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Abstract: A new continuous learning method is used to optimise the selection of services in response to user requests 
in an active computer network simulation environment. The learning is an enhanced version of the ‘snap-drift’ 
algorithm, which employs the complementary concepts of fast, minimalist (snap) learning and slower drift (towards the 
input patterns) learning, in a non-stationary environment where new patterns arrive continually. Snap is based on 
Adaptive Resonance Theory, and drift on Learning Vector Quantisation. The new algorithm swaps its learning style 
between these two self-organisational modes when declining performance is detected, but maintains the same learning 
mode during episodes of improved performance. Performance updates occur at the end of each epoch. Reinforcement is 
implemented by enabling learning on any given pattern with a probability that increases linearly with declining 
performance. This method, which is capable of rapid re-learning, is used in the design of a modular neural network 
system: Performance-guided Adaptive Resonance Theory (P-ART). Simulations involving a requirement to 
continuously adapt to make appropirate decisions within a BT active computer network environment, demonstrate the 
learning is stable, and able to discover alternative solutions in rapid response to new performance requirements or  
significant changes in the stream of input patterns.    
 
Keyword: Computational Intelligence, Artificial Neural Networks, Category Learning, Reinforcement Learning.  

 
 

INTRODUCTION  

The target application is representative of many 
situations in which machine learning is required to 
continuously and rapidly seek to improve performance 
in accordance with evolving circumstances. We 
describe this type of learning situation as having three 
related characteristics: provisional learning, fast 
learning, and performance feedback.  
 
Provisional Learning  

The adaptive systems of interest are not required to 
solve an optimisation problem in the traditional sense; 
they are involved in a continuous search for good 
solutions (solutions that are fit for purpose according to 
the chosen criteria of the target application) in a 
hyperspace that may contain many plausible solutions. 
There may an objective function of some kind, which 
the system tries to ‘optimise’. The classic example is 
error minimisation, in which in general the data is 
imperfect, e.g. limited, sparse, missing, error-prone, and 
subject to change (non-stationary). Therefore, the error 
minimum is really just a local minimum: local to a 
subset of data and an episode of time. It is only a global 
minimum in practice if the entire data-set is knowable, 

and this is never possible because the data is changing. 
Whilst this does not preclude the discovery of solutions 
that work for all data-time, it does mean that such 
generalisation involves extrapolations and assumptions 
that cannot be justified on the sole basis of the available 
information. In such circumstances, it is reasonable, 
when a new candidate solution is found, for it to be held 
– as a provisional hypothesis – until or unless it is 
rejected, or until it can be replaced by a stronger 
hypothesis. This provisional learning approach is suited 
to contexts such as the BT active computer network 
scenario in which we require continuous learning that is 
sufficiently responsive to the speed of changes in a non 
stationary environment.   
 
Fast Learning 

      Slow, iterative and intensive sampling based methods 
(eg. Gradient descent methods, and Bayesian methods 
[Barber and Bishop 1998] involving Monte Carlo and 
related methods) are inherently non-real-time, in the 
sense that they require multiple presentations of sets of 
patterns or samples, and therefore they cannot respond 
to the changing environment as it is changing. This 
contrasts sharply with the human case. Humans learn 
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‘as they go along’, to a significant extent, without the 
need for multiple presentations of each exemplar or 
pattern of information. In the BT application we also 

require the learning to adapt to patterns it may only 
encounter once. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1: Architecture of an ART1 network. 

 

Performance-guided Learning 

An important concern in artificial intelligence is how to 
combine top-down and bottom-up information. This 
applies to learning systems. For example, reinforcement 
learning is an effective top-down approach to rewarding 
successful strategies, or moves, during learning; 
supervised learning is a powerful means of modifying 
an ANN when it makes mistakes; and genetic 
algorithms are effective at selecting for improvement 
across generations of solutions. These are important and 
effective approaches, not to be dismissed simply 
because they are not fast, or because they are 
computationally intensive. Fascinating results and 
innovations are still occurring with these approaches 
[Vieira et al 2003, Andrews 2003, Lee et al 2003]; and 
although unsupervised learning, which does not harness 
top-down information, is an extremely useful tool, for 
example as an alternative or complement to clustering, 
in its purest form it does not (by definition) make use of 
information on the current performance of learning in 
order to guide adaptation in appropriate directions.  
Ideally, learning should be rapid, and yet capable of 
taking external indicators of performance into account; 
and it should be capable of reconciling the data 
(bottom-up) with feedback concerning how the ANN is 
organising the data (top-down). We seek to enable  fast 
bottom-up learning to freely discover solutions that are 
then filtered by a top-down quality assurance process.  
 

The Adaptive Resonance Theory (ART) Network  

Because Adaptive Resonance and Learning Vector 
Quantization  have complementary strengths as 

unsupervised learning methods, in our approach they 
are combined. Developments [Carpenter and Grossberg 
1987a] of the original ART [Grossberg, 1976a; 
Grossberg 1976b] networks include ART1 that self-
organises recognition categories for arbitrary sequences 
of binary input sequences; and ART2 which does the 
same for either binary or analogue inputs [Carpenter 
and Grossberg 1987b]. Subsequently, ART3 [Carpenter 
and Grossberg 1990] has been used to implement 
parallel searches of compressed or distributed 
recognition codes (output categories) in a neural 
network hierarchy. Following the successful 
implementation of the theory in real-time applications, 
further development has seen the creation of ART2-A 
[Carpenter et al. 1991a], which is 2 or 3 orders of 
magnitude faster than ART2. Fuzzy ART [Carpenter et 
al. 1991b] the fuzzy extension of ART, incorporated 
computations from fuzzy set theory. Extensions to ART 
networks to allow supervised learning were also 
introduced [Palmer-Brown 1992]; and ARTMAP 
[Carpenter et al. 1991c] and Fuzzy ARTMAP 
[Carpenter et al. 1992] autonomously learn to classify 
based on predictive success. Furthermore, there are 
several other versions of ART network [Tan 1997; 
Carpenter et al. 1998; Bartfai and White 2000], 
including supervised multi-layer, self-growing systems 
[Palmer-Brown 1992]. 
 
The ART1 Architecture and Learning Principles  

ART1 networks are capable of fast and stable learning 
by categorising arbitrary binary input patterns using the 
basic principles of self-organization. The ART1 
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network (similar to dP-ART architecture in  Figure 1) 
consists of 3 layers: the input layer (F0), the 
comparison layer (F1) and the categorisation layer (F2) 
with N, N, and M number of nodes respectively. Each 
node of the input layer is connected via non-modifiable 
links to its corresponding node in the comparison layer 
(there is a one to one mapping between F0 and F1 
nodes). The F1 and F2 layers are interconnected using 
bottom-up and top-down modifiable weighted links that 
are adapted during the learning stage. 

 
The learning process of the network can be described as 
follows: Upon the presentation of a binary input pattern 
I (Ij ∈{1,0}, j = 1, 2, 3,…, N), the network attempts to 
categorize it by comparing it against the stored 
knowledge of the existing categories of each F2 node. 
This is achieved by calculating the bottom-up 
activation, which can be expressed as 
 

Ti = 
|w|
| I w| 

i

i

+β
∩

                             (1) 

 
where β is the constant that enables the larger 
magnitude prototype (weights encoding a minimal set of 
features that describe all input or ‘member’ patterns 
allocated to that category node) vector to be selected 
when there exist multiple prototype vectors that are 
subset of the binary input pattern.  
 
The F2 node with the highest bottom-up activation, i.e. 
TI = max {Ti | I = 1, 2,…, M) is then selected. If a 
category is found with the required matching level, 
known as the vigilance level and represented by the 
vigilance parameter ρ where 0 < ρ < 1 and expressed by 
(2), then F2 node J will enter into a resonant state 
whereby it learns by modifying its prototype (weights 
encoding a minimal set of features that describe all 
input or ‘member’ patterns allocated to that category 
node), to retain only the critical features for the selected 
output category. This adjustment process is expressed 
by (3): 
 

| I|
|I w|   I ∩
  ≥  ρ                     (2) 

 
wiJ

(new) = η (wiJ
(old) ∩ I) + (1 - η) wiJ

(old)              (3) 
 
where η is the learning rate (0 < η < 1). All other 
weights in the network remain unchanged. 

If no existing matching prototype is found, i.e. when the 
stored wJ do not match the input sufficiently, then the 
winning F2 node is reset and another F2 node with the 
highest activations is selected based on the similarity 
between its prototype and the current input, and so on. 
When no corresponding output category (F2 node) can 
be found, the network considers the input pattern as 
novel, and generates a new output category that learns 
the current input. Essentially, it is a fast adaptive form 
of competition-based learning [Carpenter & Grossberg 
1988]. 
 
Limitations  

There are limitations of ART networks in non-
stationary environments where self-organisation needs 
to take account of periodic or occasional performance 
feedback:  

 
• The ART network tends to organize itself into a 

stable state during fast learning whereby the weights 
stop changing,  even in the presence of any new 
inputs. 

• There is no external feedback to improve the 
performance of the network, even when it stabilises 
with poor performance. 

 
PERFORMANCE-GUIDED ART (P-ART) 

P-ART Architecture  

The P-ART network proposed is a modular, multi-
layered architecture as shown in Figure 2. It is 
composed of 3 modules, a Distributed P-ART (dP-
ART) network, a Selection P-ART (sP-ART) network 
and a Kohonen Self-Organising Map. The F11 ↔ F21 
connections of the dP-ART network and F12 ↔ F22 of 
the sP-ART are interconnected through weighted 
bottom-up and top-down connections that can be 
modified during the learning stage. For clarity, only the 
connections from the F1 layer to the active (winning) 
F2 node in each P-ART module are shown. The F01 → 
F11 and two P-ART modules connected through F21 → 
F12 are unidirectional, one to one and non-modifiable. 
Each of the F22 nodes is hard-wired onto a specific pre-
trained region of the Kohonen Feature map where 
similar available proxylets (the target outputs) are 
spatially organised on the 2-D map according to their 
featural similarity. 
 
Overview of the Operation of the System  

On presentation of an input pattern at the input layer 
F01, the dP-ART will learn to group the input patterns 
according to their general features using the novel 
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Figure 2: Architecture of the P-ART Network 

learning principles developed in this work from the 
snap-drift’ algorithm recently developed [Lee et al. 
2002; Lee et al. 2003; Lee et al. 2004]. The latest 
version has several improvements over the previous one 
in terms of the normalization process, and the 
synchronization of learning between the s and d P-
ARTs; but the two key differences are performance 
guided toggling of learning between snap and drift, and  
the introduction of a probabilistic aspect to enhance 
reinforcement and stability. The standard matching and 
reset mechanism of ART [Carpenter and Grossberg 
1987a] is retained: If no existing matching prototype is 
found, i.e. when the stored pattern prototypes are not a 
good match for the input, the winning F21 node is reset 
and another F21 node is selected. When no 
corresponding output category can be found, the 
network considers the input as novel, and generates a 
new output category node that learns the current input 
pattern. 
 
The three winning F21 nodes, whose prototypes are best 
match to the current input pattern, are used as the input 
data to the P-ART module for selecting an appropriate 
output type (called a proxylet in the target application). 
For the purpose of selecting the required proxylet, the 
proxylet type information indicated by the P-ART 
references pre-trained locations on the Kohonen Self-
Organising Map (SOM) [Kohonen 1982; Kohonen 
1990a], which represent specific proxylets. If the 
proxylet is unavailable, one of its neighbours is selected 
(the most similar alternative available). 
 
A non-specific performance measure is used because, as 
in many applications, there are no specific performance 
measures (or external feedback) in response to each 
individual output decision. This measure is used to 

encourage or discourage reselection of outputs (proxylet 
types) to occur in order to improve the performance of 
the neural system. The continuous learning method is 
the snap-drift algorithm. It involves toggling between 
snap and drift modes depending on performance 
changes. Snap and drift are alternative forms of 
adaptation, and they are described in the next section, 
THE LEARNING. Table 1 shows a summary of the 
steps that occurs in P-ART. 
 
Table 1: Pseudo code of the Snap-Drift Algorithm for d-

PART. 
 
Step 1: Initialise parameters: (α = 1, σ = 0) 
Step 2: For each epoch, t 

Measure or calculate performance in the range 
{0,1} over the last epoch, P(t). 

             Performance improvement, PI = P(t) – P(t-1)  
Set probability of learning, PL = 1 – P(t) 

Step 3: For each new input pattern 
Find the D winning nodes with the largest 
input (or create new nodes for mismatches) 

 Set learn (adapt) true with probability PL. 
 If learn is true test learning strategy condition:  
 IF (PI <= 0) THEN  

Weights of d-PART adapted according to the 
alternate learning procedure: (α ,σ ) 
becomes Inverse (α andσ ) in equations (4 
and 10) below 

 ELSE   
Weights of d-PART adapted according to the 
same procedure as in the last epoch: (α ,σ ) 
unchanged. 

Step 4: Process the output pattern of F21 as input pattern 
of F12 

 Find winning node (just one) in F22. 
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Weights of s-PART are adapted according to the same 
learning probability and strategy conditions as above, 
except that the in first half of the learning epoch, both 
dP-ART and sP-ART learn, whereas in the second half 
of the epoch, only sP-ART learns. This allows 
relearning of the mapping from features to selections 
without the moving target problem of those features 
changing simultaneously.   
 
THE LEARNING 

Snap-Drift 

In an environment where new patterns are introduced 
over time, the learning utilises a novel snap-drift 
algorithm based on fast, convergent, minimalist learning 
(snap) and cautious learning (drift) when the 
performance is good. Snap is based on a modified form 
of ART; and drift is based on Learning Vector 
Quantization (LVQ) [Kohonen 1990b]. The two forms 
are combined within a semi-supervised learning system 
that shifts its learning style whenever it receives a drop 
in the performance feedback. So, in general terms, the 
snap-drift algorithm can be stated as: 
 

)()__( LVQARTLearningFastw σα +=    (4) 
 
where α and σ are determined by performance 
feedback. In previous simulations, α and σ  were real 
values [Lee et al. 2002; Lee et al. 2003; Lee et al. 2004]. 
In this paper, α and σ  are set to (0, 1) or (1, 0) 
depending on changes in performance, and the learning 
is then enabled probabilistically.  
 
Probability of Learning  

Human and animal learning research provides 
inspiration for this aspect of the learning algorithm. 
Under certain human and animal experimental 
circumstances, learned decisions have about the same 
probabilities of occurrence as the chances of successful 
outcomes resulting from those decisions. This effect is 
called probability matching [Anderson 2000; Sutherland 
& Mackintosh 1971] where the probability of learning 
is equal to the probability that recent learning has 
resulted in good decisions. The interpretation of 
probability matching deployed here, is that learning via 
adaptation on a winning neuron is enabled with a 
probability inversely proportional to the current overall 
performance of the neural network. This probability 
function can be stated as: 
 
P(learning) = P( 1 – p)                            (5)   
 
Therefore, during the learning phase, if the performance 
of the system is good, e.g. > 0.8, then the probability of 
the system learning (adapting in response to) the current 
pattern is < 0.2. Conversely, poor performance 
guarantees that learning will proceed, thus encouraging 

changes to be made to the weights. 
                                
Input Encoding  

A form of coarse coding [Eurich et al. 1997] is used to 
represent proportional differences between numeric data 
encoded within the input patterns, e.g. the 
representation of the value 15 must be closer in input 
space to the representation of value 20 than that of, say 
30.  The input pattern is arranged in a 25 bit vector. 
Each property, such as bandwidth, time, file size, loss 
and completion guarantee, occupies 5 bits of the overall 
pattern. Table 2 shows the realistic range for each of the 
request properties. The coding of the user request is 
performed as illustrated in Table 3, across a different 
range for the 5 bits in the case of each property. The 
input patterns are generated by maintaining the coding 
of each field in turn and randomly generating the codes 
for rest of the fields for every 20 patterns, giving 1000 
patterns in all. 
 

Table 2: Value Ranges of User Request Properties  
 

Properties  Ranges  
Bandwidth  10Kb/s → 2000Kb/s 
Time  1ms → 1000ms 
Loss  20% → 60% 
Cost 0.1p → 100p 
Completion Guarantee  40% → 100% 

 
Table 3: Example Coding of Bandwidth in User 

Requests  
 

Ranges (Kb/s) User Request   
200 → 400 10000 
800 → 1000 01100 
1800 → 2000 00001 

  
Weights Initialisation  

The weights are calculated as floating point and are 
initialised at the beginning of the simulations. Top-
down weights are set randomly to either 0 or 1. 
 

]1,0[)0( =jiw      (6) 
 

Thus, a simple distributed affect will be generated at the 
output layer of the network, with different patterns 
tending to give rise to different activations across F2 

from the start. The bottom-up weights wij are assigned 
initial values corresponding to the initial values of the 
top-down weights wji.  This is accomplished by equation 
(7):  
 

|)0(|
)0(

)0(
ji

ji
ij w

w
w =    (7) 
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The Distributed P-ART (dP-ART) Learning  

On presentation of input pattern, the bottom-up 
activation is calculated using (8). Then the D number of 
F21 nodes with the highest bottom-up activation, using 
(9), are selected. 
 

|| IwT ijJ ∩= ∑    (8) 

 
}M,.....,2,1J|Tmax{T JJ ==    (9) 

 
D is set to 3 in this application. If the distributed output 
categories are found with the required matching level, 
the three F21 nodes will enter into resonant state and 
learn using (10): 
 

))(()( )()()()( old
Ji

old
Ji

old
Ji

new
Ji wIwwIw −++∩= βσα (10) 

 
where wji = top-down weights vectors; I = binary input 
vectors, and β  = the drift speed constant = 0.5. 
When α =1, (10) can be simplifies to: 
 

)wI(w )old(
Ji

)new(
Ji ∩=    (11) 

 
This invokes fast minimalist learning, causing the top-
down weights to reach their new asymptote on each 
input presentation: 
 

)old(
JJ wIw ∩→    (12) 

 
In contrast, when σ = 1, (10) simplifies to 
 

))wI(w(w )old(
Ji

)old(
Ji

)new(
Ji −β+=    (13) 

 
This causes a simple form of clustering or LVQ at a 
speed determined by β. As describe in the pseudo code 
show in Table 1, learning is a combination of the two 
forms of adaptation, because the mode is toggled 
between snap and drift whenever performance has 
deteriorated during the previous epoch. In addition, 
whether adaptation occurs or not on a given pattern is a 
probabilistic decision, whereby the probability of the 
snap or drift occurring is proportional to declining 
performance.  The novel bottom-up learning of the P-
ART is a normalised version of the top-down learning: 
 

|| )(

)(
)(

new
Ji

new
Jinew

iJ w
ww =    (14) 

 
where wJi

(new) = top-down weights of the network after 
learning. Poor performance can occur when the final 
selection of proxylet type is wrong, even if the general 
features extracted by dP-ART are valid. To cope with 
this, there should be a dissociation between d and s-
PART learning. Hence, dP-ART learning is toggled on-

off every half-epoch so that sP-ART can readjust its 
learning of selections without modification of the 
general features in dP-ART, thus resolving a moving 
target problem.   
 
The Selection P-ART (sP-ART) Learning  

The outputs produced by the dP-ART act as input to the 
sP-ART. The behaviour of sP-ART is the same as that 
described in section P-ART Architecture, with one 
exception; only the F2 node with the highest activation 
is adapted. Each output node of the sP-ART points to a 
set of available application-specific groupings (in this 
case proxylet types). The proxylet type data, containing 
attributes of the types, is used as off-line training data 
for the SOM so that it forms a map with similar 
proxylets placed on adjacent nodes. This allows each 
output node of the sP-ART to be ‘hardwired’ onto 
regions of the SOM. The task of the sP-ART is 
therefore to learn to associate the correct group of input 
patterns with an output node that is hardwired to a 
region of the SOM. The effect of learning and 
relearning within the sP-ART module is that specific 
output nodes will relate different groups of input 
patterns to different regions of the SOM until the 
performance feedback indicates that it is indexing the 
SOM regions that select the most appropriate proxylets. 
In that event, the learning probability is low, so that 
even if the snap-drift has not yet converged, further 
adjustment is slow. 
 
The Performance Feedback  

The external performance feedback into the PART 
reflects the performance requirement in different 
circumstances. Various performance feedbacks profiles 
in the range {0, 1} are fed into the network to evaluate 
the dynamic stability and effectiveness of the learning. 
Initially, some very basic tests with performances of 1 
or 0 were evaluated in a simplified system [Lee et al. 
2002; Lee et al. 2003; Lee et al. 2004]. Here, the 
simulations involve computing the performance based 
on a parameter associated with the winning output 
neuron. The winning output neurons represent proxlet 
selections which are either good or poor selections for 
the current input request, and hence the accumulation of 
these over time, averaged, gives a performamce 
indicator in the range {0,1}. 
 
BRITISH TELECOM (BT) APPLICATION  

Application Layer Active Network (ALAN) 

British Telecom (BT) is the main data network provider 
in the UK. At present, most applications are run on edge 
devices (which send and receive data, but do not route 
third party data), such as servers, PCs and WAP enabled 
devices. There are strong arguments for moving as 
many of these applications as possible into the network 
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[Tennenhouse and Wetherall 1996], thereby ensuring 
optimal placement of applications with respect to 
performance, version synchronicity (so that more users 
have the same version), and increased security. ‘Active 
Networking’ [Tennenhouse and Wetherall 1996] aims 
to achieve this application migration into the network 
by running code within the network on specialised 
routers.  It gives users the ability to load software 
components onto network devices dynamically without 
explicit references to any third party. There are three 
types of active networks:  

1. Capsule – This approach is used to enable the active 
service codes to run on the network devices, such as 
servers, that the packets encounter.  

2. Programmable – This approach allows the clients to 
download their own active service codes onto 
network devices before using their application 
[Campbell et al. 1999]. 

3. Active Bridging – This approach allows the network 
operators1 the freedom to choose appropriate active 
service codes of their own [Alexander 1996). 
Despite the difficulties of the approach (Marshall 
1999a), it has highlighted the important 
requirements for a feasible active network and 
encouraged other researchers to develop better 
alternatives to resolve them. 

 
The ALAN architecture [Fry and Ghosh 1999] enabled 
the user to supply JAVA based active-service codes 
known as proxylets that run on a network device.  Each 
networked server runs the ‘Execution Environments for 
Proxylets’ (EEPs) that contains the user supplied 
software. The purpose of the architecture is to locate the 
software at optimal points of the end-to-end path 
between the server and the clients.  
 
Automated Active Network Management using 
Distributed Genetic Algorithm (GA)  

The original ALAN proposal, the management system 
supports conventional management agent interfaces 
[Marshall 1999b; Marshall et al. 2000] that respond to 
instructions from the system operators. Each application 
is individually placed in the network. However, since 
ALAN with the potential for an enormous range of 
services, it is necessary to combine the active services 
with an automated and adaptive management solution. 
Recently, a novel adaptive approach, a Distributed 
Genetic Algorithm (GA) solution was introduced by BT 
Research Laboratories [Marshall and Roadknight 2001]. 
It performs proxylet placement. Here, P-ART provides 
a means of finding a set of conditions that produce 
optimum proxylet selection in an EEP containing the 
frequently requested proxylets that have been placed. 
Continuous performance guided adaptation of the 
mapping of input patters, which contain the main 

                                                           
1 Network operators are those companies (such as BT, NTL) who control the 
public network and allow Internet Service Providers (ISPs) (such as Freeserve, 
BT, AOL) to provide additional Internet services. 

attribute values of user proxylet requests, performs 
intelligent proxylet type selection.  
 

THE P-ART SIMULATION  

P-ART is used for learning and mapping user requests 
onto appropriate proxylets. The test patterns consist of 
1000 input vectors. Each test pattern characterizes the 
properties of a network request, such as bandwidth, 
time, file size, loss and completion guarantee.  These 
test patterns are presented in random order with 10 
patterns per epoch for 100 epochs where the 
performance, p, is calculated according to the average 
bandwidth of selections. This on-line continuous 
random presentation of test patterns simulates the real 
world scenario in which pattern presentation order is 
random, so that a given network request might be 
repeatedly encountered while others are not used at all.  
 
ANALYSIS OF RESULTS  

Results are presented in Figures 3, 4 and Table 4 and 5. 
They are representative of many simulations that have 
been run.  Performance feedback is updated at the end 
of each epoch of 10 patterns. Much longer epochs are 
less effective. The best results are for the shortest 
epochs for which the performance estimate remains a 
reasonable estimate of overall performance, which of 
course it would not be for a very small number of 
patterns. In this application, although there are 1000 
patterns, there are only 100 general types, and hence 10 
is approximately the smallest reasonable sample for 
which updates in performance may be trusted to 
increase or decrease with true overall performance. This 
will clearly be different for each application.  
 
Figure 3 represents a typical run in which performance 
converges towards 100% and settles with some 
remaining jitter. In the other results tables below, 
learning is actually over by about epoch 75, after which 
no new selections of proxylets occur until the criteria 
change to low bandwidth. After 75 (750 pattern 
presentations), all the performance variation between 
epochs (the jitter in the performance curve) is due to the 
epochs being short (in other words, samples of 10 give 
approximately 70% accurate true performance 
estimates), and hence the performance over 1000 
patterns is actually constant at about the average of the 
values of the table values from 70-100, which is just 
under 80%.   
 
In Figure 4 and Table 5, the performance criterion is 
swapped from high to low bandwidth after 100 epochs, 
and we see relearning and re-stabilisation occur, with 
similar performance to before the swap being restored 
once convergence has re-occurred. 
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CONCLUSIONS & FURTHER WORK 

In conclusion, the snap-drift algorithm learning 
stabilizes reliably and is able to map the inputs onto 
appropriate proxylets. The simulation results show that 
the snap-drift algorithm is able to provide continuous 
probabilistic real-time learning in order to improve the 
performance, based on the external performance 
feedback. On-going research is advancing on three 
fronts, with unsupervised and reinforcement versions of 
snap-drift: 
 
• Phonetic Feature Discovery in Speech 

waveforms: An fully unsupervised snap-drift 
algorithm is being used for discovering the internal 
features in speech utterances and to chracterise the 
acoustic properties of the normal and stammering 
speaker groups. The learnt features will be studied, 
in particular the features occurring in utterances of 
both normal and stammering speakers, and the 
distinct features which only exist one of the two 
groups, as a means of correlative data analysis. 

 
• Cluster Analysis using Iris Data: The 

unsupervised snap-drift algorithm is also being  used 
for clustering the well known Iris dataset [Fisher 
1936] and has been widely used in cluster analysis. 
This provides the opportunity to test the snap-drift 
algorithm on a well-defined, well understood 
problem and thereby enable a comparative 
evaluation with other types of clustering algorithms. 
It will then allow an investigation of the affect on 
snap-drift clustering of the reinforcement method 
used in this paper.   

 
• Phrase Recognition for a Connectionist 

Language Parser: The emphasis of this research is 
to use the snap-drift algorithm for recognition of 
phrases extracted from the Lancaster Parsed Corpus 
(LCS) in order to improve the overall performance a 
corpus-based parser [Palmer-Brown et al. 2002; 
Tepper et al. 2002], which involved phrase 
segmentation and recognition stages. 

 
In terms of the snap-drift algorithm itself, we are 
exploring the role of individual reinforcement feedback 
onto each neuron to control its learning mode, as 
compared to the current method, which uses the same 
performance measure for every neuron. This will enable 
a snap-drift network to function as a classifier.  
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Figure 3: The Selection Frequency of the Proxylet 

Type. E.g. Bandwidth Bands: Low Bandwidth Proxylet:  
0 → 1000 Kb/S and High Bandwidth Proxylet Type: 

1001 → 2000 Kb/S 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 4:  The Selection Frequency of Proxylet Type. 
 

Table 4: Performance of P-ART  
 

Epoch  Average No. of 
High Bandwidth 
Proxylet Selected 

(/10) 

Performance 
(%) 

1 – 10 4.9 49 
11 – 20 4.8 48 
21 – 30 4.9 49 
31 – 40 4.8 48 
41 – 50 4.0 40 
51 – 60 5.2 52 
61 – 70 6.8 68 
71 – 80 6.6 66 
81 – 90 8.5 85 
91 – 100 8.7  87 
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Table 5: Performance of P-ART with Switching of 
Performance Criteria @ epoch 100. 

 

Epoch 

Average 
No. of High 

B/W 
Proxylet 
Selected 

( /12) 

Average 
No. of 

Low B/W 
Proxylet 
Selected 

( /12) 

High B/W 
Proxylet 
Selection 

(%) 

Low B/W 
Proxylet 
Selection 

 (%) 

1 – 10 6.08 3.92 50.69 32.64 
11 – 20 5.25 4.75 43.75 39.58 
31 – 40 3.50 6.50 29.17 54.17 
41 – 50 6.00 4.00 50.00 33.33 
51 – 60 6.33 3.67 52.78 30.56 
61 – 70 5.83 4.17 48.61 34.72 
71 – 80 7.83 2.17 65.28 18.06 
81 – 90 8.42 1.58 70.14 13.19 

91 – 100 8.33 1.67 69.44 13.89 
101 – 100 6.67 3.33 55.56 27.78 
111 – 120 5.17 4.83 43.06 40.28 
131 – 140 4.42 5.58 36.81 46.53 
151 – 160 3.75 6.25 31.25 52.08 
161 – 170 2.83 7.17 23.61 59.72 
171 – 180   3.42 6.58 28.47 54.86 
181 – 190 2.83 7.17 23.61 59.72 
191 – 200  0.08 9.92 0.69 82.64 
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