

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

Author(s): Palmer-Brown, Dominic; Lee, Sin Wee.
Article title: The Analysis of Network Manager’s Behaviour using a Self-Organising
Neural Networks
Year of publication: 2005
Citation: Donelan, H.; C. Pattinson; D. Palmer-Brown and S. W. Lee. (2005). “The
Analysis of Network Manager’s Behaviour using a Self-Organising Neural Networks.”
International Journal on Simulation: Systems, Science and Technology, 6 (9) 22-32.
Link to published version:
http://ducati.doc.ntu.ac.uk/uksim/journal/Vol-6/No.9/Paper3.pdf

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219371504?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://roar.uel.ac.uk/
http://ducati.doc.ntu.ac.uk/uksim/journal/Vol-6/No.9/Paper3.pdf

H. DONELAN et al: THE ANALYSIS OF NETWORK MANAGERS’ BEHAVIOUR …

I. J. of SIMULATION Vol. 6 No 9 ISSN 1473-804x online, 1473-8031 print

22

THE ANALYSIS OF NETWORK MANAGERS’ BEHAVIOUR
USING A SELF-ORGANISING NEURAL NETWORK

H. DONELAN1, C. PATTINSON1, D. PALMER-BROWN3 and S.W. LEE2

Computer Communications Research Group1
Computational Intelligence Research Group2

Leeds Metropolitan University.
School of Computing and Technology3,

 University of East London, UK (d.palmer-brown@uel.ac.uk)

Abstract: We present a novel neural network method for the analysis and interpretation of data that describes
user interaction with a training tool. The method is applied to the interaction between trainee network managers
and a simulated network management system. A simulation based approach to the task of efficiently training
network managers, through the use of a simulated network, was originally presented by Pattinson [2000]. The
motivation was to provide a tool for exposing trainee network managers to a life like situation, where both
normal network operation and ‘fault’ scenarios could be simulated in order to train the network manager. The
data logged by this system describes the detailed interaction between trainee network manager and simulated
network. The work presented here provides an analysis of this interaction data that enables an assessment of the
capabilities of the network manager as well as an understanding of how the network management tasks are being
approached. A neural network architecture [Lee, Palmer-Brown, Roadknight 2004] is adapted and implemented
in order to perform an exploratory data analysis of the interaction data. The neural network architecture employs
a novel form of continuous self-organisation to discover key features, and thus provide new insights into the
data.

Keywords: Network Management, Neural Networks, Data Analysis, Self-Organisation, Unsupervised Learning.

1. INTRODUCTION

A simulation based approach to the task of
efficiently training network managers through the
use of a simulated network was originally
presented by [Pattinson, 2000]. The motivation was
to provide trainee network managers with realistic,
‘hands-on’ experience without disrupting a live
network. The approach makes use of a production-
standard network management platform, interacting
with processes (model agents) representing
network entities. This simulation tool has been
successfully used in the training of network
managers. Tasks are set such as exploration
exercises to identify active components of a
network and the control of simulated ‘fault’
conditions. The trainee needs to quickly establish
how to approach a given task, which devices need
to be interrogated and what parameters need to be
monitored in order to obtain information on the
status of the network. The trainee selects
commands that to the best of their knowledge
represent the most appropriate course of action
required to manage the network and data describing
their actions is computer logged. It is this data that
is being analysed here through the use of a neural
network (NN) in order to assess the effectiveness
of the network manager from how the tasks are
being approached. The data includes a description
of the commands issued by the trainee that request
current values of, or set up processes to monitor,

various parameters. Also the node/device within
the network that the command is directed at, as
well as any associated variables, and a date and
time stamp for each command. There are a total of
23 commands that the trainee may use and these
can be divided into groups defined by the layer (or
networking protocol) that they apply to or type of
action being performed {Interface, IP, TCP, UDP,
ICMP, SNMP and monitoring actions}. The
commands are used to request current values of, or
set up processes to monitor, various parameters
and are divided into groups defined by the layer (or
networking protocol) that they apply to.

The computer logged data contains both qualitative
and quantitative data and therefore provides a
challenge in how to approach its processing,
analysis and evaluation. Qualitative data tends to
be voluminous and inconsistent, and has many
problems associated with its analysis [Miles and
Huberan, 1994]. The analysis of such data typically
involves sifting through the data and noting
regularly occurring relationships between
variables. The tasks of coding, isolating and
interpreting patterns of interest can be long and
arduous and relies on the analyst being able to
comprehensively identify all patterns that are of
interest. The concept of using a NN in the analysis
means that the task of identifying patterns within
the data is relinquished to the NN. This presents
an opportunity to find hidden patterns and establish

H. DONELAN et al: THE ANALYSIS OF NETWORK MANAGERS’ BEHAVIOUR …

I. J. of SIMULATION Vol. 6 No 9 ISSN 1473-804x online, 1473-8031 print

23

relationships between variables that are extremely
difficult, if not impossible to discover by human
eye or thought process and that therefore offer new
information about the data. An unsupervised
technique has been adopted as this requires no a
priori knowledge about the data. Classes or
categories are formed by the NN according to
attributes of the data and it is then necessary to
uncover what properties determine how the data
has been classified.

Neural Networks have previously been applied to
data types that face similar challenges to those
faced here. For example the use of self-organising
maps successfully demonstrated [Shalvi and
DeClaris, 1998] an unsupervised NN approach to
clustering medical data. Medical data typically
requires a large amount of pre-processing in order
to extract the useful information and tends to be
numeric and textual interspersed. In these ways the
data is very similar to that being examined here.
There have been many projects involving NNs for
user data analysis and pattern discovery. For
example NNs can be used for learning relations
between textual data to aid the construction of
hypertext computer assisted learning material
[Zhang et al, 2001]; and Mullier et al [2002] used
them for identifying hypermedia browsing patterns.

2. THE NEURAL NETWORK

Developments of Adaptive Resonance Theory
(ART)

Several variations of the original ART [Grossberg,
1976] have been introduced. ART1 [Carpenter and
Grossberg, 1987a] self-organises recognition
categories for arbitrary sequences of binary input
sequences; ART2, operates on either binary or
analogue inputs [Carpenter and Grossberg, 1987b].
Further development has seen the creation of
ART2-A [Carpenter et al, 1991a], which is 2 or 3
orders of magnitude faster than ART2. Fuzzy ART
[Carpenter et al, 1991b], incorporated computations
from fuzzy set theory. Extensions to ART networks
to allow supervised learning, supervised multi-
layer, and self-growing systems [Palmer-Brown,
1992; Tan, 1997] have also been introduced.

Performance-guided ART (P-ART)
Architecture

The P-ART network is a modular, multi-layered
architecture as shown in Fig. 1 [Palmer-Brown, et
al 2003, Lee et al 2004].

Figure 1: P-ART Network

It is composed of 2 modules, a d-istributed, feature
extraction P-ART (dP-ART) network, and
categorization, classification or s-election P-ART
(sP-ART). The F11 ↔ F21 connections of dP-ART
network and F12 ↔ F22 of sP-ART are via
weighted bottom-up and top-down connections that
are modified during the learning stage. For clarity,
only the connections from the F1 layer to the active
(winning) F2 node in each P-ART module are
shown in Fig 1.

On presentation of an input pattern at the input
layer, F01, dP-ART will learn to group the input
patterns according to their general features using
the novel learning principles of the snap-drift
algorithm recently developed by Lee and Palmer-
Brown [Lee et al, 2002, 2003, 2004]. The version
used here differs in that it is fully self-organising,
toggling between snap and drift learning modes on
successive epochs.

The ‘Snap-Drift’ Algorithm

In an environment where new patterns are
introduced over time, the learning utilises a novel
snap-drift algorithm based on fast, convergent,
minimalist learning (snap) and cautious learning
(drift). Snap is based on a modified form of ART;
and drift is based on Learning Vector Quantization
(LVQ) [Kohonen, 1990]. In general terms the
snap-drift algorithm is stated in equation (1).

)()__(LVQARTLearningFastw σα +=
(1)

In this paper, α and σ are toggled between (0,1)
and (1,0) at the end of each epoch. The point of
this is to perform two complementary forms of
feature discovery within one system. The ART
style learning acquires features characterized by
the intersection of patterns, whereas LVQ performs

 Snap-drift toggle

on each epoch

Input
Pattern

(I)

F22

F21

F12

F1 1
 F0 1

 Selection P-ART (sP-ART)
(Categorisation)

Distributed P - ART (dP - ART)
(Feature Extraction)

H. DONELAN et al: THE ANALYSIS OF NETWORK MANAGERS’ BEHAVIOUR …

I. J. of SIMULATION Vol. 6 No 9 ISSN 1473-804x online, 1473-8031 print

24

clustering, discovering features that are averaged
across patterns. Thus, the dual approach of snap-
drift tends to be more rapidly convergent than LVQ
by itself, since ART is rapidly convergent, whilst
settling on some features that LVQ alone would not
find by biasing clustering/grouping towards
features that are strongly present in most of the
member patterns of the grouping being formed.

The Distributed P-ART (dP-ART) Learning
On presentation of an input pattern, the bottom-up
activation is calculated. Then the D F21 nodes with
the highest bottom-up activation are selected.

}M,.....,2,1J|Tmax{T JJ ==
(2)

D is set to 3 in this application. The three F21 nodes
learn according to equation (3), where wji= top-
down weights vectors; I = binary input vectors,
and β = the drift speed constant = 0.5.

))((

)(
)()(

)()(

old
Ji

old
Ji

old
Ji

new
Ji

wIw

wIw

−++

∩=

βσ

α

(3)

When α =1, w updates simply to:

)wI(w)old(

Ji
)new(

Ji ∩=
(4)

This invokes fast minimalist learning, causing the
top-down weights to reach their new asymptote on
each input presentation.

)old(
JJ wIw ∩→

(5)

In contrast, when σ = 1 w is given by equation (6).

))wI(w(w)old(
Ji

)old(
Ji

)new(
Ji −β+=

(6)

This causes a simple form of clustering or LVQ at
a speed determined by β. Overall the learning is a
combination of the two forms of adaptation as the
mode is toggled between snap and drift. The novel
bottom-up learning of the P-ART is a normalised
version of the top-down learning given in equation
(7),where wiJ

(new) = top-down weights of the
network after learning.

|w|
w

w)new(
iJ

)new(
iJ)new(

Ji =

(7)

3. METHODOLOGY

Although the specific aim here is to provide a
novel interpretation of the interaction data
described, a general aim is to devise a
methodology that can be applied to any
‘interaction’ or ‘user behaviour’ data, and
minimises the pre-and post-processing through the
definition of a structured approach. There are
several considerations that need to be given to the
method and the stages of transformation the data
must undergo before it is suitable as an input to a
NN. A generalised methodology has been
developed and realised in the form of a set of
procedures that embrace the following processes:
(i) Pre-processing: conversion of the ‘raw user
data’ into a form suitable for input to the NN; (ii)
Selection of optimal NN parameters; (iii) Post-
processing: manipulation of the results in order to
provide a novel and intelligent analysis. Stages (i)
and (ii) are summarised in relation to the network
management data below and Stage (iii) is discussed
in the results section.

Data Collection and Initial Assessment
There are some fundamental issues regarding the
data that need to be addressed initially such as:
How much data is available? Is there a constant
output of data? Is there sufficient data to
adequately train and test the network? The
performance of a NN is dependent on the training
data. The training data must be representative of
the task being learnt and tends to be chosen
through trial and error before finding an acceptable
training data set [Callan, 1999]. The production of
the network management data is on-going but for
the purposes of this paper a sample has been used:
55 datasets are analysed, where a single dataset
represents a trainee undertaking a one network
management task. Once the data has been collected
it is imperative that a certain level of understanding
is reached about it in order to fully understand
what is hoped to be achieved through the analysis
and to enable appropriate encoding of both the
components of an event and the event as a whole.

Structure and Context
The next consideration in pre-processing the data is
how to structure the encoded data in order to
ensure all appropriate variables contribute towards
the NN’s decision making and is in a form suitable
for input to a NN. The data is initially primary
encoded into a list of consecutive events, where an
event comprises all the information required to
describe what is taking place at a given instant in
time. The aim is to ensure that each event
comprises the same amount of information in order
to introduce some structure to the data. The
network management data is already in a format
that lists events, it simply needs condensing into

H. DONELAN et al: THE ANALYSIS OF NETWORK MANAGERS’ BEHAVIOUR …

I. J. of SIMULATION Vol. 6 No 9 ISSN 1473-804x online, 1473-8031 print

25

the relevant information. This takes the following
form:

{Action – Node Description – Duration}
(8)

Action describes the command issued by the
student, Node Description refers to which device
the command relates to and whether it is active or
inactive and Duration is the time taken to issue the
command. Determining the structure of an event is
the first level of encoding and the resulting event is
called the primary encoded data. This process
reduces the feature space and simplifies the data
therefore care must be taken to ensure relevant
information is not excluded.

Another consideration is how to interpret the
context of the data. Although the data is in a serial
format, relationships between consecutive and
subsequent events may be an important factor that
needs to be considered. When the NN receives an
input vector, it compares it to previously stored
input patterns and then either puts it into the class
that most closely matches it, or if no such class
exists, creates a new one. Any patterns that are
being identified within the data are so across input
vectors. Therefore the length and quantity of data
within each input vector is extremely important.
The investigation requires several stages where
each stage can be described in terms of the length
of the input vector, which is a multiple of events
(1xEvent, 2xEvent etc.). The first stage is simply
concerned with the occurrence of individual events,
i.e. an input vector is equal to 1 event. Whilst this
provides information on the significance of each of
the different events within a network management
session, no information is afforded on the context
of events. The second stage of investigations
tackles the contextual aspect of the data. An input
vector presented to the NN comprises 2 or more
consecutive events. Consecutive input vectors
comprise overlapping events as illustrated in the
following equation, where in represents the n-th
input vector and En the n-th event. [En En+1]
represents the concatenation of 2 consecutive
events.

in-1 = [En-1 En], in = [En En+1], in+1 = [En+1 En+2],
etc.

(9)

Coding the Network Management Data
Once the structure of an event has been established,
each component that makes up the event can be
individually coded and the coded components
concatenated to form the overall input vector. It is
necessary to know how many different values each

of these components may take to facilitate the
implementation of an appropriate coding scheme.

The coding scheme for the Action component is
illustrated in Table 1 in terms of the possible
actions, their primary encoded form, and the final
coded format (‘O’ represents binary ‘1’ and ‘X’
binary ‘0’). The first segment of the codeword
defines which category or layer the action belongs
to, such as IP or TCP. The second segment
distinguishes between the different actions within a
category.

The second component of an event is the Node
Description. Again, the codeword is segmented.
The first part indicates whether the node is active
(O) or inactive (X) and the second part is used to
distinguish between the active nodes.

Finally, the third component is the Duration. This
is the time stamp of the current event minus the
time stamp of the previous event and is useful as it
gives an indication of the time taken to execute a
command. For this component a coarse coding
scheme [Eurich et al, 1997] is used, where
neighbouring sub-divisions are allocated
codewords that differ from each other by 1 bit
position. Thus, the duration difference between
otherwise similar events, is reflected in the
Euclidian distance between their respective
patterns.

Neural Network Parameters
There are several parameters concerning the
dimensions of the NN and the level of
categorisation. The NN architecture has been
presented in detail elsewhere [Lee et al, 2002,
2004]. In this paper, the vigilance parameter is set
to 0.3, which in effect means that the criterion for
allowing a node to respond and learn the input
pattern is a 30% match. The number of input
neurons to dP-ART is the length of the input
vector. The number of output neurons of dP-ART
and therefore input neurons to sP-ART, has been
set to 500 which has proved large enough to avoid
saturation of all the output neurons of the dP-ART.
That means, less than 500 are required. The
number of output neurons of sP-ART has been set
to 150 in order to limit the number of output
classes that can be formed to a manageable size
and yet ensure that the majority (approximately
95%) of inputs are classified.

H. DONELAN et al: THE ANALYSIS OF NETWORK MANAGERS’ BEHAVIOUR …

I. J. of SIMULATION Vol. 6 No 9 ISSN 1473-804x online, 1473-8031 print

26

Table 1: Encoded Action Component of an Event

 Name
(Primary Encoding)

Secondary Encoding

1 System Information(SI) OXXXXXXX XXXXXXX
2 IF Status(IF St) XOXXXXXX OXXXXXX
3 IF Parameter(IF P) XOXXXXXX XOXXXXX
4 IF Usage(IF Usg) XOXXXXXX XXOXXXX
5 IF Error(IF Err) XOXXXXXX XXXOXXX
6 IF Quality(IF Q) XOXXXXXX XXXXOXX
7 IP Statistics(IP Stat) XXOXXXXX XXXXXOX
8 IP Addresses(IP A) XXOXXXXX XXXXXXO
9 IP RouteTable(IP R) XXOXXXXX OXXXXXX

10 IP ARP Table(IP ARP) XXOXXXXX XOXXXXX
11 TCP Statistics(TCP Stat) XXXOXXXX XXXXXOX
12 TCP Connect(TCP C) XXXOXXXX XXOXXXX
13 UDP Statistics(UDP Stat) XXXXOXXX XXXXXOX
14 UDP Listener(UDP L) XXXXOXXX XXXOXXX
15 ICMP Statistics(ICMP Stat) XXXXXOXX XXXXXOX
16 SNMP Statistics(SNMP Stat) XXXXXXOX XXXXXOX
17 Walk MIB Tree (W) XXXXXXXO OXXXXXX
18 Set Parameter(SetP) XXXXXXXO XOXXXXX
19 Monitor Variable(monV XXXXXXXO XXOXXXX
20 Delete SNMP(Del) XXXXXXXO XXXOXXX
21 Ifload Monitor(Lmon) XXXXXXXO XXXXOXX
22 Start Monitor(Smon) XXXXXXXO XXXXXOX
23 Help (Help) XXXXXXXO XXXXXXO

Table 2: Encoded Node Description Component of an Event

Model Primary

Encoding
Secondary Encoding

192.9.200.1 1 1 O OXXXXXXXXXXXXX
192.9.200.2 1 2 O XOXXXXXXXXXXXX
192.9.200.3 1 3 O XXOXXXXXXXXXXX
192.9.200.4 1 4 O XXXOXXXXXXXXXX
192.9.200.5 1 5 O XXXXOXXXXXXXXX
192.9.200.6 1 6 O XXXXXOXXXXXXXX
194.9.177.7 1 7 O XXXXXXOXXXXXXX
194.9.177.8 1 8 O XXXXXXXOXXXXXX
194.9.177.9 1 9 O XXXXXXXXOXXXXX
194.9.177.10 1 10 O XXXXXXXXXOXXXX
194.9.177.11 1 11 O XXXXXXXXXXOXXX
194.9.177.18 1 12 O XXXXXXXXXXXOXX
194.9.177.19 1 13 O XXXXXXXXXXXXOX
194.9.177.66 1 14 O XXXXXXXXXXXXXO
Inactive node 0 0 X XXXXXXXXXXXXXX

Table 3: Encoded Duration Component of an Event

Duration Primary Encoding Secondary Encoding
0:00:00 t0 XXXXX
0:01:08 t1 XXXXO
0:02:17 t2 XXXOO
0:03:25 t3 XXXOX
0:05:42 t5 XXOOO

…... ……. ……
0:35:21 t31 OXXXX

H. DONELAN et al: THE ANALYSIS OF NETWORK MANAGERS’ BEHAVIOUR …

I. J. of SIMULATION Vol. 6 No 9 ISSN 1473-804x online, 1473-8031 print

27

4. RESULTS

P-ART is implemented in C++. The inputs are
binary vectors and the output is a corresponding
column of numbers indicating the output class. A
total of 2700 input vectors are input to the NN and
evaluated here. Actions are referred to by number
or primary encoded format. These and their basic
functions are summarised in Table 4.

Firstly, it is necessary to assess the number and
size of the output classes that have been formed,
i.e. how many output nodes of the NN are used and
how many input vectors are assigned to each of
these. The results are easily rearranged, grouped
and manipulated in order to make different
comparisons. Results are reorganized and
displayed by output node in order to visualise the
input vectors grouped within each output class.

The second stage is to establish which of the
classes formed are major, significant and minority
classes. Major classes are the most commonly used
classes, significant classes are smaller but still
populated sufficiently have an impact on
conclusions, whereas minority classes are those
that are only used once or twice and have little
impact so are disregarded. Once the results are
grouped by output class the key or dominant
features of each group are established. A dominant
feature is defined as a feature common to over 90%
of the input vectors within that class. It may take a
single value or a group of values, e.g. action 1 (SI)
or actions 2-6 (all IF type actions). A class maybe
defined by a single dominant feature, such as an
action, or by several, such as action and node.
Where the dominant features are discussed the
terminology {action ; node ; duration} is adopted.
For example { 12 ; 1/- ; - } represents an output
class where a majority of the input vectors within
this class are action 12 (TCP C) implemented on an
unspecific active node.

1xEvent

These results provide information on the
significance of events. Table 5 summarises some of
the classes that have an action or group of actions

as a dominant feature along with their size
(combined size where more than one class exists
with the same feature).

Action 1 (SI) is by far the most frequently used
action. This is expected as this is the conventional
method by which to obtain standard information
regarding the network devices. Action 21 (Lmon)
is also a common action which is also expected as
this enables the monitoring of interface (network
card) loads and is a common networking
requirement.

In respect to types of actions, it is the IP actions
that are the most commonly applied, which implies
a good use of commands. IP layer actions and
action 12 (TCP C) reflect requirements to
determine network topology through address
structure and are encouraged methods of
exploration. The groups of actions that appear as
dominant features, include monitoring actions, IF
actions and much less commonly, actions 11-16
(TCP, UDP, ICMP and SNMP layer actions). This
illustrates a much more occasional use of these
types of commands compared to other layers.

Due to the way the NN has grouped certain inputs
it is possible to compare classes that feature actions
directed at an inactive node with those directed at
active nodes. For example, the four output classes
associated with action 1 (SI) are summarised in
terms of their dominant features and size in Table
6.

Classes 5 and 16 illustrate action 1 applied to an
active node within the network and have a
combined size of 519. Classes 14 and 28 illustrate
the same action but applied to an inactive node,
and have a combined size of 294. The latter two
classes imply inefficient practice or limited
knowledge of the network structure and make up
36% of the total number of occurrences of this
command. Similarly, for classes featuring action 8
(IP A) as an individual dominant feature, those
featuring this action applied to an inactive node
makes up 27% of the total. However for action 10
(IP ARP) the percentage of cases this action is
applied to an inactive node, is only 9%.

H. DONELAN et al: THE ANALYSIS OF NETWORK MANAGERS’ BEHAVIOUR …

I. J. of SIMULATION Vol. 6 No 9 ISSN 1473-804x online, 1473-8031 print

28

Table 4: Summary of Actions

 Primary Encoding Description of functionality
1 SI Display information of the system group
2 IF St Display information of the interfaces
3 IF P Display interface parameter like speed
4 IF Usg Display interface statistics
5 IF Err Display interface statistics
6 IF Q Show error and discard rate for each interface
7 IP Stat Display statistics and parameters of IP layer
8 IP A Show IP addresses used by this device
9 IP R Display routing table
10 IP ARP Display other devices its been in contact with
11 TCP Stat Display statistics and parameters of TCP layer
12 TCP C Display status of existing TCP connections
13 UDP Stat Display statistics and parameters of UDP layer
14 UDP L Display status of existing USP listener
15 ICMP Stat Display stats and parameters of ICMP layer
16 SNMP Stat Display stats and parameters of SNMP layer
17 W Walk through MIB tree and print object values
18 SetP Set SNMP parameters
19 monV Monitor an SNMP variable in a stripchart
20 Del Delete the monitoring proceess
21 Lmon Set up monitoring process
22 Smon Start monitoring process
23 Help List choice of actions

Table 5: Dominant Features for 1xEvent Results

Action Number of classes Class size

1 (SI) 4 813

2 (IF St) 2 49

3 (IF P) 1 47

6 (IF Q) 1 10

8 (IP A) 2 153

9 (IP R) 1 169

10 (IP ARP) 3 181

12 (TCP C) 2 148

21 (Lmon) 1 164

17-23 (monitor actions) 5 146

2-6 (IF actions) 2 200

Table 6: Major Output Classes Featuring ‘SI’

Output
Class

Dominant Features Class Size

5 { 1 ; 1/9 ; 1-5 } 64

14 { 1 ; 0/0 ; 1 } 215

16 { 1 ; 1/- ; 1-7 } 455

28 { 1 ; 0/0 ; - } 79

H. DONELAN et al: THE ANALYSIS OF NETWORK MANAGERS’ BEHAVIOUR …

I. J. of SIMULATION Vol. 6 No 9 ISSN 1473-804x online, 1473-8031 print

29

2xEvent and 3xEvent

Where as the 1xEvent results are useful to
determine the frequency of specific events, the
2xEvent and 3xEvent results can be used to
identify relationships between consecutive events.

A strong relationship exists between action 1 (SI),
and the monitoring actions. Several output classes
(combined size of 241) have been created that
illustrate this action both preceding and following a
monitoring action.

Another interesting observation is the formation of
several output classes that feature inactive nodes as
dominant features in consecutive events. For the
2xEvent results, four output classes are formed that
feature an inactive node in both events. One of
these is a major class (size 105) and contains
instances when the SI command is repeatedly
implemented on an inactive node. This behaviour
implies an ineffective use of the SI command, both
due to its repetition and it being directed at an
inactive node. Major classes where inactive nodes
appear as dominant features in both events of an
episode make up 7% of the overall major classes
for the 2xEvent results. Extending this
investigation to the 3xEvent results to determine
how common it is that three consecutive events
feature an inactive node, it is seen that four classes
are formed. One is of a significant size (33) and
again shows repeated use of the SI command on an
inactive node.

As expected from the 1xEvent results, the SI
command features most prominently. For the
2xEvent results it is a dominant feature of four out
of the fourteen major classes (45%) and is a
dominant feature of both events in three of these.

For the 3xEvent results, many of the classes
formed are not defined by multiple specific
dominant features. This is because although the
input vector length has increased the vigilance
parameter has remained the same in order to
encourage a more generalised clustering of the
input patterns.

One interesting result is the output classes that
highlight events that follow action 1 (SI) – i.e. what
the trainee manager does once basic system
information has been obtained. The most popular
course of action following SI is a repetition of the
same action (combined size 165). The network
management simulator has a functionality that
allows the selection of multiple nodes and the
application of a single action to each of the nodes
selected. Whilst this feature exists, it is not an
efficient method for collating information on the
network as redundant information is gathered and
therefore has implications on the bandwidth

required due to unnecessary network traffic being
generated. The output classes discussed here, with
the repetition of the command over 3 consecutive
events, implies the use of this simulator feature,
which in turn implies lack of consideration of the
way in which the exploration of the network is
conducted. In comparison, the preferred course of
action to follow the SI action is the use of IP layer
commands to provide a more thorough and yet
directed interrogation of network devices. This
does appear as a dominant feature, but less
frequently than the repeated use of SI (combined
size 49).

5. CONCLUSIONS

A methodology has been devised and a neural
network architecture developed that provides a
platform from which the analysis of different types
of user behaviour or interaction data can be
performed. The methodology provides a technique
that minimises the complexity of the task by means
of a structured approach to both the pre-processing
of the user interaction data and interpretation of the
results.

A novel method for the analysis of interactions
between a network manager and a network
management training platform has been presented.
The method can be used to uncover hidden patterns
in user behaviour and therefore provide novel
insights into that behaviour.

The output classes formed by the NN can be used
to compare instances of good and bad practice and
reveal patterns embedded within the data that are
difficult to recognize through other methods. The
results identified both commonly occurring
combinations of events and other interesting,
though less common, sequences of events. Whilst a
great deal of information has been accumulated in
relation to the commands or actions performed by
the network manager as well as the nodes within
the network that these actions are directed towards,
little information has been gleaned on the duration
of these events. A reason for this may be that a
large proportion of the durations fall within the
first few increments of the overall range of values
(i.e. t0 and t1). It may therefore be beneficial to
modify the input coding scheme applied to this
component of an event to allow it to be more
influential in the forming of the output classes.

A proposed development of the project is to
incorporate a more integrated pre-processing
operation through the automatic creation of
primary encoded data files at source.

H. DONELAN et al: THE ANALYSIS OF NETWORK MANAGERS’ BEHAVIOUR …

I. J. of SIMULATION Vol. 6 No 9 ISSN 1473-804x online, 1473-8031 print

30

It is also intended to develop an on-line feedback
system that responds to real-time operation of the
simulated network with critiques in response to the
approaches chosen by the trainee network manager.
The overall project can be broken down into three
stages, as illustrated in Figure 3. Stage I has been
described here, along with an initial attempt at
stage II. Planned stages include development of
integrated post-processing operations to enable
automated definition of the dominant features of
the clusters formed, including equation synthesis
based on the weights [Roadknight et al 1997] and
event sequence recognition, which is analogous to
phrase recognition in natural language, which has
previously been tackled with simple recurrent
neural networks [Palmer-Brown et al, 2002]. The
algorithms will be developed to allow analyst
influence on the type of clusters or groupings being

formed (Stage II), possibly using reinforcement
learning based on performance feedback, which
has already been developed with snap-drift
[Palmer-Brown et al 2003].The eventual aim is to
develop and integrate a real-time system to provide
informative feedback to the user of the Network
Management Simulator (trainee), as part of the on-
line tutoring, to support and enhance learning and
teaching strategies within the training tool (Stage
III). The feedback system would respond to real-
time operation of the simulated network with
advice in response to the approaches chosen by the
trainee network manager. An example would be for
the system to respond to the excessive use of the SI
command with “The recommended course of
action following SI is the use of IP layer
commands to provide a more thorough and
directed interrogation of network devices.”

Figure 3: Developmental Stages of the Project

6. REFERENCES

Callan R. 1999, “The Essence of Neural
Networks”. Prentice Hall, Europe.

Carpenter G.A. and Grossberg S. 1987, “A
Massively Parallel Architecture for a Self-
Organising Neural Pattern Recognition Machine,”
Computer Vision, Graphics and Image Processing,
Vol. 37. Pp54-115.

Carpenter G.A. and Grossberg S. 1987, “ART2:
Self-Organization of Stable Category Recognition

Codes for Analogue Pattern”. Applied Optics, Vol.
26. Pp4919 -4930.

Carpenter G.A., Grossberg S. and Rosen D.B.
1991, “ART 2-A: An Adaptive Resonance
Algorithm for Rapid Category Learning and
Recognition”. Neural Networks, Vol. 4. Pp493-
504.

Neural Network
for pattern

recognition and
classification

Analysis of
Results

Development of
adaptive algorithms

Development of real-
time, on-line feedback

Network
Management
Training Tool

Production of data
describing trainee's

interaction with training tool

Modular neural network
architecture, using novel

learning algorithms
Develop algorithms
in NN to automate

feature definition and
allow external

influence of cluster
formation

Integrated software
on NM platform to

identify pre-defined
patterns of interest
and provide on-line

feedback to user

Stage I

Stage II

Stage III

H. DONELAN et al: THE ANALYSIS OF NETWORK MANAGERS’ BEHAVIOUR …

I. J. of SIMULATION Vol. 6 No 9 ISSN 1473-804x online, 1473-8031 print

31

Carpenter G.A., Grossberg S. and Rosen D.B.
1991, “Fuzzy ART: Fast Stable Learning and
Categorization of Analogue Pattern by an Adaptive
Resonance System”. Neural Networks, Vol. 4.
Pp759 - 771.

Eurich C.W., Schwegler H. and Woesler R. 1997,
“Coarse Coding: Applications to the Visual System
of Salamanders”. Biol. Cybern., Vol. 77. Pp41-47.

Grossberg S. 1976, “Adaptive Pattern
Classification and Universal Recoding. I. Parallel
Development and Coding of Neural Feature
Detectors”. Biol. Cybern., Vol. 23. Pp121 - 134.

Kohonen T. 1990, “Improved versions of learning
vector quantization”. In Proceedings of Int. Joint
Conf. Neural Networks, Vol. 1. Pp545-550.

Lee S.W., Palmer-Brown D., Tepper J. and
Roadknight C. 2002, “Performance-guided Neural
Network for Rapidly Self-Organising Active
Network Management”. In Soft Computing
Systems: Design Management and Applications, A.
Abraham et al (Eds.), IOS Press. Pp22-31.

Lee S.W., Palmer-Brown D., Tepper J. and
Roadknight C. 2003, “Snap-Drift: Real-time
Performance-guided Learning”. in Proceedings of
Int. Joint Conf. Neural Networks, Vo1. 2. Pp1412 –
1416.

Lee S.W., Palmer-Brown D. and Roadknight C.
2004, “Performance-guided Neural Network for
Rapidly Self-Organising Active Network
Management”. Neurocomputing, 61C. Pp5 - 20.

Miles M.B. and Huberman A.M. 1994,
“Qualitative Data Analysis”, Second Edition.
SAGE Publications.

Mullier D.J., Hobbs D.J. and Moore D.J. 2002,
“Identifying and Using Hypermedia Browsing
Patterns”. Journal of Educational Multimedia and
Hypermedia, No.11 (1). Pp31-50.

Palmer-Brown D. 1992, “High Speed Learning in a
Supervised, Self Growing Net”. In Proc. of Int.
Conf. on Artificial Neural Networks, Vol. 2, 1159-
1162.

Palmer-Brown D., Lee S.W., Tepper J. and
Roadknight C.M. 2003, “Fast Learning Neural
Nets with Adaptive Learning Styles”. In Proc. of
the 17th European Simulation Multiconference.
(ESM2003). Pp118 – 123.

Palmer-Brown D., Tepper J. and Powell H. 2002,
“Connectionist Natural Language Parsing”, Trends
in Cognitive Sciences, 6(10).

Pattinson C. 2000, “A simulated network
management information base”. Journal of
Network and Computer Applications, 23. Pp93-
701.

Roadknight C.M., Balls G., Mills G. and Palmer-
Brown D. 1997, “Modelling Complex
Environmental Data”, IEEE Transactions on
Neural Networks, 8(4).

Shalvi D. and DeClaris N. 1998, “An Unsupervised
Neural Network Approach to Medical Data Mining
Techniques”. In Proc. of IEEE Int. Joint Conf.
Neural Networks. Pp171-176.

Tan A.H. 1997, “Cascade ARTMAP: Integrating
Neural Computation and Symbolic Knowledge
Processing”. IEEE Trans. Neural Networks, Vol. 8,
No. 2. 237 – 250.

Zhang S., Powell H. and Palmer-Brown D. 2001,
“Methods for Concept Extraction using ANNs and
Stemming Analysis and Their Portability Across
Domains”. In Proc. of the 2nd Workshop on
Natural Language Processing and Neural Network
(Tokyo, Japan). Pp62 - 79.

7. BIOGRAPHY

HELEN DONELAN is a Lecturer in
Mobile Communications and Network
and Computer Security at Leeds
Metropolitan University, Leeds, UK.
She received a first class honours

degree in Communications Engineering and
Electronics from Liverpool University, UK in
1996. From 1996 until 1998 she worked as a
design engineer for a telecommunications
company, designing structured cabling systems for
local area networks. In 2004 she obtained a PhD
from the University of Leeds, UK where she was
also employed as a research assistant. Her PhD
focused on developing sequences and codes for
spread spectrum communications systems, in
particular 3G cellular mobile networks, and she
published several research papers in the area. She
joined Leeds Metropolitan University in 2003,
initially as a research assistant to undertake a
project involving the investigation into the analysis
of user data using neural networks, before attaining
the position of lecturer in 2004.

H. DONELAN et al: THE ANALYSIS OF NETWORK MANAGERS’ BEHAVIOUR …

I. J. of SIMULATION Vol. 6 No 9 ISSN 1473-804x online, 1473-8031 print

32

COLIN PATTINSON is a Principal
Lecturer in Computer
Communications, and leads the
Computer Communications Research
Group at the School of Computing,
Leeds Metropolitan University, Leeds,

UK, and is the School’s research manager. He
received the B.Sc. degree in Computational
Science from the University of Leeds in 1982, and
the Ph.D., also from the University of Leeds in
1986. His research interests include the use and
development of network management systems and
network performance issues. He is currently
involved in teaching a variety of computer
network-related modules at B.Sc. and M.Sc. levels,
and is also supervising four doctorate students. His
major research interest has been in developing a
network management training system, using
simulation to represent the behaviour of a network,
and has presented this work at conferences and
seminars in Australia, Spain, Turkey and Germany.
It was recently profiled in the 9th September 2003
issue of the computer trade periodical Computer
Weekly.

DOMINIC PALMER-BROWN is
professor of neurocomputing and
Associate Head, School of
Computing and Technology,
University of East London, UK. In
recent years, he has maintained
research links with a number of

organisations, including British Telecom Research
Labs, The Centre for Ecology and Hydrology, and
several universities. A key focus of his research is
neurocomputing and related methods of adaptation
and learning in cognitive science, intelligent data
analysis, and pattern recognition. Dominic has
published about 60 international conference and
journal papers and supervised 12 PhDs, since
completing his own PhD on an adaptive resonance
classifier in 1991. His interests have principally
concerned supervised and performance-guided
ART, enhanced MLPs for intelligent data analysis,
and architectures incorporating MLPs and SRNs
for thematic knowledge extraction and natural
language processing. He was editor of the review
journal Trends in Cognitive Sciences during 2000-
2 before rejoining Leeds Metropolitan University.
In 2005 he was appointed to his present post.

SIN WEE LEE was born in
Melaka, Malaysia, in 1976. He
graduated with first class honours
in electronics and computing
engineering from the Nottingham
Trent University, United
Kingdom, in 1999. His PhD’s

thesis (2005) focused on the development of
performance-guided neural network for active
network management. From 2000 to 2001, he was
a systems engineer at Malaysia Multimedia
University in Malaysia. In December 2001, he
joined the School of Computing, Leeds
Metropolitan University, Leeds, United Kingdom,
with a research studentship from EPSRC and BT
Research Laboratories, in Neural Networks. As a
research assistant, he works with Dominic Palmer-
Brown, on the improvement and development of
phrase recognition for a connectionist language
parser, feature discovery in phonetics data and
cluster analysis of iris data using the snap-drift
algorithm.

	IJSS 2005b cs
	Paper3

