

University of East London Institutional Repository: http://roar.uel.ac.uk

This paper is made available online in accordance with publisher policies. Please
scroll down to view the document itself. Please refer to the repository record for this
item and our policy information available from the repository home page for further
information.

Author(s): Palmer-Brown, Dominic; Lee, Sin Wee.
Article title: Continuous Reinforced Snap-Drift Learning in a Neural Architecture for
Proxylet Selection in Active Computer Networks
Year of publication: 2005
Citation: Palmer-Brown, D.; Lee, S.W. (2005). “Continuous Reinforced Snap-Drift
Learning in a Neural Architecture for Proxylet Selection in Active Computer
Networks.” International Journal on Simulation: Systems, Science and Technology, 6
(9) 11-21.
Link to published version:
http://ducati.doc.ntu.ac.uk/uksim/journal/Vol-6/No.9/Paper2.pdf

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UEL Research Repository at University of East London

https://core.ac.uk/display/219371503?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://roar.uel.ac.uk/
http://ducati.doc.ntu.ac.uk/uksim/journal/Vol-6/No.9/Paper2.pdf

D. PALMER-BROWN et al: CONTINUOUS REINFORCED SNAP-DRIFT LEARNING …

I. J. of SIMULATION Vol. 6 No 9 ISSN 1473-804x online, 1473-8031 print

11

CONTINUOUS REINFORCED SNAP-DRIFT LEARNING IN A
NEURAL ARCHITECTURE FOR PROXYLET SELECTION IN

ACTIVE COMPUTER NETWORKS

DOMINIC PALMER-BROWN and SIN WEE LEE

School of Computing and Technology,
University of East London,

Longbridge Road,
 RM8 2AS, UK.

http://www.uel.ac.uk/scot
d palmer-brown@uel.ac.uk

Abstract: A new continuous learning method is used to optimise the selection of services in response to user requests
in an active computer network simulation environment. The learning is an enhanced version of the ‘snap-drift’
algorithm, which employs the complementary concepts of fast, minimalist (snap) learning and slower drift (towards the
input patterns) learning, in a non-stationary environment where new patterns arrive continually. Snap is based on
Adaptive Resonance Theory, and drift on Learning Vector Quantisation. The new algorithm swaps its learning style
between these two self-organisational modes when declining performance is detected, but maintains the same learning
mode during episodes of improved performance. Performance updates occur at the end of each epoch. Reinforcement is
implemented by enabling learning on any given pattern with a probability that increases linearly with declining
performance. This method, which is capable of rapid re-learning, is used in the design of a modular neural network
system: Performance-guided Adaptive Resonance Theory (P-ART). Simulations involving a requirement to
continuously adapt to make appropirate decisions within a BT active computer network environment, demonstrate the
learning is stable, and able to discover alternative solutions in rapid response to new performance requirements or
significant changes in the stream of input patterns.

Keyword: Computational Intelligence, Artificial Neural Networks, Category Learning, Reinforcement Learning.

INTRODUCTION

The target application is representative of many
situations in which machine learning is required to
continuously and rapidly seek to improve performance
in accordance with evolving circumstances. We
describe this type of learning situation as having three
related characteristics: provisional learning, fast
learning, and performance feedback.

Provisional Learning

The adaptive systems of interest are not required to
solve an optimisation problem in the traditional sense;
they are involved in a continuous search for good
solutions (solutions that are fit for purpose according to
the chosen criteria of the target application) in a
hyperspace that may contain many plausible solutions.
There may an objective function of some kind, which
the system tries to ‘optimise’. The classic example is
error minimisation, in which in general the data is
imperfect, e.g. limited, sparse, missing, error-prone, and
subject to change (non-stationary). Therefore, the error
minimum is really just a local minimum: local to a
subset of data and an episode of time. It is only a global
minimum in practice if the entire data-set is knowable,

and this is never possible because the data is changing.
Whilst this does not preclude the discovery of solutions
that work for all data-time, it does mean that such
generalisation involves extrapolations and assumptions
that cannot be justified on the sole basis of the available
information. In such circumstances, it is reasonable,
when a new candidate solution is found, for it to be held
– as a provisional hypothesis – until or unless it is
rejected, or until it can be replaced by a stronger
hypothesis. This provisional learning approach is suited
to contexts such as the BT active computer network
scenario in which we require continuous learning that is
sufficiently responsive to the speed of changes in a non
stationary environment.

Fast Learning

 Slow, iterative and intensive sampling based methods
(eg. Gradient descent methods, and Bayesian methods
[Barber and Bishop 1998] involving Monte Carlo and
related methods) are inherently non-real-time, in the
sense that they require multiple presentations of sets of
patterns or samples, and therefore they cannot respond
to the changing environment as it is changing. This
contrasts sharply with the human case. Humans learn

D. PALMER-BROWN et al: CONTINUOUS REINFORCED SNAP-DRIFT LEARNING …

I. J. of SIMULATION Vol. 6 No 9 ISSN 1473-804x online, 1473-8031 print

12

‘as they go along’, to a significant extent, without the
need for multiple presentations of each exemplar or
pattern of information. In the BT application we also

require the learning to adapt to patterns it may only
encounter once.

Figure 1: Architecture of an ART1 network.

Performance-guided Learning

An important concern in artificial intelligence is how to
combine top-down and bottom-up information. This
applies to learning systems. For example, reinforcement
learning is an effective top-down approach to rewarding
successful strategies, or moves, during learning;
supervised learning is a powerful means of modifying
an ANN when it makes mistakes; and genetic
algorithms are effective at selecting for improvement
across generations of solutions. These are important and
effective approaches, not to be dismissed simply
because they are not fast, or because they are
computationally intensive. Fascinating results and
innovations are still occurring with these approaches
[Vieira et al 2003, Andrews 2003, Lee et al 2003]; and
although unsupervised learning, which does not harness
top-down information, is an extremely useful tool, for
example as an alternative or complement to clustering,
in its purest form it does not (by definition) make use of
information on the current performance of learning in
order to guide adaptation in appropriate directions.
Ideally, learning should be rapid, and yet capable of
taking external indicators of performance into account;
and it should be capable of reconciling the data
(bottom-up) with feedback concerning how the ANN is
organising the data (top-down). We seek to enable fast
bottom-up learning to freely discover solutions that are
then filtered by a top-down quality assurance process.

The Adaptive Resonance Theory (ART) Network

Because Adaptive Resonance and Learning Vector
Quantization have complementary strengths as

unsupervised learning methods, in our approach they
are combined. Developments [Carpenter and Grossberg
1987a] of the original ART [Grossberg, 1976a;
Grossberg 1976b] networks include ART1 that self-
organises recognition categories for arbitrary sequences
of binary input sequences; and ART2 which does the
same for either binary or analogue inputs [Carpenter
and Grossberg 1987b]. Subsequently, ART3 [Carpenter
and Grossberg 1990] has been used to implement
parallel searches of compressed or distributed
recognition codes (output categories) in a neural
network hierarchy. Following the successful
implementation of the theory in real-time applications,
further development has seen the creation of ART2-A
[Carpenter et al. 1991a], which is 2 or 3 orders of
magnitude faster than ART2. Fuzzy ART [Carpenter et
al. 1991b] the fuzzy extension of ART, incorporated
computations from fuzzy set theory. Extensions to ART
networks to allow supervised learning were also
introduced [Palmer-Brown 1992]; and ARTMAP
[Carpenter et al. 1991c] and Fuzzy ARTMAP
[Carpenter et al. 1992] autonomously learn to classify
based on predictive success. Furthermore, there are
several other versions of ART network [Tan 1997;
Carpenter et al. 1998; Bartfai and White 2000],
including supervised multi-layer, self-growing systems
[Palmer-Brown 1992].

The ART1 Architecture and Learning Principles

ART1 networks are capable of fast and stable learning
by categorising arbitrary binary input patterns using the
basic principles of self-organization. The ART1

ρ
Reset +

⎯

Input Layer Comparison Layer Categorisation Layer

Input

Orienting
Subsystem

F2 F1 F0

.....

.....

Bottom-up
weight (wji)

Top-down
weight (wij)

D. PALMER-BROWN et al: CONTINUOUS REINFORCED SNAP-DRIFT LEARNING …

I. J. of SIMULATION Vol. 6 No 9 ISSN 1473-804x online, 1473-8031 print

13

network (similar to dP-ART architecture in Figure 1)
consists of 3 layers: the input layer (F0), the
comparison layer (F1) and the categorisation layer (F2)
with N, N, and M number of nodes respectively. Each
node of the input layer is connected via non-modifiable
links to its corresponding node in the comparison layer
(there is a one to one mapping between F0 and F1
nodes). The F1 and F2 layers are interconnected using
bottom-up and top-down modifiable weighted links that
are adapted during the learning stage.

The learning process of the network can be described as
follows: Upon the presentation of a binary input pattern
I (Ij ∈{1,0}, j = 1, 2, 3,…, N), the network attempts to
categorize it by comparing it against the stored
knowledge of the existing categories of each F2 node.
This is achieved by calculating the bottom-up
activation, which can be expressed as

Ti =
|w|
| I w|

i

i

+β
∩

 (1)

where β is the constant that enables the larger
magnitude prototype (weights encoding a minimal set of
features that describe all input or ‘member’ patterns
allocated to that category node) vector to be selected
when there exist multiple prototype vectors that are
subset of the binary input pattern.

The F2 node with the highest bottom-up activation, i.e.
TI = max {Ti | I = 1, 2,…, M) is then selected. If a
category is found with the required matching level,
known as the vigilance level and represented by the
vigilance parameter ρ where 0 < ρ < 1 and expressed by
(2), then F2 node J will enter into a resonant state
whereby it learns by modifying its prototype (weights
encoding a minimal set of features that describe all
input or ‘member’ patterns allocated to that category
node), to retain only the critical features for the selected
output category. This adjustment process is expressed
by (3):

| I|
|I w| I ∩
 ≥ ρ (2)

wiJ

(new) = η (wiJ
(old) ∩ I) + (1 - η) wiJ

(old) (3)

where η is the learning rate (0 < η < 1). All other
weights in the network remain unchanged.

If no existing matching prototype is found, i.e. when the
stored wJ do not match the input sufficiently, then the
winning F2 node is reset and another F2 node with the
highest activations is selected based on the similarity
between its prototype and the current input, and so on.
When no corresponding output category (F2 node) can
be found, the network considers the input pattern as
novel, and generates a new output category that learns
the current input. Essentially, it is a fast adaptive form
of competition-based learning [Carpenter & Grossberg
1988].

Limitations

There are limitations of ART networks in non-
stationary environments where self-organisation needs
to take account of periodic or occasional performance
feedback:

• The ART network tends to organize itself into a

stable state during fast learning whereby the weights
stop changing, even in the presence of any new
inputs.

• There is no external feedback to improve the
performance of the network, even when it stabilises
with poor performance.

PERFORMANCE-GUIDED ART (P-ART)

P-ART Architecture

The P-ART network proposed is a modular, multi-
layered architecture as shown in Figure 2. It is
composed of 3 modules, a Distributed P-ART (dP-
ART) network, a Selection P-ART (sP-ART) network
and a Kohonen Self-Organising Map. The F11 ↔ F21
connections of the dP-ART network and F12 ↔ F22 of
the sP-ART are interconnected through weighted
bottom-up and top-down connections that can be
modified during the learning stage. For clarity, only the
connections from the F1 layer to the active (winning)
F2 node in each P-ART module are shown. The F01 →
F11 and two P-ART modules connected through F21 →
F12 are unidirectional, one to one and non-modifiable.
Each of the F22 nodes is hard-wired onto a specific pre-
trained region of the Kohonen Feature map where
similar available proxylets (the target outputs) are
spatially organised on the 2-D map according to their
featural similarity.

Overview of the Operation of the System

On presentation of an input pattern at the input layer
F01, the dP-ART will learn to group the input patterns
according to their general features using the novel

D. PALMER-BROWN et al: CONTINUOUS REINFORCED SNAP-DRIFT LEARNING …

I. J. of SIMULATION Vol. 6 No 9 ISSN 1473-804x online, 1473-8031 print

14

Feedback
Module

Performance Input (p)

Input
Pattern

(I)

Proxylet
Metafiles

F22 F21 F12 F11 F01

Selection P-ART (sP-ART)
(For Proxylet Types

Selection)

Distributed P-ART (dP-ART)
(For Features Extraction)

Figure 2: Architecture of the P-ART Network

learning principles developed in this work from the
snap-drift’ algorithm recently developed [Lee et al.
2002; Lee et al. 2003; Lee et al. 2004]. The latest
version has several improvements over the previous one
in terms of the normalization process, and the
synchronization of learning between the s and d P-
ARTs; but the two key differences are performance
guided toggling of learning between snap and drift, and
the introduction of a probabilistic aspect to enhance
reinforcement and stability. The standard matching and
reset mechanism of ART [Carpenter and Grossberg
1987a] is retained: If no existing matching prototype is
found, i.e. when the stored pattern prototypes are not a
good match for the input, the winning F21 node is reset
and another F21 node is selected. When no
corresponding output category can be found, the
network considers the input as novel, and generates a
new output category node that learns the current input
pattern.

The three winning F21 nodes, whose prototypes are best
match to the current input pattern, are used as the input
data to the P-ART module for selecting an appropriate
output type (called a proxylet in the target application).
For the purpose of selecting the required proxylet, the
proxylet type information indicated by the P-ART
references pre-trained locations on the Kohonen Self-
Organising Map (SOM) [Kohonen 1982; Kohonen
1990a], which represent specific proxylets. If the
proxylet is unavailable, one of its neighbours is selected
(the most similar alternative available).

A non-specific performance measure is used because, as
in many applications, there are no specific performance
measures (or external feedback) in response to each
individual output decision. This measure is used to

encourage or discourage reselection of outputs (proxylet
types) to occur in order to improve the performance of
the neural system. The continuous learning method is
the snap-drift algorithm. It involves toggling between
snap and drift modes depending on performance
changes. Snap and drift are alternative forms of
adaptation, and they are described in the next section,
THE LEARNING. Table 1 shows a summary of the
steps that occurs in P-ART.

Table 1: Pseudo code of the Snap-Drift Algorithm for d-

PART.

Step 1: Initialise parameters: (α = 1, σ = 0)
Step 2: For each epoch, t

Measure or calculate performance in the range
{0,1} over the last epoch, P(t).

 Performance improvement, PI = P(t) – P(t-1)
Set probability of learning, PL = 1 – P(t)

Step 3: For each new input pattern
Find the D winning nodes with the largest
input (or create new nodes for mismatches)

 Set learn (adapt) true with probability PL.
 If learn is true test learning strategy condition:
 IF (PI <= 0) THEN

Weights of d-PART adapted according to the
alternate learning procedure: (α ,σ)
becomes Inverse (α andσ) in equations (4
and 10) below

 ELSE
Weights of d-PART adapted according to the
same procedure as in the last epoch: (α ,σ)
unchanged.

Step 4: Process the output pattern of F21 as input pattern
of F12

 Find winning node (just one) in F22.

D. PALMER-BROWN et al: CONTINUOUS REINFORCED SNAP-DRIFT LEARNING …

I. J. of SIMULATION Vol. 6 No 9 ISSN 1473-804x online, 1473-8031 print

15

Weights of s-PART are adapted according to the same
learning probability and strategy conditions as above,
except that the in first half of the learning epoch, both
dP-ART and sP-ART learn, whereas in the second half
of the epoch, only sP-ART learns. This allows
relearning of the mapping from features to selections
without the moving target problem of those features
changing simultaneously.

THE LEARNING

Snap-Drift

In an environment where new patterns are introduced
over time, the learning utilises a novel snap-drift
algorithm based on fast, convergent, minimalist learning
(snap) and cautious learning (drift) when the
performance is good. Snap is based on a modified form
of ART; and drift is based on Learning Vector
Quantization (LVQ) [Kohonen 1990b]. The two forms
are combined within a semi-supervised learning system
that shifts its learning style whenever it receives a drop
in the performance feedback. So, in general terms, the
snap-drift algorithm can be stated as:

)()__(LVQARTLearningFastw σα += (4)

where α and σ are determined by performance
feedback. In previous simulations, α and σ were real
values [Lee et al. 2002; Lee et al. 2003; Lee et al. 2004].
In this paper, α and σ are set to (0, 1) or (1, 0)
depending on changes in performance, and the learning
is then enabled probabilistically.

Probability of Learning

Human and animal learning research provides
inspiration for this aspect of the learning algorithm.
Under certain human and animal experimental
circumstances, learned decisions have about the same
probabilities of occurrence as the chances of successful
outcomes resulting from those decisions. This effect is
called probability matching [Anderson 2000; Sutherland
& Mackintosh 1971] where the probability of learning
is equal to the probability that recent learning has
resulted in good decisions. The interpretation of
probability matching deployed here, is that learning via
adaptation on a winning neuron is enabled with a
probability inversely proportional to the current overall
performance of the neural network. This probability
function can be stated as:

P(learning) = P(1 – p) (5)

Therefore, during the learning phase, if the performance
of the system is good, e.g. > 0.8, then the probability of
the system learning (adapting in response to) the current
pattern is < 0.2. Conversely, poor performance
guarantees that learning will proceed, thus encouraging

changes to be made to the weights.

Input Encoding

A form of coarse coding [Eurich et al. 1997] is used to
represent proportional differences between numeric data
encoded within the input patterns, e.g. the
representation of the value 15 must be closer in input
space to the representation of value 20 than that of, say
30. The input pattern is arranged in a 25 bit vector.
Each property, such as bandwidth, time, file size, loss
and completion guarantee, occupies 5 bits of the overall
pattern. Table 2 shows the realistic range for each of the
request properties. The coding of the user request is
performed as illustrated in Table 3, across a different
range for the 5 bits in the case of each property. The
input patterns are generated by maintaining the coding
of each field in turn and randomly generating the codes
for rest of the fields for every 20 patterns, giving 1000
patterns in all.

Table 2: Value Ranges of User Request Properties

Properties Ranges
Bandwidth 10Kb/s → 2000Kb/s
Time 1ms → 1000ms
Loss 20% → 60%
Cost 0.1p → 100p
Completion Guarantee 40% → 100%

Table 3: Example Coding of Bandwidth in User

Requests

Ranges (Kb/s) User Request
200 → 400 10000
800 → 1000 01100
1800 → 2000 00001

Weights Initialisation

The weights are calculated as floating point and are
initialised at the beginning of the simulations. Top-
down weights are set randomly to either 0 or 1.

]1,0[)0(=jiw (6)

Thus, a simple distributed affect will be generated at the
output layer of the network, with different patterns
tending to give rise to different activations across F2

from the start. The bottom-up weights wij are assigned
initial values corresponding to the initial values of the
top-down weights wji. This is accomplished by equation
(7):

|)0(|
)0(

)0(
ji

ji
ij w

w
w = (7)

D. PALMER-BROWN et al: CONTINUOUS REINFORCED SNAP-DRIFT LEARNING …

I. J. of SIMULATION Vol. 6 No 9 ISSN 1473-804x online, 1473-8031 print

16

The Distributed P-ART (dP-ART) Learning

On presentation of input pattern, the bottom-up
activation is calculated using (8). Then the D number of
F21 nodes with the highest bottom-up activation, using
(9), are selected.

|| IwT ijJ ∩= ∑ (8)

}M,.....,2,1J|Tmax{T JJ == (9)

D is set to 3 in this application. If the distributed output
categories are found with the required matching level,
the three F21 nodes will enter into resonant state and
learn using (10):

))(()()()()()(old
Ji

old
Ji

old
Ji

new
Ji wIwwIw −++∩= βσα (10)

where wji = top-down weights vectors; I = binary input
vectors, and β = the drift speed constant = 0.5.
When α =1, (10) can be simplifies to:

)wI(w)old(
Ji

)new(
Ji ∩= (11)

This invokes fast minimalist learning, causing the top-
down weights to reach their new asymptote on each
input presentation:

)old(
JJ wIw ∩→ (12)

In contrast, when σ = 1, (10) simplifies to

))wI(w(w)old(
Ji

)old(
Ji

)new(
Ji −β+= (13)

This causes a simple form of clustering or LVQ at a
speed determined by β. As describe in the pseudo code
show in Table 1, learning is a combination of the two
forms of adaptation, because the mode is toggled
between snap and drift whenever performance has
deteriorated during the previous epoch. In addition,
whether adaptation occurs or not on a given pattern is a
probabilistic decision, whereby the probability of the
snap or drift occurring is proportional to declining
performance. The novel bottom-up learning of the P-
ART is a normalised version of the top-down learning:

||)(

)(
)(

new
Ji

new
Jinew

iJ w
ww = (14)

where wJi

(new) = top-down weights of the network after
learning. Poor performance can occur when the final
selection of proxylet type is wrong, even if the general
features extracted by dP-ART are valid. To cope with
this, there should be a dissociation between d and s-
PART learning. Hence, dP-ART learning is toggled on-

off every half-epoch so that sP-ART can readjust its
learning of selections without modification of the
general features in dP-ART, thus resolving a moving
target problem.

The Selection P-ART (sP-ART) Learning

The outputs produced by the dP-ART act as input to the
sP-ART. The behaviour of sP-ART is the same as that
described in section P-ART Architecture, with one
exception; only the F2 node with the highest activation
is adapted. Each output node of the sP-ART points to a
set of available application-specific groupings (in this
case proxylet types). The proxylet type data, containing
attributes of the types, is used as off-line training data
for the SOM so that it forms a map with similar
proxylets placed on adjacent nodes. This allows each
output node of the sP-ART to be ‘hardwired’ onto
regions of the SOM. The task of the sP-ART is
therefore to learn to associate the correct group of input
patterns with an output node that is hardwired to a
region of the SOM. The effect of learning and
relearning within the sP-ART module is that specific
output nodes will relate different groups of input
patterns to different regions of the SOM until the
performance feedback indicates that it is indexing the
SOM regions that select the most appropriate proxylets.
In that event, the learning probability is low, so that
even if the snap-drift has not yet converged, further
adjustment is slow.

The Performance Feedback

The external performance feedback into the PART
reflects the performance requirement in different
circumstances. Various performance feedbacks profiles
in the range {0, 1} are fed into the network to evaluate
the dynamic stability and effectiveness of the learning.
Initially, some very basic tests with performances of 1
or 0 were evaluated in a simplified system [Lee et al.
2002; Lee et al. 2003; Lee et al. 2004]. Here, the
simulations involve computing the performance based
on a parameter associated with the winning output
neuron. The winning output neurons represent proxlet
selections which are either good or poor selections for
the current input request, and hence the accumulation of
these over time, averaged, gives a performamce
indicator in the range {0,1}.

BRITISH TELECOM (BT) APPLICATION

Application Layer Active Network (ALAN)

British Telecom (BT) is the main data network provider
in the UK. At present, most applications are run on edge
devices (which send and receive data, but do not route
third party data), such as servers, PCs and WAP enabled
devices. There are strong arguments for moving as
many of these applications as possible into the network

D. PALMER-BROWN et al: CONTINUOUS REINFORCED SNAP-DRIFT LEARNING …

I. J. of SIMULATION Vol. 6 No 9 ISSN 1473-804x online, 1473-8031 print

17

[Tennenhouse and Wetherall 1996], thereby ensuring
optimal placement of applications with respect to
performance, version synchronicity (so that more users
have the same version), and increased security. ‘Active
Networking’ [Tennenhouse and Wetherall 1996] aims
to achieve this application migration into the network
by running code within the network on specialised
routers. It gives users the ability to load software
components onto network devices dynamically without
explicit references to any third party. There are three
types of active networks:

1. Capsule – This approach is used to enable the active
service codes to run on the network devices, such as
servers, that the packets encounter.

2. Programmable – This approach allows the clients to
download their own active service codes onto
network devices before using their application
[Campbell et al. 1999].

3. Active Bridging – This approach allows the network
operators1 the freedom to choose appropriate active
service codes of their own [Alexander 1996).
Despite the difficulties of the approach (Marshall
1999a), it has highlighted the important
requirements for a feasible active network and
encouraged other researchers to develop better
alternatives to resolve them.

The ALAN architecture [Fry and Ghosh 1999] enabled
the user to supply JAVA based active-service codes
known as proxylets that run on a network device. Each
networked server runs the ‘Execution Environments for
Proxylets’ (EEPs) that contains the user supplied
software. The purpose of the architecture is to locate the
software at optimal points of the end-to-end path
between the server and the clients.

Automated Active Network Management using
Distributed Genetic Algorithm (GA)

The original ALAN proposal, the management system
supports conventional management agent interfaces
[Marshall 1999b; Marshall et al. 2000] that respond to
instructions from the system operators. Each application
is individually placed in the network. However, since
ALAN with the potential for an enormous range of
services, it is necessary to combine the active services
with an automated and adaptive management solution.
Recently, a novel adaptive approach, a Distributed
Genetic Algorithm (GA) solution was introduced by BT
Research Laboratories [Marshall and Roadknight 2001].
It performs proxylet placement. Here, P-ART provides
a means of finding a set of conditions that produce
optimum proxylet selection in an EEP containing the
frequently requested proxylets that have been placed.
Continuous performance guided adaptation of the
mapping of input patters, which contain the main

1 Network operators are those companies (such as BT, NTL) who control the
public network and allow Internet Service Providers (ISPs) (such as Freeserve,
BT, AOL) to provide additional Internet services.

attribute values of user proxylet requests, performs
intelligent proxylet type selection.

THE P-ART SIMULATION

P-ART is used for learning and mapping user requests
onto appropriate proxylets. The test patterns consist of
1000 input vectors. Each test pattern characterizes the
properties of a network request, such as bandwidth,
time, file size, loss and completion guarantee. These
test patterns are presented in random order with 10
patterns per epoch for 100 epochs where the
performance, p, is calculated according to the average
bandwidth of selections. This on-line continuous
random presentation of test patterns simulates the real
world scenario in which pattern presentation order is
random, so that a given network request might be
repeatedly encountered while others are not used at all.

ANALYSIS OF RESULTS

Results are presented in Figures 3, 4 and Table 4 and 5.
They are representative of many simulations that have
been run. Performance feedback is updated at the end
of each epoch of 10 patterns. Much longer epochs are
less effective. The best results are for the shortest
epochs for which the performance estimate remains a
reasonable estimate of overall performance, which of
course it would not be for a very small number of
patterns. In this application, although there are 1000
patterns, there are only 100 general types, and hence 10
is approximately the smallest reasonable sample for
which updates in performance may be trusted to
increase or decrease with true overall performance. This
will clearly be different for each application.

Figure 3 represents a typical run in which performance
converges towards 100% and settles with some
remaining jitter. In the other results tables below,
learning is actually over by about epoch 75, after which
no new selections of proxylets occur until the criteria
change to low bandwidth. After 75 (750 pattern
presentations), all the performance variation between
epochs (the jitter in the performance curve) is due to the
epochs being short (in other words, samples of 10 give
approximately 70% accurate true performance
estimates), and hence the performance over 1000
patterns is actually constant at about the average of the
values of the table values from 70-100, which is just
under 80%.

In Figure 4 and Table 5, the performance criterion is
swapped from high to low bandwidth after 100 epochs,
and we see relearning and re-stabilisation occur, with
similar performance to before the swap being restored
once convergence has re-occurred.

D. PALMER-BROWN et al: CONTINUOUS REINFORCED SNAP-DRIFT LEARNING …

I. J. of SIMULATION Vol. 6 No 9 ISSN 1473-804x online, 1473-8031 print

18

CONCLUSIONS & FURTHER WORK

In conclusion, the snap-drift algorithm learning
stabilizes reliably and is able to map the inputs onto
appropriate proxylets. The simulation results show that
the snap-drift algorithm is able to provide continuous
probabilistic real-time learning in order to improve the
performance, based on the external performance
feedback. On-going research is advancing on three
fronts, with unsupervised and reinforcement versions of
snap-drift:

• Phonetic Feature Discovery in Speech

waveforms: An fully unsupervised snap-drift
algorithm is being used for discovering the internal
features in speech utterances and to chracterise the
acoustic properties of the normal and stammering
speaker groups. The learnt features will be studied,
in particular the features occurring in utterances of
both normal and stammering speakers, and the
distinct features which only exist one of the two
groups, as a means of correlative data analysis.

• Cluster Analysis using Iris Data: The

unsupervised snap-drift algorithm is also being used
for clustering the well known Iris dataset [Fisher
1936] and has been widely used in cluster analysis.
This provides the opportunity to test the snap-drift
algorithm on a well-defined, well understood
problem and thereby enable a comparative
evaluation with other types of clustering algorithms.
It will then allow an investigation of the affect on
snap-drift clustering of the reinforcement method
used in this paper.

• Phrase Recognition for a Connectionist

Language Parser: The emphasis of this research is
to use the snap-drift algorithm for recognition of
phrases extracted from the Lancaster Parsed Corpus
(LCS) in order to improve the overall performance a
corpus-based parser [Palmer-Brown et al. 2002;
Tepper et al. 2002], which involved phrase
segmentation and recognition stages.

In terms of the snap-drift algorithm itself, we are
exploring the role of individual reinforcement feedback
onto each neuron to control its learning mode, as
compared to the current method, which uses the same
performance measure for every neuron. This will enable
a snap-drift network to function as a classifier.

0
1
2
3
4
5
6
7
8
9

10

0 10 20 30 40 50 60 70 80 90 100

Train in g Epoch

N
o.

 o
f P

ro
xy

le
ts

 S
el

ec
te

d

Figure 3: The Selection Frequency of the Proxylet

Type. E.g. Bandwidth Bands: Low Bandwidth Proxylet:
0 → 1000 Kb/S and High Bandwidth Proxylet Type:

1001 → 2000 Kb/S

Figure 4: The Selection Frequency of Proxylet Type.

Table 4: Performance of P-ART

Epoch Average No. of
High Bandwidth
Proxylet Selected

(/10)

Performance
(%)

1 – 10 4.9 49
11 – 20 4.8 48
21 – 30 4.9 49
31 – 40 4.8 48
41 – 50 4.0 40
51 – 60 5.2 52
61 – 70 6.8 68
71 – 80 6.6 66
81 – 90 8.5 85
91 – 100 8.7 87

0

2

4

6

8

10

12

0 50 100 150 200

Training Epoch

N
o.

 o
f P

ro
xy

le
ts

 S
el

ec
te

d

High Bandwidth Low Bandwidth

D. PALMER-BROWN et al: CONTINUOUS REINFORCED SNAP-DRIFT LEARNING …

I. J. of SIMULATION Vol. 6 No 9 ISSN 1473-804x online, 1473-8031 print

19

Table 5: Performance of P-ART with Switching of
Performance Criteria @ epoch 100.

Epoch

Average
No. of High

B/W
Proxylet
Selected

(/12)

Average
No. of

Low B/W
Proxylet
Selected

(/12)

High B/W
Proxylet
Selection

(%)

Low B/W
Proxylet
Selection

 (%)

1 – 10 6.08 3.92 50.69 32.64
11 – 20 5.25 4.75 43.75 39.58
31 – 40 3.50 6.50 29.17 54.17
41 – 50 6.00 4.00 50.00 33.33
51 – 60 6.33 3.67 52.78 30.56
61 – 70 5.83 4.17 48.61 34.72
71 – 80 7.83 2.17 65.28 18.06
81 – 90 8.42 1.58 70.14 13.19

91 – 100 8.33 1.67 69.44 13.89
101 – 100 6.67 3.33 55.56 27.78
111 – 120 5.17 4.83 43.06 40.28
131 – 140 4.42 5.58 36.81 46.53
151 – 160 3.75 6.25 31.25 52.08
161 – 170 2.83 7.17 23.61 59.72
171 – 180 3.42 6.58 28.47 54.86
181 – 190 2.83 7.17 23.61 59.72
191 – 200 0.08 9.92 0.69 82.64

REFERENCES

Alexander D. S. 1996. “Active Bridging” Computer
Communication Review, Vol. 26, No. 2, 101 – 111.

Anderson, J.R. 2000. “Learning & Memory”. 2nd, NY,
Wiley.

Andrews, S. G. 2003. “Novel neural network methods
for describing attributes contained within lesions
images”. In Proceeding of the European Simulation
Multi-conference, 142 – 147, Nottingham, UK.

Bartfai, G. and R. White. 2000. “Incremental Learning
and Optimization of Hierarchical Clustering with ART-
based Modular Networks.” In Innovations in ART
Neural Networks, L. C. Jain, B. Lazzerini and U. Halici
(Eds.). Physica-Verlag, 87 – 132.

Barber, D and Bishop C. 1998. “Ensemble Learning in
Bayesian Neural Networks.” In Neural Networks and
Machine Learning, Bishop C (Ed.). Springer-Verlag,
215-237.
Campbell, A. T. et al. 1999. “Open Signalling for ATM,
Internet and Mobile network”, Computer
Communication Review, Vol. 29, No. 1.

Carpenter, G. A. and S. Grossberg. 1987a. “A
Massively Parallel Architecture for a Self-Organising
Neural Pattern Recognition Machine,” Computer
Vision, Graphics and Image Processing, Vol. 37, 54-
115.

Carpenter, G. A. and S. Grossberg. 1987b. “ART2:
Self-Organization of Stable Category Recognition

Codes for Analogue Pattern.” Applied Optics, Vol. 26,
4919 - 4930.
Carpenter, G. A. and S. Grossberg. 1988. “The ART of
Adaptive Pattern Recognition by a Self-Organising
Neural Network.” IEEE Computerm Vol. 21, No. 3, 77 -
88.

Carpenter, G. A. and S. Grossberg. 1990. “ART 3:
Hierarchical Search Using Chemical Transmitter in
Self-Organizing Pattern Recognition Architectures.”
Neural Network, Vol. 3, No. 4, 129 – 152.

Carpenter, G. A.; S. Grossberg and D.B. Rosen. 1991a.
“ART 2-A: An Adaptive Resonance Algorithm for
Rapid Category Learning and Recognition.” Neural
Networks, Vol. 4, 493 - 504.

Carpenter, G. A.; S. Grossberg and D.B. Rosen. 1991b.
“Fuzzy ART: Fast Stable Learning and Categorization
of Analogue Pattern by an Adaptive Resonance
System.” Neural Networks, Vol. 4, 759 - 771.

Carpenter, G. A.; S. Grossberg and J. H. Reynold.
1991c. “ARTMAP: Supervised Real-Time Learning and
Classification of Nonstationary Data by a Self-
Organizing Neural Networks.” Neural Networks, Vol.
4, 565 – 588.

Carpenter, G. A.; S. Grossberg; A. Markuzon; J. H.
Reynold and D. B. Rosen. 1992. “Fuzzy ARTMAP: A
Neural Network Architecture for Incremental
Supervised Learning of Analogue Multidimensional
Maps.” IEEE Transactions in Neural Networks, Vol. 3,
No. 5, 698 – 713.

Carpenter, G. A.; B. Milenova and B. Noeske. 1998.
“dARTMAP: A Neural Network for Fast Distributed
Supervised Learning.” Neural Networks, Vol. 11, 793 –
813.

Eurich, C. W.; H. Schwegler and R. Woesler. 1997.
“Coarse Coding: Applications to the Visual System of
Salamenders.” Biological Cybernetics, Vol. 77, 41 – 47.
Fisher, R. A. 1936. “The use of multiple measurements
in taxonomic problems.” Annual Eugenics, Vol. 7, No.
II, 179 – 188.

Fry, M. and A. Ghosh. 1999. “Application Layer Active
Network.” Computer Network, Vol. 31, No. 7, 655 –
667.

Grossberg, S. 1976a. “Adaptive Pattern Classification
and Universal Recoding. I. Parallel Development and
Coding of Neural Feature Detectors.” Biological
Cybernetics, Vol. 23, 121 – 134.

Grossberg, S. 1976b. “Adaptive Pattern Classification
and Universal Recoding. II. Feedback, Expectation,

D. PALMER-BROWN et al: CONTINUOUS REINFORCED SNAP-DRIFT LEARNING …

I. J. of SIMULATION Vol. 6 No 9 ISSN 1473-804x online, 1473-8031 print

20

Olfaction, and Illusions.” Biological Cybernetics, Vol.
23, 187 – 202.
Kohonen, T. 1982. “Self-Organized Formation of
Topologically Correct Feature Maps.” Biological
Cybernetics, Vol. 43, 53 – 69.

Kohonen, T. 1990a. “The Self-Organizing Maps.” In
Proceeding of IEEE, Vol. 78, No. 9, 1464 – 1480.

Kohonen, T. 1990b. “Improved Versions of Learning
Vector Quantization.” In Proceeding of the
International Joint Conference on Neural Networks,
Vol. 1, 545 – 550.

Lee, S. W.; D. Palmer-Brown; J. Tepper and C. M.
Roadknight. 2002. “ Performance-guided Neural
Network for Rapidly Self-Organising Active Network
Management.” In Soft Computing Systems: Design,
Management and Applications, A. Abraham J. Ruiz-
del-Solar and M. Köppen (Eds.). IOS Press,
Amsterdam, 21 – 31.

Lee, S. W.; D. Palmer-Brown; J. Tepper and C. M.
Roadknight. 2003. “Snap-Drift: Real-Time
Performance-guided Learning.” In Proceeding of
International Joint Conference on Neural Networks,
Vol. 2, 1412 – 1416. Portland, Oregon, U.S.A

Lee, S. W.; D. Palmer-Brown and C. M. Roadknight.
2004. “Performance-guided Neural Network for
Rapidly Self-Organising Active Network
Management.” Neurocomputing, Vol. 61C, 5 – 20.

Marshall, I. W. 1999a. “Active Network - Making the
Next Generation Internet Flexible”, British Telecom
Engineering, Vol. 18, 2-8.

Marshall, I. W. 1999b. “Application Layer
Programmable Internetwork Environment.” British
Telecom Technology Journal, Vol. 17. No. 2, 82 – 94.

Marshall, I. W.; J. Hardwicke; H. Gharid; M. Fisher and
P. Mckee. 2000. “Active Management of Multi-Service
Networks.” In Proceeding of the IEEE Network
Operations and Management Symposium (Hawaii). 981
– 983.

Marshall, I. W. and C. M. Roadknight. 2001. “Provision
of Quality of Service for Active Services.” Computer
Networks, Vol. 36, No. 1, 75 – 85.

Palmer-Brown, D. 1992. “High Speed Learning in a
Supervised, Self Growing Net.” In Proceeding of the
International Conference of Artificial Neural Network,
Vol.2, 1159 – 1162.

Palmer-Brown, D., Tepper, J. and Powell, H. 2002.
“Connectionist Natural Language Parsing.” Trends in
Cognitive Sciences, Vol. 6, No. 10, 437 - 442.

Sutherland, N.S. and Mackintosh, N.J. 1971.
“Mechanisms of Animal Discrimination Learning”.
NY, Academic Press.

Tan, A-H. 1997. “ Cascade ARTMAP: Integrating
Neural Computation and Symbolic Knowledge
Processing.” IEEE Transactions in Neural Networks,
Vol. 8, No. 2, 237 – 250.

Tennenhouse, D. and D. Wetherall. 1996. “Towards
An Active Network Architecture.” Computer
Communication Reviews, Vol. 26, No. 2, 5 – 18.

Tepper, J., H. Powell and D. Palmer-Brown. 2002. “A
Corpus-based Connectionist Architecture for Large-
scale Natural Language Parsing.” Connection Science,
Vol. 14, No. 2, 93 – 114.

Vieira, C. , P Mather, P Alpin. 2003. “Improving
Artificial Neural Network Performance by Using
Temporal-Spectral Features for Agricultural Crop
Classification”. In Proceeding of the European
Simulation Multi-conference, 124 – 130. Nottingham,
UK.

AUTHOR BIOGRAPHIES

DOMINIC PALMER-BROWN is
professor of neurocomputing and
Associate Head, School of Computing
and Technology, University of East
London, UK. In recent years he has
maintained active research links with
several organisations, including

British Telecom Research Labs, The Centre for Ecology
and Hydrology, and with several universities. A key
focus of his research is neurocomputing and related
methods of adaptation and learning in cognitive science,
intelligent data analysis, and pattern recognition.
Dominic has published about 60 international
conference and journal papers and supervised 12 PhDs,
since completing his own PhD on an adaptive resonance
classifier in 1991. His interests have principally
concerned supervised and performance-guided ART,
enhanced MLPs for intelligent data analysis, and
architectures incorporating MLPs and SRNs for
thematic knowledge extraction and natural language
processing. He was editor of the review journal Trends
in Cognitive Sciences during 2000-2 before rejoining
Leeds Metropolitan University. In 2005 he was
appointed to his present post.

D. PALMER-BROWN et al: CONTINUOUS REINFORCED SNAP-DRIFT LEARNING …

I. J. of SIMULATION Vol. 6 No 9 ISSN 1473-804x online, 1473-8031 print

21

SIN WEE LEE was born in
Melaka, Malaysia, in 1976. He
graduated with first class honours
in electronics and computing
engineering from the Nottingham
Trent University, United Kingdom,
in 1999. His PhD’s thesis focuses
on the development of

performance-guided neural network for active network
management. From 2000 to 2001, he was a systems
engineer at Malaysia Multimedia University in
Malaysia. In December 2001, he joined the School of
Computing, Leeds Metropolitan University, Leeds,
United Kingdom, with a research scholarship from
EPSRC/BT Research Laboratories in Neural Networks.
As a research assistant, he works with Dominic Palmer-
Brown, on the improvement and development of phrase
recognition for a connectionist language parser, feature
discovery in phonetics data and cluster analysis using
iris data using snap-drift algorithm.

	IJSS 2005 cs
	Paper2

