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Abstract: We present a novel neural network method for the analysis and interpretation of data that describes 
user interaction with a training tool. The method is applied to the interaction between trainee network managers 
and a simulated network management system. A simulation based approach to the task of efficiently training 
network managers, through the use of a simulated network, was originally presented by Pattinson [2000]. The 
motivation was to provide a tool for exposing trainee network managers to a life like situation, where both 
normal network operation and ‘fault’ scenarios could be simulated in order to train the network manager. The 
data logged by this system describes the detailed interaction between trainee network manager and simulated 
network. The work presented here provides an analysis of this interaction data that enables an assessment of the 
capabilities of the network manager as well as an understanding of how the network management tasks are being 
approached. A neural network architecture [Lee, Palmer-Brown, Roadknight 2004] is adapted and implemented 
in order to perform an exploratory data analysis of the interaction data. The neural network architecture employs 
a novel form of continuous self-organisation to discover key features, and thus provide new insights into the 
data.   
 
Keywords: Network Management, Neural Networks, Data Analysis, Self-Organisation, Unsupervised Learning. 
 

 
1. INTRODUCTION 

A simulation based approach to the task of 
efficiently training network managers through the 
use of a simulated network was originally 
presented by [Pattinson, 2000]. The motivation was 
to provide trainee network managers with realistic, 
‘hands-on’ experience without disrupting a live 
network. The approach makes use of a production-
standard network management platform, interacting 
with processes (model agents) representing 
network entities. This simulation tool has been 
successfully used in the training of network 
managers. Tasks are set such as exploration 
exercises to identify active components of a 
network and the control of simulated ‘fault’ 
conditions. The trainee needs to quickly establish 
how to approach a given task, which devices need 
to be interrogated and what parameters need to be 
monitored in order to obtain information on the 
status of the network. The trainee selects 
commands that to the best of their knowledge 
represent the most appropriate course of action 
required to manage the network and data describing 
their actions is computer logged. It is this data that 
is being analysed here through the use of a neural 
network (NN) in order to assess the effectiveness 
of the network manager from how the tasks are 
being approached. The data includes a description 
of the commands issued by the trainee that request 
current values of, or set up processes to monitor, 

various parameters. Also the node/device within 
the network that the command is directed at, as 
well as any associated variables, and a date and 
time stamp for each command. There are a total of 
23 commands that the trainee may use and these 
can be divided into groups defined by the layer (or 
networking protocol) that they apply to or type of 
action being performed {Interface, IP, TCP, UDP, 
ICMP, SNMP and monitoring actions}. The 
commands are used to request current values of, or 
set up processes to monitor, various parameters 
and are divided into groups defined by the layer (or 
networking protocol) that they apply to.  
 
The computer logged data contains both qualitative 
and quantitative data and therefore provides a 
challenge in how to approach its processing, 
analysis and evaluation. Qualitative data tends to 
be voluminous and inconsistent, and has many 
problems associated with its analysis [Miles and 
Huberan, 1994]. The analysis of such data typically 
involves sifting through the data and noting 
regularly occurring relationships between 
variables. The tasks of coding, isolating and 
interpreting patterns of interest can be long and 
arduous and relies on the analyst being able to 
comprehensively identify all patterns that are of 
interest. The concept of using a NN in the analysis 
means that the task of identifying patterns within 
the data is relinquished to the NN.  This presents 
an opportunity to find hidden patterns and establish 
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relationships between variables that are extremely 
difficult, if not impossible to discover by human 
eye or thought process and that therefore offer new 
information about the data. An unsupervised 
technique has been adopted as this requires no a 
priori knowledge about the data. Classes or 
categories are formed by the NN according to 
attributes of the data and it is then necessary to 
uncover what properties determine how the data 
has been classified.  
 
Neural Networks have previously been applied to 
data types that face similar challenges to those 
faced here. For example the use of self-organising 
maps successfully demonstrated [Shalvi and 
DeClaris, 1998] an unsupervised NN approach to 
clustering medical data. Medical data typically 
requires a large amount of pre-processing in order 
to extract the useful information and tends to be 
numeric and textual interspersed. In these ways the 
data is very similar to that being examined here. 
There have been many projects involving NNs for 
user data analysis and pattern discovery. For 
example NNs can be used for learning relations 
between textual data to aid the construction of 
hypertext computer assisted learning material 
[Zhang et al, 2001]; and  Mullier et  al [2002] used 
them for identifying hypermedia browsing patterns.  
 
2. THE NEURAL NETWORK 

Developments of Adaptive Resonance Theory 
(ART) 
 
Several variations of the original ART [Grossberg, 
1976] have been introduced. ART1 [Carpenter and 
Grossberg, 1987a] self-organises recognition 
categories for arbitrary sequences of binary input 
sequences; ART2, operates on either binary or 
analogue inputs [Carpenter and Grossberg, 1987b]. 
Further development has seen the creation of 
ART2-A [Carpenter et al, 1991a], which is 2 or 3 
orders of magnitude faster than ART2. Fuzzy ART 
[Carpenter et al, 1991b], incorporated computations 
from fuzzy set theory. Extensions to ART networks 
to allow supervised learning, supervised multi-
layer, and self-growing systems [Palmer-Brown, 
1992; Tan, 1997] have also been introduced. 
 
Performance-guided ART (P-ART) 
Architecture  
 
The P-ART network is a modular, multi-layered 
architecture as shown in Fig. 1 [Palmer-Brown, et 
al 2003, Lee et al 2004]. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

Figure 1: P-ART Network 
 
It is composed of 2 modules, a d-istributed, feature 
extraction P-ART (dP-ART) network, and 
categorization, classification or s-election P-ART 
(sP-ART). The F11 ↔ F21 connections of dP-ART 
network and F12 ↔ F22 of sP-ART are via 
weighted bottom-up and top-down connections that 
are modified during the learning stage. For clarity, 
only the connections from the F1 layer to the active 
(winning) F2 node in each P-ART module are 
shown in Fig 1. 
 
On presentation of an input pattern at the input 
layer, F01, dP-ART will learn to group the input 
patterns according to their general features using 
the novel learning principles of the snap-drift 
algorithm recently developed by Lee and Palmer-
Brown [Lee et al, 2002, 2003, 2004]. The version 
used here differs in that it is fully self-organising, 
toggling between snap and drift learning modes on 
successive epochs.  
 
The ‘Snap-Drift’ Algorithm  
 
In an environment where new patterns are 
introduced over time, the learning utilises a novel 
snap-drift algorithm based on fast, convergent, 
minimalist learning (snap) and cautious learning 
(drift). Snap is based on a modified form of ART; 
and drift is based on Learning Vector Quantization 
(LVQ) [Kohonen, 1990]. In general terms the 
snap-drift algorithm is stated in equation (1). 
 

)()__( LVQARTLearningFastw σα +=    
(1)                             

 
In this paper, α and σ  are toggled between (0,1) 
and (1,0) at the end of each epoch.  The point of 
this is to perform two complementary forms of 
feature discovery within one system. The ART 
style learning acquires features characterized by 
the intersection of patterns, whereas LVQ performs 
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clustering, discovering features that are averaged 
across patterns. Thus, the dual approach of snap-
drift tends to be more rapidly convergent than LVQ 
by itself, since ART is rapidly convergent, whilst 
settling on some features that LVQ alone would not 
find by biasing clustering/grouping towards 
features that are strongly present in most of the 
member patterns of the grouping being formed.  
 
The Distributed P-ART (dP-ART) Learning  
On presentation of an input pattern, the bottom-up 
activation is calculated. Then the D F21 nodes with 
the highest bottom-up activation are selected. 
 

}M,.....,2,1J|Tmax{T JJ ==  
(2) 

 
D is set to 3 in this application. The three F21 nodes 
learn according to equation (3), where wji= top-
down weights vectors; I = binary input vectors,  
and β  = the drift speed constant = 0.5. 
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When α =1, w updates simply to: 

 
)wI(w )old(

Ji
)new(

Ji ∩=  
(4) 

 
This invokes fast minimalist learning, causing the 
top-down weights to reach their new asymptote on 
each input presentation.  
 

)old(
JJ wIw ∩→  

(5) 
 

In contrast, when σ = 1 w is given by equation (6). 
 

))wI(w(w )old(
Ji

)old(
Ji

)new(
Ji −β+=  

(6) 
 

This causes a simple form of clustering or LVQ at 
a speed determined by β. Overall the learning is a 
combination of the two forms of adaptation as the 
mode is toggled between snap and drift. The novel 
bottom-up learning of the P-ART is a normalised 
version of the top-down learning given in equation 
(7),where wiJ

(new) = top-down weights of the 
network after learning.    
 

|w|
w

w )new(
iJ

)new(
iJ)new(

Ji =  

(7) 

3. METHODOLOGY 

Although the specific aim here is to provide a 
novel interpretation of the interaction data 
described, a general aim is to devise a 
methodology that can be applied to any 
‘interaction’ or ‘user behaviour’ data, and 
minimises the pre-and post-processing through the 
definition of a structured approach. There are 
several considerations that need to be given to the 
method and the stages of transformation the data 
must undergo before it is suitable as an input to a 
NN. A generalised methodology has been 
developed and realised in the form of a set of 
procedures that embrace the following processes: 
(i) Pre-processing: conversion of the ‘raw user 
data’ into a form suitable for input to the NN; (ii) 
Selection of optimal NN parameters; (iii) Post-
processing: manipulation of the results in order to 
provide a novel and intelligent analysis. Stages (i) 
and (ii) are summarised in relation to the network 
management data below and Stage (iii) is discussed 
in the results section. 
 
Data Collection and Initial Assessment 
There are some fundamental issues regarding the 
data that need to be addressed initially such as: 
How much data is available? Is there a constant 
output of data? Is there sufficient data to 
adequately train and test the network? The 
performance of a NN is dependent on the training 
data. The training data must be representative of 
the task being learnt and tends to be chosen 
through trial and error before finding an acceptable 
training data set [Callan, 1999]. The production of 
the network management data is on-going but for 
the purposes of this paper a sample has been used: 
55 datasets are analysed, where a single dataset 
represents a trainee undertaking a one network 
management task. Once the data has been collected 
it is imperative that a certain level of understanding 
is reached about it in order to fully understand 
what is hoped to be achieved through the analysis 
and to enable appropriate encoding of both the 
components of an event and the event as a whole. 
 
Structure and Context 
The next consideration in pre-processing the data is 
how to structure the encoded data in order to 
ensure all appropriate variables contribute towards 
the NN’s decision making and is in a form suitable 
for input to a NN. The data is initially primary 
encoded into a list of consecutive events, where an 
event comprises all the information required to 
describe what is taking place at a given instant in 
time. The aim is to ensure that each event 
comprises the same amount of information in order 
to introduce some structure to the data. The 
network management data is already in a format 
that lists events, it simply needs condensing into 
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the relevant information. This takes the following 
form: 
 

{Action – Node Description – Duration} 
(8) 

 
Action describes the command issued by the 
student, Node Description refers to which device 
the command relates to and whether it is active or 
inactive and Duration is the time taken to issue the 
command. Determining the structure of an event is 
the first level of encoding and the resulting event is 
called the primary encoded data. This process 
reduces the feature space and simplifies the data 
therefore care must be taken to ensure relevant 
information is not excluded. 
 
Another consideration is how to interpret the 
context of the data. Although the data is in a serial 
format, relationships between consecutive and 
subsequent events may be an important factor that 
needs to be considered. When the NN receives an 
input vector, it compares it to previously stored 
input patterns and then either puts it into the class 
that most closely matches it, or if no such class 
exists, creates a new one. Any patterns that are 
being identified within the data are so across input 
vectors. Therefore the length and quantity of data 
within each input vector is extremely important. 
The investigation requires several stages where 
each stage can be described in terms of the length 
of the input vector, which is a multiple of events 
(1xEvent, 2xEvent etc.). The first stage is simply 
concerned with the occurrence of individual events, 
i.e. an input vector is equal to 1 event. Whilst this 
provides information on the significance of each of 
the different events within a network management 
session, no information is afforded on the context 
of events. The second stage of investigations 
tackles the contextual aspect of the data. An input 
vector presented to the NN comprises 2 or more 
consecutive events. Consecutive input vectors 
comprise overlapping events as illustrated in the 
following equation, where in represents the n-th 
input vector and En the n-th event. [En En+1] 
represents the concatenation of 2 consecutive 
events. 
 
 

in-1 = [En-1 En],  in     = [En En+1],  in+1 = [En+1 En+2], 
etc.    

(9) 
 

Coding the Network Management Data 
Once the structure of an event has been established, 
each component that makes up the event can be 
individually coded and the coded components 
concatenated to form the overall input vector. It is 
necessary to know how many different values each 

of these components may take to facilitate the 
implementation of an appropriate coding scheme.  
 
The coding scheme for the Action component is 
illustrated in Table 1 in terms of the possible 
actions, their primary encoded form, and the final 
coded format (‘O’ represents binary ‘1’ and ‘X’ 
binary ‘0’). The first segment of the codeword 
defines which category or layer the action belongs 
to, such as IP or TCP. The second segment 
distinguishes between the different actions within a 
category.  
 
The second component of an event is the Node 
Description. Again, the codeword is segmented. 
The first part indicates whether the node is active 
(O) or inactive (X) and the second part is used to 
distinguish between the active nodes.  
 
Finally, the third component is the Duration. This 
is the time stamp of the current event minus the 
time stamp of the previous event and is useful as it 
gives an indication of the time taken to execute a 
command. For this component a coarse coding 
scheme [Eurich et al, 1997] is used, where 
neighbouring sub-divisions are allocated 
codewords that differ from each other by 1 bit 
position. Thus, the duration difference between 
otherwise similar events, is reflected in the 
Euclidian distance between their respective 
patterns.  
 
Neural Network Parameters 
There are several parameters concerning the 
dimensions of the NN and the level of 
categorisation. The NN architecture has been 
presented in detail elsewhere [Lee et al, 2002, 
2004]. In this paper, the vigilance parameter is set 
to 0.3, which in effect means that the criterion for 
allowing a node to respond and learn the input 
pattern is a 30% match. The number of input 
neurons to dP-ART is the length of the input 
vector. The number of output neurons of dP-ART 
and therefore input neurons to sP-ART, has been 
set to 500 which has proved large enough to avoid 
saturation of all the output neurons of the dP-ART. 
That means, less than 500 are required. The 
number of output neurons of sP-ART has been set  
to 150 in order to limit the number of output 
classes that can be formed to a manageable size 
and yet ensure that the majority (approximately 
95%) of inputs are classified.  
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Table 1: Encoded Action Component of an Event 
 

 Name 
(Primary Encoding) 

Secondary Encoding 

1 System Information(SI) OXXXXXXX XXXXXXX 
2 IF Status(IF St) XOXXXXXX OXXXXXX 
3 IF Parameter(IF P) XOXXXXXX XOXXXXX 
4 IF Usage(IF Usg) XOXXXXXX XXOXXXX 
5 IF Error(IF Err) XOXXXXXX XXXOXXX 
6 IF Quality(IF Q) XOXXXXXX XXXXOXX 
7 IP Statistics(IP Stat) XXOXXXXX XXXXXOX 
8 IP Addresses(IP A) XXOXXXXX XXXXXXO 
9 IP RouteTable(IP R) XXOXXXXX OXXXXXX 

10 IP ARP Table(IP ARP) XXOXXXXX XOXXXXX 
11 TCP Statistics(TCP Stat) XXXOXXXX XXXXXOX 
12 TCP Connect(TCP C) XXXOXXXX XXOXXXX 
13 UDP Statistics(UDP Stat) XXXXOXXX XXXXXOX 
14 UDP Listener(UDP L) XXXXOXXX XXXOXXX 
15 ICMP Statistics(ICMP Stat) XXXXXOXX XXXXXOX 
16 SNMP Statistics(SNMP Stat) XXXXXXOX XXXXXOX 
17 Walk MIB Tree (W) XXXXXXXO OXXXXXX 
18 Set Parameter(SetP) XXXXXXXO XOXXXXX 
19 Monitor Variable(monV XXXXXXXO XXOXXXX 
20 Delete SNMP(Del) XXXXXXXO XXXOXXX 
21 Ifload Monitor(Lmon) XXXXXXXO XXXXOXX 
22 Start Monitor(Smon) XXXXXXXO XXXXXOX 
23 Help (Help) XXXXXXXO XXXXXXO 

 
Table 2: Encoded Node Description Component of an Event 

 
Model Primary 

Encoding 
Secondary Encoding 

192.9.200.1 1 1 O OXXXXXXXXXXXXX 
192.9.200.2 1 2 O XOXXXXXXXXXXXX 
192.9.200.3 1 3 O XXOXXXXXXXXXXX 
192.9.200.4 1 4 O XXXOXXXXXXXXXX 
192.9.200.5 1 5 O XXXXOXXXXXXXXX 
192.9.200.6 1 6 O XXXXXOXXXXXXXX 
194.9.177.7 1 7 O XXXXXXOXXXXXXX 
194.9.177.8 1 8 O XXXXXXXOXXXXXX 
194.9.177.9 1 9 O XXXXXXXXOXXXXX 
194.9.177.10 1 10 O XXXXXXXXXOXXXX 
194.9.177.11 1 11 O XXXXXXXXXXOXXX 
194.9.177.18 1 12 O XXXXXXXXXXXOXX 
194.9.177.19 1 13 O XXXXXXXXXXXXOX 
194.9.177.66 1 14 O XXXXXXXXXXXXXO 
Inactive node 0 0 X XXXXXXXXXXXXXX 

 
Table 3: Encoded Duration Component of an Event 

 
Duration Primary Encoding Secondary Encoding 
0:00:00 t0 XXXXX 
0:01:08 t1 XXXXO 
0:02:17 t2 XXXOO 
0:03:25 t3 XXXOX 
0:05:42 t5 XXOOO 

…... ……. …… 
0:35:21 t31 OXXXX 
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4. RESULTS 

P-ART is implemented in C++. The inputs are 
binary vectors and the output is a corresponding 
column of numbers indicating the output class. A 
total of 2700 input vectors are input to the NN and 
evaluated here. Actions are referred to by number 
or primary encoded format. These and their basic 
functions are summarised in Table 4. 
 
Firstly, it is necessary to assess the number and 
size of the output classes that have been formed, 
i.e. how many output nodes of the NN are used and 
how many input vectors are assigned to each of 
these. The results are easily rearranged, grouped 
and manipulated in order to make different 
comparisons. Results are reorganized and 
displayed by output node in order to visualise the 
input vectors grouped within each output class. 
 
The second stage is to establish which of the 
classes formed are major, significant and minority 
classes. Major classes are the most commonly used 
classes, significant classes are smaller but still 
populated sufficiently have an impact on 
conclusions, whereas minority classes are those 
that are only used once or twice and have little 
impact so are disregarded. Once the results are 
grouped by output class the key or dominant 
features of each group are established. A dominant 
feature is defined as a feature common to over 90% 
of the input vectors within that class. It may take a 
single value or a group of values, e.g. action 1 (SI) 
or actions 2-6 (all IF type actions). A class maybe 
defined by a single dominant feature, such as an 
action, or by several, such as action and node. 
Where the dominant features are discussed the 
terminology {action ; node ; duration} is adopted. 
For example       { 12 ; 1/- ; - } represents an output 
class where a majority of the input vectors within 
this class are action 12 (TCP C) implemented on an 
unspecific active node. 
 
1xEvent 

These results provide information on the 
significance of events. Table 5 summarises some of 
the classes that have an action or group of actions 

as a dominant feature along with their size 
(combined size where more than one class exists 
with the same feature). 
 
Action 1 (SI) is by far the most frequently used 
action. This is expected as this is the conventional 
method by which to obtain standard information 
regarding the network devices. Action 21 (Lmon) 
is also a common action which is also expected as 
this enables the monitoring of interface (network 
card) loads and is a common networking 
requirement. 

In respect to types of actions, it is the IP actions 
that are the most commonly applied, which implies 
a good use of commands. IP layer actions and 
action 12 (TCP C) reflect requirements to 
determine network topology through address 
structure and are encouraged methods of 
exploration. The groups of actions that appear as 
dominant features, include monitoring actions, IF 
actions and much less commonly, actions 11-16 
(TCP, UDP, ICMP and SNMP layer actions). This 
illustrates a much more occasional use of these 
types of commands compared to other layers. 

Due to the way the NN has grouped certain inputs 
it is possible to compare classes that feature actions 
directed at an inactive node with those directed at 
active nodes. For example, the four output classes 
associated with action 1 (SI) are summarised in 
terms of their dominant features and size in Table 
6. 

Classes 5 and 16 illustrate action 1 applied to an 
active node within the network and have a 
combined size of 519. Classes 14 and 28 illustrate 
the same action but applied to an inactive node, 
and have a combined size of 294. The latter two 
classes imply inefficient practice or limited 
knowledge of the network structure and make up 
36% of the total number of occurrences of this 
command. Similarly, for classes featuring action 8 
(IP A) as an individual dominant feature, those 
featuring this action applied to an inactive node 
makes up 27% of the total. However for action 10 
(IP ARP) the percentage of cases this action is 
applied to an inactive node, is only 9%.  
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Table 4: Summary of Actions 
 

 Primary Encoding Description of functionality 
1 SI Display information of the system group 
2 IF St Display information of the interfaces 
3 IF P Display interface parameter like speed 
4 IF Usg Display interface statistics 
5 IF Err Display interface statistics 
6 IF Q Show error and discard rate for each interface 
7 IP Stat Display statistics and parameters of IP layer 
8 IP A Show IP addresses used by this device 
9 IP R Display routing table 
10 IP ARP Display other devices its been in contact with 
11 TCP Stat Display statistics and parameters of TCP layer 
12 TCP C Display status of existing TCP connections 
13 UDP Stat Display statistics and parameters of UDP layer 
14 UDP L Display status of existing USP listener 
15 ICMP Stat Display stats and parameters of ICMP layer 
16 SNMP Stat Display stats and parameters of SNMP layer 
17 W Walk through MIB tree and print object values 
18 SetP Set SNMP parameters 
19 monV Monitor an SNMP variable in a stripchart 
20 Del Delete the monitoring proceess 
21 Lmon Set up monitoring process 
22 Smon Start monitoring process 
23 Help List choice of actions 

 
Table 5: Dominant Features for 1xEvent Results 

Action Number of classes Class size 

1 (SI) 4 813 

2 (IF St) 2 49 

3 (IF P) 1 47 

6 (IF Q) 1 10 

8 (IP A) 2 153 

9 (IP R) 1 169 

10 (IP ARP) 3 181 

12 (TCP C) 2 148 

21 (Lmon) 1 164 

17-23 (monitor actions) 5 146 

2-6 (IF actions) 2 200 

 

Table 6: Major Output Classes Featuring ‘SI’ 

Output 
Class 

Dominant Features Class Size 

5 {  1  ;  1/9  ; 1-5 } 64 

14 {  1  ;  0/0  ; 1    } 215 

16 {  1  ;  1/-  ; 1-7 } 455 

28 {  1  ;  0/0  ; -    } 79 
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2xEvent and 3xEvent 

Where as the 1xEvent results are useful to 
determine the frequency of specific events, the 
2xEvent and 3xEvent results can be used to 
identify relationships between consecutive events.  
 
A strong relationship exists between action 1 (SI), 
and the monitoring actions. Several output classes 
(combined size of 241) have been created that 
illustrate this action both preceding and following a 
monitoring action. 
 
Another interesting observation is the formation of 
several output classes that feature inactive nodes as 
dominant features in consecutive events. For the 
2xEvent results, four output classes are formed that 
feature an inactive node in both events. One of 
these is a major class (size 105) and contains 
instances when the SI command is repeatedly 
implemented on an inactive node. This behaviour 
implies an ineffective use of the SI command, both 
due to its repetition and it being directed at an 
inactive node. Major classes where inactive nodes 
appear as dominant features in both events of an 
episode make up 7% of the overall major classes 
for the 2xEvent results. Extending this 
investigation to the 3xEvent results to determine 
how common it is that three consecutive events 
feature an inactive node, it is seen that four classes 
are formed. One is of a significant size (33) and 
again shows repeated use of the SI command on an 
inactive node. 
 
As expected from the 1xEvent results, the SI 
command features most prominently. For the 
2xEvent results it is a dominant feature of four out 
of the fourteen major classes (45%) and is a 
dominant feature of both events in three of these.  
 
For the 3xEvent results, many of the classes 
formed are not defined by multiple specific 
dominant features. This is because although the 
input vector length has increased the vigilance 
parameter has remained the same in order to 
encourage a more generalised clustering of the 
input patterns. 
 
One interesting result is the output classes that 
highlight events that follow action 1 (SI) – i.e. what 
the trainee manager does once basic system 
information has been obtained. The most popular 
course of action following SI is a repetition of the 
same action (combined size 165). The network 
management simulator has a functionality that 
allows the selection of multiple nodes and the 
application of a single action to each of the nodes 
selected. Whilst this feature exists, it is not an 
efficient method for collating information on the 
network as redundant information is gathered and 
therefore has implications on the bandwidth 

required due to unnecessary network traffic being 
generated. The output classes discussed here, with 
the repetition of the command over 3 consecutive 
events, implies the use of this simulator feature, 
which in turn implies lack of consideration of the 
way in which the exploration of the network is 
conducted. In comparison, the preferred course of 
action to follow the SI action is the use of IP layer 
commands to provide a more thorough and yet 
directed interrogation of network devices. This 
does appear as a dominant feature, but less 
frequently than the repeated use of SI (combined 
size 49). 
 

5. CONCLUSIONS 

A methodology has been devised and a neural 
network architecture developed that provides a 
platform from which the analysis of different types 
of user behaviour or interaction data can be 
performed. The methodology provides a technique 
that minimises the complexity of the task by means 
of a structured approach to both the pre-processing 
of the user interaction data and interpretation of the 
results.  
 
A novel method for the analysis of interactions 
between a network manager and a network 
management training platform has been presented. 
The method can be used to uncover hidden patterns 
in user behaviour and therefore provide novel 
insights into that behaviour. 
 
The output classes formed by the NN can be used 
to compare instances of good and bad practice and 
reveal patterns embedded within the data that are 
difficult to recognize through other methods. The 
results identified both commonly occurring 
combinations of events and other interesting, 
though less common, sequences of events. Whilst a 
great deal of information has been accumulated in 
relation to the commands or actions performed by 
the network manager as well as the nodes within 
the network that these actions are directed towards, 
little information has been gleaned on the duration 
of these events. A reason for this may be that a 
large proportion of the durations fall within the 
first few increments of the overall range of values 
(i.e. t0 and t1). It may therefore be beneficial to 
modify the input coding scheme applied to this 
component of an event to allow it to be more 
influential in the forming of the output classes. 
 
A proposed development of the project is to 
incorporate a more integrated pre-processing 
operation through the automatic creation of 
primary encoded data files at source.  
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It is also intended to develop an on-line feedback 
system that responds to real-time operation of the 
simulated network with critiques in response to the 
approaches chosen by the trainee network manager. 
The overall project can be broken down into three 
stages, as illustrated in Figure 3. Stage I has been 
described here, along with an initial attempt at 
stage II. Planned stages include development of 
integrated post-processing operations to enable 
automated definition of the dominant features of 
the clusters formed, including equation synthesis 
based on the weights [Roadknight et al 1997] and 
event sequence recognition, which is analogous to 
phrase recognition in natural language, which has 
previously been tackled with simple recurrent 
neural networks [Palmer-Brown et al, 2002]. The 
algorithms will be developed to allow analyst 
influence on the type of clusters or groupings being 

formed (Stage II), possibly using reinforcement 
learning based on performance feedback, which 
has already been developed with snap-drift 
[Palmer-Brown et al 2003].The eventual aim is to 
develop and integrate a real-time system to provide 
informative feedback to the user of the Network 
Management Simulator (trainee), as part of the on-
line tutoring, to support and enhance learning and 
teaching strategies within the training tool (Stage 
III). The feedback system would respond to real-
time operation of the simulated network with 
advice in response to the approaches chosen by the 
trainee network manager. An example would be for 
the system to respond to the excessive use of the SI 
command with “The recommended course of 
action following SI is the use of IP layer 
commands to provide a more thorough and  
directed interrogation of network devices.”

 
 
 

 
 
 

Figure 3: Developmental Stages of the Project 
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