tends to a steady state. 

2.2.   Iris dataset 

The Iris dataset [Fisher] consists of 150 four 
dimensional data. Four measurements: sepal 
length, sepal width, petal length, and petal 
width, were made by Fisher on 50 different 
plants from each of three species of Iris (Iris 
Setosa, Iris Versicolor and Iris Virginica). 
One class is linearly separable from the 
other two, but the other two are not linearly 
separable from each other.  

We apply a 221 input, 4 output ADFUNN 
without hidden neurons to solve this 
problem. On more than 100 simulations (it 
learns the task on no more than 30 epochs in 
each run), the correct classification always 
reaches 100% with 120 training patterns and 
30 testing patterns. An example function 
output is as follows, in this case for Iris 
Setosa class: 

 

Fig. 2. Iris Setosa function output in 
ADFUNN (f-points are initialized to a constant 
value (0.5) making it easy to identify the active 
range over which adaptation has occurred.) 

We can interpret the data by considering 
weights and functions together. To identify 

Iris Setosa, both petal width and petal length 
must be taken into account as they both have 
equally strong weights. Thus the NN is easy 
to interpret (transparent): for a given range 
of petal width plus petal length, as indicated 
by the interval between [0.2, 1.2] in the 
above figure, the flower is Setosa. 

 
2.3. Phrase Recognition 
 
We generated 254 input patterns using the 
pre-tagged corpus from the Lancaster Parsed 
Corpus (LPC). A total of 49 bits are used to 
encode all possible input symbols. The 
terminal symbol groups are: punctuation 
(Pu), conjunctions (Co), nouns (NP), verbs 
(VP) and prepositions (PP). The non-
terminal symbol groups are sentences (S), 
finite clauses (F) non-finite clauses (T), 
major phrase types (V) and minor phrase 
types (M). There are 4 look-back symbols, 
10 phrasal symbols and 1 look-ahead 
symbol, which makes a total of 15 inputs 
symbols. Thus, the total number of inputs is 
49 bits x 15 symbols = 735. According to 
LPC there are 41 constituent tags altogether. 
Thus we have a 735 inputs and 41 outputs 
network to deal with the phrase recognition, 
using 254 input patterns. The following is 
the learned function output for sentence: 

 

Fig. 3. Sentence function output for phrase 
recognition using ADFUNN (f-points are 
initialized to a constant value (0.5) making it 
easy to identify the active range over which 
adaptation has occurred.) 
The generalisation reaches 100% with 150 
training patterns and 104 testing patterns. 
We compare the performance of ADFUNN, 
with an MLP connectionist parser phrase 
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recognizer trained on a much larger 
(superset) dataset, and with an MLP simple 
back-propagation network trained on the 
same dataset. The most obvious advantage 
of ADFUNN is the lack of hidden neurons, 
whereas 50 hidden layer nodes are required 
in the other two networks. Additionally, 
ADFUNN achieves 100% correct 
classification compared to 98.76% and 
89.01% for the best MLP networks.  
 
3. Function Curve Smoothing in 
ADFUNN  
 
Along the lines of the previous section, it is 
apparent that the learned functions are very 
well-regulated. It is possible, for a given set 
of analytical function prototypes to 
determine which analytical function matches 
best a given smoothed curve from the 
learned function output. Some points have 
never been adapted even though they are 
within the active range of adaptation, in 
which case they are in effect noise. To 
smooth these curves, we use the simple 
moving average method and least-squares 
polynomial smoothing, respectively. 
 
4. Results 
 
How do these smoothed curves work when 
substituted back into the neural network? 
We choose the simple moving average 
method, because it causes less distortion. 
For the natural language processing case, we 
substitute simplified curves smoothed by the 
simple moving average method for 
empirical ones for all of the 41 constituent 
tag output classes. The simplified curves 
work well, the correct classification is still 
100% for all patterns used for training 
(254/254*100% = 100%) e.g. for the verb 
phrase neuron. 

 

Fig. 4. Substituting the smoothed curve (the 
smooth line in the above left hand side) in the 
verb phrase neuron. The upper right hand curve 
is the original verb function output and the lower 
right hand curve is the smoothed version. 
 
5.  Related Work 
 
Piazza et al [Piazza; Uncini] make use of an 
adaptive spline approach to function 
modification, and elsewhere both Fiori and 
Piazza [Piazza, Fiori] use a Digital Look-Up 
Table (LUT) for the activation function. 
ADFUNN is more general than the digital 
LUT approach, in the sense that it is an 
analogue algorithm incorporating linear 
piecewise interpolation between points. This 
analogue approach is effective for both 
sharp edges and smooth functions. 
In the cubic analytic spline approach, a 
cubic level of complexity is assumed and a 
good suboptimal solution to the cubic spline 
curve fitting problem is applied. If the 
required function is linear, or a step, ramp or 
pulse function, splines are inappropriate; and 
in ADFUNN, we don’t have the same 
problem of smoothness control that is faced 
by adaptive splines. Initial high precision 
allows for any f-shape, and subsequently, 
the function curve can be simplified by 
removing all points that have not been 
adapted, or where f is constant over a sub-
range and by smoothing. 
In addition, LUT requires a bounded input 
address and a suitable linear transformation 
(scaling and offset adding) has to be 
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performed on the output of the linear 
combiner in order to obtain the best LUT 
address; a problem not faced in ADFUNN 
which uses linear interpolation. Our method 
is essentially analogue and so hardware 
implementation is non trivial, but feasible 
using a combination of digital memory for 
F-points, amplifiers performing linear 
interpolation, and multiplier circuits.  

 
6    Conclusion and Future Work 
 
In this paper, we improved the general 
learning rule in ADFUNN and applied it to 
the Iris dataset, and a phrase recognition 
problem. Two function smoothing methods 
were compared for removing noise for the 
learned ADFUNN.  Applying ADFUNN to 
some classification problems is highly 
effective even with no hidden nodes. Of the 
two smoothing methods, the simple moving 
average is more effective and 
computationally efficient than the least-
squares polynomial smoothing. And the 
smoothed curves work well when 
substituted back into the ADFUNN neurons. 

A secondary ADFUNN will be used to 
recognize the best matched analytical 
functions for substitution in the ADFUNN 
classifier. Intelligent data analysis with 
neural networks requires analysis of the 
weights to establish the most important 
factors and generate simplified equations to 
explain network decisions [Roadknight]. In 
ADFUNN, the learned functions also offer 
insights into the data [Palmer-Brown; 
Kang]. The development of algorithms for 
replacing learned functions with matched 
analytical ones to automatically generate 
mechanistic models from trained networks 
will be a significant contribution.  
In more complex domains, such as with a 
much larger natural language dataset, there 
will be a need to use hidden nodes in a ML-
ADFUNN. However, just as the single layer 

ADFUNN is more powerful than an SLP, so 
the multilayer ADFUNN is expected to be 
more powerful in learning than multi-layer 
perceptions (MLPs), and may well require 
fewer hidden neurons. 
 
References 
 
Fiori, S.: Hybrid Independent Component 
Analysis by Adaptive LUT Activation 
Function Neurons. Neural Networks, Vol. 
15. (2002) 85-94 
 
Fisher, R.A.: The Use of Multiple 
Measurements in Taxonomic Problems. 
Annals of Eugenics 7(1936) 178-188 
 
Garside, R., Leech, G. and Varadi, T.: 
Manual of Information to Accompany the 
Lancaster Parsed Corpus. Department of 
English, University of Oslo (1987) 
 
Kang, M., Palmer-Brown, D.: An Adaptive 
Function Neural Network (ADFUNN) for 
Phrase Recognition. To appear in the 
International Joint Conference on Neural 
Networks (IJCNN), Montréal, Canada 
(2005) 
 
Palmer-Brown, D., Kang, M.: ADFUNN: 
An Adaptive Function Neural Network. 7th 
International Conference on Adaptive and 
Natural Computing Algorithms 
(ICANNGA), Coimbra, Portugal (2005) 
 
Piazza, F., Uncini, A. and Zenobi, M.: 
Neural Networks with Digital LUT 
Activation Function. Proceedings of 
International Joint Conference on Neural 
Networks (IJCNN’93). Nagoya (Japan), 
Vol. 2. (1993) 1401-1404 
 
Scheler, G.: Regulation of Neuromodulator 
Efficacy: Implications for Whole-Neuron 



Advances in Computing and Technology, 
The School of Computing and Technology 1st Annual Conference, 2006 
 

 

83

and Synaptic Plasticity. Progress in 
Neurobiology, Vol.72, No 6. (2004) 
 
Scheler, G.: Memorization in a neural 
network with adjustable transfer function 
and conditional gating. Quantitative 
Biology, Vol. 1. (2004) 
 
Roadknight, C.M., Balls, G., Mills, G. and 
Palmer-Brown, D.: Modelling Complex 
Environmental Data. IEEE Transactions on 
Neural Networks, Vol.8, No.4. (1997)856 – 
862 

Uncini, A., Piazza, F. and Vecci, L.: 
Learning and Approximation Capabilities of 
Adaptive Spline Activation Function Neural 
Networks. Neural Networks, Vol. 11, No. 2. 
(1998) 259-270 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 


	AC&T 06 78-83 cs
	1_pdfsam_7_pdfsam_use this ACT06Proceeding

