

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

Author(s): Bashroush, Rabih; Perrott. Ronald
Article title: Using a Software Product Line Approach in Designing Grid Services
Year of publication: 2005
Citation: Bashroush, R., Perrott. R. (2005) ‘Using a Software Product Line
Approach in Designing Grid Services.’ Proceedings of the 4th UK e-Science All
Hands Meeting (AHM2005), Nottingham, UK, September 2005
Link to published version:
http://www.allhands.org.uk/2005/proceedings/papers/499.pdf

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219371516?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://roar.uel.ac.uk/
http://www.allhands.org.uk/2005/proceedings/papers/499.pdf

Using a Software Product Line Approach in Designing Grid
Services

R. Bashroush, R. Perrott

Belfast e-Science Centre, Queens University Belfast

 Belfast BT7 1NN, UK

{r.bashroush, r.perrott}@qub.ac.uk

Abstract

Software Product Line engineering (SPL) has emerged in recent years as a planned approach for
software reuse within families of related software products. In SPL, variability and commonality
among different members of a family is studied and core assists (system architecture, software
components, documentation, etc.) are designed accordingly to maximize reuse within the family
members. In this work, we look at how this emerging technology can be relevant to the domain of
grid computing and the design of grid services. The GeneGrid project is used to demonstrate the
SPL approach.

1. Introduction
The concept of Software Product Lines (SPL)
emerged from research in the areas of software
reuse and domain-specific software architecture.
Software product lines are a specialized form of
software reuse as they employ planned reuse of
software assets within the scope of a set of related
products. As defined in [1], “A software product
line is a set of software-intensive systems sharing a
common, managed set of features that satisfy the
specific needs of a particular market segment or
mission and that are developed from a common set
of core assets in a prescribed way”. A core asset is
a software artefact that is used in the production of
more than one product in a software product line.
A core asset may be a software component, a
process model, a plan, a document, or any other
useful result of building a system.

There have been a number of formal processes
defined for adopting an SPL approach within a
software development environment. Examples are
PuLSE™ [2], FAST [3] and RSEB [4]. These
processes describe what the different stages of the
SPL development process are. It is generally
agreed that the first stage would be managing the
variability within the product line and developing
the product family environment (assets) and then
using these common assets to develop product
members as well as cater for family evolution and
addition of new features/products to the product
line.

In this work, an outline of the relevance of this
emerging technology to the domain of grid
computing and how it could be useful in designing
grid services is given.

2. SPL and Grid
Software reuse continues to evolve from abstract
data types, to objects (classes), components, and
now services. Services introduce a larger level of
granularity and reduced effort to integrate (reuse).
They are characterized by their dynamic and
loosely coupled nature compared to that of
components. However, grid services exhibit some
variability which could benefit from variability
management techniques provided by SPL.
Variability in grid services includes choosing the
technology and platform, interface description,
security policies, etc.

The SPL process can be tailored for grid
service development and can be summarized in the
following stages:

- Variability management and feature
modelling: In this stage, the different features
that are initially to be supported by the
system are identified and the commonality
and variability analysis among the different
grid services (our product family) to be
provided is studied and modelled. Existing
variability management techniques can be
used for this purpose [5, 6].

- Asset development: Once the system feature

model is constructed, the second step is to
develop the assets. The assets include the
components constituting the services, the
services, documentation, architecture, etc.
Here, based on the nature of the service
family (the set of services to be developed),
two approaches can be used. A top-down
approach where service descriptions are first

designed and then the constituting
components. Or, a bottom-up approach,
where first components are designed around
the commonalities identified in stage one
(variability management and feature
modelling) and then composed together to
form services. There are a number of
techniques that can be used to help the
architect with this stage including recently
developed techniques [7, 8].

- Evaluation and testing: Once the services are

designed, they are then evaluated against
their pre-set quality (upgradeability,
modifiability, etc.) and functional attributes.
If satisfactory, they are implemented and unit
level and service level testing are then
conducted. There are a number of evaluation
techniques which could be used in this stage
[9, 10].

- Evolution management: Services introduced

in the future (new versions, upgrades, etc.)
can then be introduced making use of existing
assets with minimal cost/effort (which is the
main benefit of the SPL approach). However,
to keep the service evolution (where the
service code starts to deviate from the
original architecture due to repeated
modifications over time, and which could
gradually render the service code unusable)
minimal, changes should be introduced at the
feature model and architecture level first, and
then the modifications propagated down to
affect the code (via component specifications,
documentation, etc.).

3. Example
The example used in this section is a simplified
version of the GeneGrid [11] project which was
developed within the Belfast e-Science Centre
(BeSC) in collaboration with Fusion Antibodies
Ltd and Amtec Medical Ltd. The example is
intended to demonstrate very briefly, due to space
limitation, the general SPL approach for designing
a grid based family of systems such as GeneGrid.

GeneGrid aims to provide a practical, easy to
use and secure system, which harnesses and shares
the power of distributed HPC resources, enabling
more comprehensive and efficient interrogation of
the global data pool available to biotechnologists.
Additionally, the project aims to implement an
underpinning scaleable and extendable
architectural base, so that the addition of extra
functionality, resources, or user capacity can be
readily achieved.
Before starting with the feature model, we scope
our product line by identifying what products lie
within our product family. The products within the
GeneGrid are the different UI portals (which
invoke subset/or all of available grid services) that
are designed to the specification of the end users.
For example, the UI portal designed for Fusion
Antibodies Ltd and Amtec Medical Ltd may differ
from another portal developed for another
company. The portals may differ in the number of
services they access/provide (allowing for the
development of low end and high end products).
They could also differ in the way they provide the
services (e.g. the way tasks and workflows are
created, etc.). However, they all share the same
core assets which are the GeneGrid services.
Figure 1 shows an example of three products based
on the same set of grid services.

GeneGrid Services

Service 1

Service 2

Service N

Product 1

<
Ba
ck

<
Ba
ck

Product 2
<

Ba
ck
<

Ba
ck

<
Ba
ck

Product N
<

Ba
ck
<

Ba
ck

<
Ba
ck

<
Ba
ck

<
Ba
ck

Figure 1. GeneGrid as a product family

After capturing the stockholders’ requirements
and specification, a feature model is built for the
product family. Figure 2 below shows a small part

of the GeneGrid feature model described using the
FORM notation [6].

Figure 2. Part of the Feature Model of the GeneGrid system

The feature model above shows that the
GeneGrid should allow for the integration of new
applications locally or remotely. The applications
that are available initially in GeneGrid are BLAST
[12] (several variants), Transmembrane prediction
and Signal peptide prediction. The set of
application could vary between different products
within the product line and also within the same

product. The feature model also shows that the
products should have a web portal UI and should
allow the creation and execution of workflows. For
more information on the FORM notation you can
refer to [6].

Once the feature model is in place, the system
architecture is designed. Figure 3 below shows the
reference architecture of the GeneGrid system.

Figure 3. GeneGrid reference architecture

After creating the architecture, a number of
scenarios are developed to test the architecture for
its set requirements before investing any further in
implementation. When found satisfactory, the
components are then implemented and tested. For

more information on the different components
within the GeneGrid, please refer to [11].

Upon the completion of the core assets, the
different products within the product family
(Figure 1) are then constructed based on the
desired feature set.

Portal
Manager

Workflow
Manager

Application
Manager

Data
Service

Application
Service

Data
Manager

Data
Service Data

Service

Application
Service Application

Service Application
Service

Integrate New Applications Web Portal Interface Workflows

GeneGrid

Create Execute Remote Local

4. Discussion
The proposal is to use an SPL process for
designing grid services. The process introduces
concepts like families of grid services and service
evolution and demonstrates how newly emerging
technologies in software engineering can be used
within grid computing.

Before using an SPL approach to develop a
service family, a feasibility study is required. This
is due to the fact that a substantial initial
investment is needed to create the service family
assets. During this time, no income/benefits can be

expected from the activities carried out. Figure 4
below shows the economic model for adopting an
SPL approach in order to develop a family of
related products.

The GeneGrid project served as a good
example for demonstrating the SPL process due to
its nature where a fixed set of services are initially
developed to be used by current and future
products within the product family. Some
components within GeneGrid, such as the
GridManager component (refer to [11] for more
details), were also successfully reused within other
projects (horizontal reuse) at the centre.

5. References
[1] "A Framework for Software Product Line Practice

- Version 4.2,"
http://www.sei.cmu.edu/productlines/framework.h
tml.

[2] J. Bayer, O. Flege, P. Knauber, R. Laqua, D.
Muthig, K. Schmid, T. Widen, and J. D. Baud.
PuLSE: A Methodology to develop Software
Product Lines. Proceedings of the Symposium on
Software Reusability, 1999.

[3] D. Weiss and C. Lai, Software Product-Line
Engineering: A Family-Based Software
Development Process. Reading, MA: Addison-
Wesley, 1999.

[4] I. Jacobson, M. Griss, and P. Jonsson, Software
Reuse - Architecture, Process and Organization
for Business Success. New York: ACM Press,
1997.

[5] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and A. S. Patterson, "Feature Oriented Domain
Analysis (FODA) feasibility study," Software
Engineering Institute, Carnegie Mellon University
CMU/SEI-90-TR-21, 1990.

[6] K. C. Kang, S. Kim, J. Lee, and K. Kim, "FORM:
A Feature-Oriented Reuse Method with Domain-
Specific Reference Architectures," Annals of
Software Engineering, vol. 5, pp. 143-168, 1998.

[7] R. Bashroush, T. J. Brown, I. Spence, and P.
Kilpatrick. ADLARS: An Architecture Description

Language for Software Product Lines.
Proceedings of 29th Annual IEEE/NASA Software
Engineering Workshop, Greenbelt, Maryland,
USA, April 2005.

[8] R. Bashroush, I. Spence, P. Kilpatrick, and T. J.
Brown, "Deriving Product Architectures from an
ADLARS Described Reference Architecture using
Leopard," ACM SIGSOFT Foundations of
Software Engineering FSE-12, October 2004.

[9] R. Kazman, M. Klein, and P. Clements, "ATAM:
Method for architecture evaluation," CMU/SEI-
2000-TR-004, 2000.

[10] R. Bashroush, I. Spence, P. Kilpatrick, and T. J.
Brown. Towards an Automated Evaluation
Process for Software Architectures. Proceedings
of the IASTED international conference on
Software Engineering SE 2004, Innsbruck,
Austria, February 2004.

[11] David R. Simpson, N Kelly, P.V. Jithesh, P.
Donachy, T. J. Harmer, R.H. Perrott, Jim
Johnston, Paul Kerr, Mark McCurley, Shane
McKee. GeneGrid: A Practical Workflow
Implementation for a Grid Based Virtual
Bioinformatics Laboratory. Proceedings of UK e-
Science All Hands Meeting 2004 (AHM04),
September 2004.

[12] Jithesh P. V., Kelly N., Simpson D., Donachy P. et
al.. Bioinformatics Application Integration and
Management in GeneGrid: Experiments and
Experiences. Proceedings of the UK eScience All
Hands Meeting (AHM04) September 2004.

With SPL
approach

Cumulative
Cost

1 2 3 4 5 6 Number of
 Services

 Developed
Figure 4. SPL Feasibility Analysis

Without SPL
approach

Payback
Point

_
_

I _
_
_
_
_
_

	AHM cs
	10.1.1.104.1828
	Abstract
	Introduction
	SPL and Grid
	Example
	Discussion
	References

